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ABSTRACT: 

 

Continuous agricultural land conversion poses threat to food security but this has not been monitored due to ineffectual policies. One 

of the Philippine provinces with a high rate of conversion is the rice-producing province of Cavite. To assess the spatiotemporal 

dynamics of agricultural land conversion in Cavite, this study aims to develop an operational methodology to produce Land Use and 

Land Cover (LULC) change maps using a multi-sensor remote sensing approach for decision making and planning. LULC maps were 

generated using Random Forest Classification of Landsat 8 and Sentinel-1 image collections. Spectral indices, combinations of radar 

polarizations (VV, VH), and their principal components were included to improve its accuracy. Conversion maps were generated by 

taking the bi-annual difference of LULC maps from 2016 to 2019. Accuracy was assessed using visual inspection with Google Earth 

Pro. Classification was carried out using single-sensor (optical or radar) and multi-sensor (optical and radar) approach in combination 

with three feature selection algorithms, namely, Sandri and Zuccolotto (2006), Liaw and Wiener (2015), Kursa and Rudnicki (2010). 

Multi-sensor and single sensor yielded similarly high overall accuracies (OA = 96%) with the exception of single-sensor radar approach 

(OA = 53%). Multi-sensor approaches exhibit high accuracies (Cumulative Accuracy = 91%) in detecting agricultural to built-up 

LULC change up to 5,000 square meters unlike single-sensor optical approach (Cumulative Accuracy = 76%). Among the multi-sensor 

approaches, the method of Liaw and Wiener (2015) remains to be superior as it only uses eight (8) variables. 

 

 

1. INTRODUCTION 

As an agricultural country, the Philippines had been reliant on 

rice, its most important agricultural commodity, for its economic 

growth and food security as it constitutes for about 15% of the 

gross value added in the agriculture industry while serving as the 

main source of food (David & Balisacan, 1995; Abdullah, Ito, & 

Adhana, 2006). Its economic contribution is exhibited by the 

overall land use of the country as nearly two-thirds of the 

country’s farm lands produce rice (David & Balisacan, 1995). 

Moreover, the demand for rice has been increasing based from 

the average growth rate of the consumption per capita at 0.73% 

from 1996 to 2003 (David & Balisacan, 1995; Abdullah, Ito, & 

Adhana, 2006). To help support and sustain this valuable 

industry in the country, especially in attaining food-security, 

implies the need for effective monitoring systems and tools, and 

one way to implement that is through Remote Sensing and GIS 

technologies (Ravanera, 2018; David & Balisacan, 1995). 

 

Various studies have provided substantial findings on the use of 

remote sensing in agricultural monitoring applications such as 

that of Torbick et al. (2017) which utilized optical imagery to 

monitor rice crop lands. A research of the Philippine Rice 

Research Institute in 2019, on the other hand, developed a model 

utilizing radar-based imagery to detect and monitor rice crops. 

However, using optical or radar imagery alonehas been found to 

have limitations. Therefore, for agricultural RS applications, