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ABSTRACT:

Leaf Area Index (LAI) is a quantity that characterizes canopy foliage content. As leaf surfaces are the primary sites of energy,
mass exchange, and fundamental production of terrestrial ecosystem, many important processes are directly proportional to
LAI. With this, LAI can be considered as an important parameter of plant growth. Multispectral optical images have been
widely utilized for mangrove-related studies, such as LAI estimation. In Sentinel-2, for example, LAI can be estimated
using a biophysical processor in SNAP or using various machine learning algorithms. However, multispectral optical
images have disadvantages due to its weather-dependence and limited canopy penetration. In this study, a multi-sensor
approach was implemented by using free multi-spectral optical images (Sentinel-2 ) and synthetic aperture radar (SAR)
images (Sentinel-1) to perform Leaf Area Index (LAI) estimation. The use of SAR images can compensate for the above-
mentioned disadvantages and it then can pave the way for regular mapping and assessment of LAI, despite any weather
conditions and cloud cover. In this study, generation of LAI models that explores linear, non-linear and decision trees
modelling algorithms to incorporate Sentinel-1 derivatives and Sentinel-2 LAI were executed. The Random Forest model
have exhibited the most robust model having the lowest RMSE of 0.2845. This result poses a concrete relationship of a
biophysical entity derived from optical parameters to RADAR derivatives to which opens the opportunity of integrating
both systems to compensate each disadvantages and produce a more efficient quantification of LAI.

1. INTRODUCTION

1.1 Background

Leaf Area Index (LAI) is a dimensionless quantity used to
characterize canopy foliage content, defined as the total area
of one side of the leaf tissue per unit area of ground surface
(Breda, 2008). It is commonly used in studies concerning
vegetation and ecosystems as leaf surfaces are the primary
sites of energy, mass exchange and primary production of
terrestrial ecosystem. Many important processes such as
canopy interception, evapotranspiration, and gross photo-
synthesis are directly proportional to it (Liang and Wang,
2020). LAI quantifies the photo-synthetically active part
of forest canopies and allows the examination of rapid re-
sponse to stress factors (Stankevich et al., 2017) therefore,
an effective indicator for vegetation status. Current meth-
ods to measure LAI are through ground-based and remote-
sensing methods.

Ground-based LAI measurements can be done either dir-
ectly or indirectly (Liang and Wang, 2020). LAI can be
measured directly by harvesting leaves, using either de-
structive sampling or litter traps, and then measuring their
area (Liang and Wang, 2020). In contrast, the indirect way
to measure LAI exploits either the allometric relationship
between leaf area per tree and diameter at breast height
(DBH) or to measure the canopy transmittance and then
convert it to LAI (Liang and Wang, 2020). Ground-based
∗ Corresponding author

methods, however, can be labor intensive for large areas that
would need a lot of samples to adequately characterize its
spatial variability (Liang and Wang, 2020). Nevertheless,
ground-based methods are often considered suitable for a
specific study site or small patches of vegetation (Liang and
Wang, 2020).

A more practical method to obtain LAI measurements, es-
pecially over large areas with multi-temporal coverage, is
through the use of remotely sensed data. However, LAI
is not directly accessible from remotely-sensed images due
to the possible heterogeneity in leaf distribution within the
canopy volume. Note that LAI is an intrinsic canopy char-
acteristic, hence, it should not be reliant on the observa-
tion conditions of remotely-sensed data. Thus, LAI from
remotely-sensed observations correspond to the ’effective
LAI’, i.e. the value that would produce the same remote
sensing signal as that actually recorded, while assuming a
random distribution of leaves (Weiss and Baret, 2016). Still,
the possibility of utilizing remotely-sensed data in estimat-
ing LAI should be advantageous over large areas such as
mangroves with a difficulty in accessibility.

LAI estimation through optical satellite images have been
explored through numerous studies with various degrees of
success (Phinn et al., 1999). In the case of Sentinel-2, LAI
can be computed using a SNAP tool that uses tested, gen-
eric algorithms based on specific radiative transfer mod-
els. One study was conducted to validate Sentinel-2 de-
rived LAI with ground-measured LAI on winter wheat in
Poland (Bochenek et al., 2018). Results showed that their
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compatibility is highly-dependent on vegetation phase and
that the SNAP tool tends to underestimate LAI. They fur-
ther concluded that the less reliable LAI results could be
attributed to the less-straightforward method, i.e. the use
of artificial neural networks (ANN). On the contrary, an-
other study assessed the accuracy of Sentinel-2 derived LAI
of plant canopies and other land use/cover type in tropical
mangrove areas in Palawan, Philippines and concluded on a
positive note (Apan et al., 2018). They compared Sentinel-
2 derived LAI and in-situ LAI measured using hand-held
C1-110 Plant Canopy Imager. Although the range of field-
based LAI, which was 0 - 2.71 (mean = 0.86), and Sentinel-
2 derived LAI, which was 0.19 - 4.32 (mean = 1.64), differs,
the regression models demonstrated high correlation agree-
ment of observed and predicted LAI values with 0.9419
for linear regression and 0.9435 for support vector machine
(SVM).

However, several limitations arises from the retrieval of LAI
in multispectral optical images such as Sentinel-2 images,
specifically (1) being constrained by the requirement of
cloud-free daylight conditions; (2) being able to capture in-
formation mainly from top of canopy rather than the veget-
ation structure; and (3) the prospect of surface reflectance
saturation that occur to moderate to high vegetation cover
(Wang et al., 2019). These limitations, however, can be ad-
dressed by using Radio Detection and Ranging (RADAR)
images.

RADAR become more commonly used because of its all-
weather and all-day capability (Filho and Paradella, 2002).
RADAR utilizes microwave signals from which the longer
wavelengths allows the canopy penetration and therefore
acquiring under canopy vegetation parameters and surface
characteristics (Bourgeau-Chavez et al., 2001). Addition-
ally, the sensitivity of RADAR to dielectric constant dir-
ectly associated to water content (Baghdadi et al., 2001)
proves its suitability to mangrove studies since it thrives
in tide inundation zone and water quantity easily varies.
Studies have reported the effectivity of Synthetic Aper-
ture RADAR (SAR) for crop monitoring. Such studies
explored satellites EUMETSATs Metop Advanced SCAT-
terometers (ASCAT), JAXAs Advanced Microwave Scan-
ning Radiometer 2 (AMSR2), ESAs Soil Moisture Ocean
Salinity (SMOS) mission and NASAs Soil Moisture Act-
ive Passive (SMAP) (Wagner et al.,1999; Kerr et al., 2012;
Parinussa et al., 2015; Liu et al., 2011) but encounters a
problem when the spatial resolution of these products were
observed to be relatively coarse with pixels covering tens
of kilometers. Another study then suggest a relationship
between VH backscatter and Leaf Area Index (LAI) having
both exhibit an increase in rapeseed site in Italy and Sweden
(Macelloni et al., 2001). Additionally, another study ex-
plored the fusion of optical and SAR imageries for LAI gap
filling where it has proven its effectivity cloudy periods to
which optical satellites suffers (Pipia et al., 2019).

As of 2014, the European Space Agency (ESA) Coperni-
cus Sentinel-1 was launched having backscatter observa-
tions with revisit time of 1.5 - 4 days and a spatial res-
olution of 20m (Vreugdenhil et al., 2018). These advant-
ages, however, does not entirely make Sentinel-1 a superior
sensor. SAR Signals are affected by soil background and to-
pography. Furthermore, unlike optical sensors, vegetation
indices and biophysical parameters cannot be directly de-
rived in Sentinel-1. Thus, the need to establish relationships

through models and other methodologies. The use of backs-
catter for LAI is continuously being studied since RADAR
data application is still rare (Stankevich et al., 2017). LAI
is not directly available from Sentinel-1 thus, arises vari-
ous methodologies and models in establishing LAI relation-
ships (Stankevich et al., 2017, Wang et al., 2019).

This study explores the potential use of Sentinel-1 for LAI
estimation using a number of statistical machine learning al-
gorithms for establishing a relationship between Sentinel-2
optical parameters and Sentinel-1 RADAR derivatives that
opens an opportunity for integrating both multispectral op-
tical and SAR satellites images for better analysis of veget-
ation dynamics.

1.2 Study Area

The Philippines used to have over 400,000 hectares of man-
grove cover before it declined to 120,000 hectares in 1994
(Primavera, 2000). The largest threat to mangrove forests
are the establishment of fishponds for commercial fishing
and shrimp farming (Primavera, 2000). Despite these sus-
tained threats, the mangrove cover in the country is increas-
ing considering the 2010 estimate of the Department of
Natural Environment and Resources of 310, 593 hectares
(FMB, 2010). And this increasing trend is also observed
in the study area located in Noveleta and Kawit in Cavite,
Philippines.

The mangrove cover in Kawit, Cavite increased from 33.65
hectares to 133.75 hectares between 2003 and 2010 (Salmo
et al., 2017). Upon visual inspection on satellite im-
agery (See Figure 1), the mangrove covers continued to
increase through the years. However, in early 2019 man-
groves and trees were cut down in Animal Island in Brgy.
Binakayan in Kawit, Cavite to give way for the construction
of 20-hectare Philippine Amusement and Gaming Corpor-
ation (PAGCOR) Philippine Offshore Gaming Operations
(POGO) Hub Covelandia. The PAGCOR POGO Hub Cov-
elandia used to be part of the mangrove-enclosed Island
Cove Resort and Leisure Park (Ronda, 2019). Moreover,
LAI is an important parameter of plant growth (Trimble,
2019) and thus, changes can be observed through the LAI
values as well. Due to mangrove phenology, LAI drastic-
ally increases during the mangrove’s early stages and then
it undergoes a process called self-thinning resulting to a de-
crease in LAI. As it matures, though, the LAI values be-
come more stable. This study analyzes mangrove patches
found in four locations namely. (1) Brgy. San Rafael, Nov-
eleta, (2) Brgy. Poblacion, Kawit, (3) Brgy. Pulvorista,
Kawit and (4) Brgy. Binakayan, Kawit. In this mangrove
patches, the surrounding areas have been subjected to act-
ive urbanization to which some mangroves were cleared out
such that the LAI values on those are expected to approach
zero however presented itself a different case.

Figure 1. Sentinel-2 images covering the study area in 2016,
2019, and 2020 (1: Brgy. San Rafael, Noveleta; 2: Brgy.
Poblacion, Kawit; 3: Brgy. Pulvorista, Kawit; 4: Brgy.

Binakayan, Kawit).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-109-2021 | © Author(s) 2021. CC BY 4.0 License.

 
110



With the sustained threats on mangrove forests updated
information are important for the development of cost-
effective resource management approaches (Go, 2019) that
can aid in the creation of relevant interventions for policy
makers. And one possible way to have an updated informa-
tion regarding mangrove conditions would be through reg-
ular mapping and assessment of LAI.

1.3 Objectives

In this study, the relationship between derivatives of
Sentinel-1 (backscatter and interactions) and Sentinel-2
(LAI) is modeled for LAI estimation.

1.4 Significance

Leaf Area Index (LAI) is one of the most common
parameter used to quantify vegetation attributes, specific-
ally to characterize canopy foliage content. Although
multi-spectral images are effective and widely-used for
mangrove-related studies, these images have drawback
(Wang et al., 2019). They are not independent of weather
conditions. Moreover, the capability of backscatter to pen-
etrate the canopy, and its sensitivity to dielectric constant
linked to water availability is suitable for mangrove stud-
ies. Thus Sentinel- SAR images were used here to establish
the relationship between its derivatives and that of multi-
spectral images. This should be helpful for areas with per-
sistent cloud cover. Furthermore, the use of SAR images for
LAI estimation should compensate for these disadvantages
inherent to multispectral images and it could pave the way
then for regular mapping and assessment of LAI.

1.5 Scope and Limitation

This study was done when a global pandemic was occur-
ring. Access to the actual mangrove forests were physically
impossible, in consequence, no field-based data were used
in validation of resulting maps and in calibration of LAI
models.

2. METHODOLOGY

Figure 2. Methodology overview for generating a model that
is aimed to establish a relationship from LAI-derived data
from Sentinel-2 with RADAR derivatives extracted from

Sentinel-1 SAR

2.1 Data and Materials

The satellite imageries utilized in this study were Sentinel-
2 Multispectral Imager Instrument (MSI) Level 1-C images
and Sentinel - 1 Synthetic Aperture RADAR (SAR) Level
1 Ground Range Detected (GRD) whose extents frames the
study area and having collected one image per year from
2016-2020.

2.2 Pre-processing

Sentinel-2 L1-C products are already orthorectified, geor-
eferenced, and radiometrically calibrated into top-of-
atmosphere (ToA) reflectance. Atmospheric correction was
applied using Sen2cor standalone tool to convert L1-C to
Level-2A products, i.e. ToA reflectance data to surface re-
flectance data. This atmospheric correction was carried out
using image-based retrievals from a set of Look-Up tables
generated from the libRadtran model to correct single-
date Sentinel-2 L1-C ToA product from atmospheric effects
and to arrive with L2-A surface reflectance product (Main-
Knorn et al., 2017). All L2-A bands were resampled to 10m
pixel size using SNAP v. 7.0 geometric operation tool.

The Sentinel - 1 GRD products contains SAR data that has
been detected, multi-looked and projected to ground range
using WGS84 ellipsoid model. Polarisations included VV
and VH. Pre-processing was done in the Sentinel Applic-
ation Platform (SNAP) software with the following order:
(1) the application of a precise orbit file, (2) thermal noise
removal, (3) border noise removal(4) calibration using the
st1bx in SNAP, (5) terrain correction by applying an ex-
ternal Digital Elevation Model (DEM) extracted from an
Interferometric Synthetic Aperture RADAR (IFSAR) data
sensed in 2013 as acquired from the National Mapping
and Resource Information Authority (NAMRIA), lastly, (6)
converting the unitless backscatter coefficient to dB using
a logarithmic transformation deriving with the sigma0 for
each polarizations.

2.3 Imagery Derivatives Data Preparation

The vegetation index considered in this study was the Leaf
Area Index (LAI) which was generated for all pre-processed
Sentinel-2 images using the SNAP biophysical processor.

Meanwhile, the primary RADAR parameters considered in
this study that were present in the Sentinel-1 imageries were
the sigma0 backscatter coefficients of each polarization
(VV and VH). From these coefficients, RADAR derivatives
were computed using Equations 1, 2, 3, and 4.

Cross Polarised Ratio =
σ0
V H

σ0
V V

(1)

Polarisation Difference = σ0
V H − σ0

V V (2)

Polarisation Difference =
σ0
V H + σ0

V V

2
(3)

RADAR Vegetation lndex =
4V H

σ0
V H + σ0

V V

(4)
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Unlike Sentinel-2, Sentinel-1 has no LAI included in its
product. To obtain LAI from Sentinel-1, this study gener-
ated a model aimed to establish a relationship between LAI
and the six (6) RADAR parameters. Modeling was done
for each year from 2016-2020 to monitor consistency and
robustness of model and to characterize fluctuations both
on LAI and RADAR variables.

Since Sentinel-2 and Sentinel-1 are different products, scal-
ing, aligning, resampling and normalizing were conducted
in order for Sentinel-1 and Sentinel-2 images to have the
same resolution and pixels. A mangrove mask generated
from a Mangrove Vegetation Index (MVI) (Baloloy et al.,
2020) was applied to isolate the mangrove patches for both
imageries.

Feature selection was then done to verify that the chosen
predictor variables are significant to estimate LAI. More
variables do not directly imply a good model rather there is
a possibility of overfitting and removing unnecessary vari-
ables prevents biases. The Boruta algorithm, readily avail-
able in RStudio, was considered since it works well in tak-
ing account of multi-variable relationships and considers all
features with respect to a certain outcome variable.

2.4 Statistical Machine Learning Algorithms

Since we are dealing awith per pixel values with around
> 1000 pixels per image, machine learning-based models
were deemed applicable for analyzing these data of vast
volumes. Effectiveness of the model fit, however, falls in
the specific algorithm to be utilized. In this study, three al-
gorithm types were explored in order to identify the best
estimation (seen in Figure 3). All modeling were done in
RStudio.

Figure 3. Statistical machine learning algorithms utilized in
predictive modeling of LAI.

For the linear models, Multiple Linear Regression was
utilized since it accepts more than one predictor variable.
Meanwhile, ridge regression was also considered since it
can be used with data that suffer from multicollinearity.

For the non-linear category, Generalized Additive models
was considered because it has been used for environmental
sciences studies which is grounded with the idea of adding
a smoothing function to the contributing variables to make
the fit more flexible and adaptive. On the other hand, Sup-
port Vector Machine models does not depend on distribu-
tions of the data and the model estimates a continuous-
valued multivariate function. SVM limits the error at an
acceptable range.

Similarly, Random Forest was primarily used as a classifier
but has the predictive capacities as well. The idea of RF is
grounded on the use of a number of decision trees that form
nodes containing a high proportion of the data samples. It

cleanly divides the data and would continuously do so de-
pending on the number of trees programmed therefore, nar-
rowing down specific estimates. And this done through ran-
dom sampling with replacement thus, providing an element
of randomness to prevent overfitting.

2.5 Accuracy Metrics and Model Evaluation

Accuracy of the models is measured by the closeness of
the predicted estimates with respect to the derived values.
In this study, determinants of accuracy used were the R-
squared value and the RMSE.

R2 = 1 − SSRES

SSTOT
= 1 −

∑
i
(yi − ŷi)

2∑
i
(yi − ȳ)2

(5)

RMSE =

√∑N

i=1
(Predictedi −Actuali)

2

N
(6)

3. RESULTS AND DISCUSSION

3.1 Feature Selection

Seen in Figure 4 is the result of the program run of the Bor-
uta algorithm for feature selection. Parameters labeled in
blue are the shadow features min, max and mean while
those features labeled in green were considered signific-
ant since they have exceeded the maximum Z score among
shadow attributes (MZSA).

Figure 4. Feature selection results run by Boruta Algorithm

It is observed that all six parameters from Sentinel-1 are
deemed significant predictors for the Sentinel-2 derived
LAI with Polar Mean and VH backscatter to be the top vari-
ables that affect LAI

3.2 LAI Modelling

Presented in Figures 5 and 6 is a comparison of the de-
rived and predicted values by the models for the years 2016
and 2020. Upon overlaying the predicted on the derived
values, the distribution of predicted values can be inferred.
Algorithms under linear models exhibit a concentration in
median values similar as well to non-linear models how-
ever are more constrained as it approaches a certain value.
Lastly, RF have presented a distribution that is flexible and
mimics the behavior of the LAI values.
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Figure 5. Derived and predicted LAI for each model in 2020.

Figure 6. Derived and predicted LAI for each model in 2020.

Extremum and mean values were also tabulated for analyz-
ing distribution as seen in Tables 1 and 2. From the tables,
MLR, ridge and GAM have matched the mean values of the
derived since as observed it had concentrated much on the
median values. RF model has generated maximum values
closest to that of the derived.

2016 LAI Values Min Max Mean
Sentinel-2 Derived 0.0052 3.8198 2.0950

MLR -1.4230 3.0870 2.0950
Ridge -1.3770 3.1010 2.0950
GAM 0.1653 2.5354 2.0950
SVM 0.2807 2.6731 2.1601
RF 0.1741 3.2540 2.0989

Table 1. Derived and predicted LAI values for each model in
2016.

2020 LAI Values Min Max Mean
Sentinel-2 Derived -0.2077 8.2353 2.5611

MLR -0.5313 5.1355 2.5611
Ridge -0.5301 5.1620 2.5611
GAM -0.2412 3.4006 2.5611
SVM 0.3262 3.4215 2.6563
RF 0.2379 5.4803 2.5634

Table 2. Derived and predicted LAI values for each model in
2020.

Additionally, Quantile-Quantile Plots (QQ Plots) were also
generated in analyzing and comparing the probability dis-
tribution of the data set by plotting “fractions of the data”
or the quantiles. The QQ plots are in Figure 7 . Algorithms
under linear and non-linear models again exhibited similar
traits but are far off to the trend of the derived. RF on the
other hand is to be the likely most similar trend.

Figure 7. QQ Plots of Sentinel-2 derived LAI and estimated
LAI values by each model.

To further evaluate the model’s accuracy, the RMSE and R-
squared values were tabulated throughout the years of 2016-
2020 as shown in Tables 3 and 4. There is, however, no
established threshold for RMSE and R-squared. Nonethe-
less, it is ideal to have a low RMSE and a high R-squared.
From the table the RF model had significantly established
a consistent low RMSE and high R-squared throughout the
five-year data.

Year MLR Ridge GAM SVM RF
2016 0.6634 0.6634 0.6326 0.6357 0.2845
2017 0.7365 0.7365 0.7160 0.7243 0.3280
2018 0.9524 0.9524 0.9144 0.9303 0.4166
2019 0.9490 0.9490 0.8943 0.9111 0.4246
2020 1.0463 1.0463 1.0012 1.0094 0.4501

Table 3. Models’ RMSE (Predicted vs Derived).
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Year MLR Ridge GAM SVM RF
2016 0.1290 0.1290 0.2081 0.2105 0.8935
2017 0.0932 0.0931 0.2081 0.1396 0.8902
2018 0.1575 0.1575 0.2233 0.2238 0.8886
2019 0.1665 0.1665 0.2598 0.2586 0.8829
2020 0.1562 0.1562 0.2273 0.2276 0.8918
2020 0.1562 0.1562 0.2273 0.2276 0.8918

Table 4. Models’ R2 (Predicted vs Derived).

From here, it can be inferred that the Random Forest is ef-
fective in LAI prediction. An in-depth analysis of the model
revealed how the residual error in the model have exponen-
tial decrease as the data go by the number of the decision
trees as seen in Figure 8. The maximum number of decision
tree set in the model was 100 for computational efficiency.

The RF model was able to demonstrate the use of Sentinel-
1 derivatives in generating a relationship with LAI. This
identifies the potential of Sentinel-1 in determining a man-
grove’s biophysical parameter to which a optical satellite is
capable of. A possible indication that the two satellites can
be of compatibility for integration in further studies.

Figure 8. Error reduction with increasing number of trees.

4. CONCLUSION

Generation of a robust model for LAI estimation from
Sentinel-1 SAR parameters was conducted based on the ex-
ploration of diverse model types that presented varying pre-
diction results to which provides insight on LAI behavior.
From these models, Random Forest had showed the highest
accuracy as compared to the other models.

5. RECOMMENDATIONS

This study was made during a global pandemic such ac-
quiring ground samples is not physically probable. In the
time that fieldwork could be allowed again, the use of LAI
measurements from ground-based methods in calibrating
the LAI models furthermore, for validation is highly recom-
mended. It is also suggested that other machine learning
algorithm or extending to utilizing deep learning for model
generation could be explored.
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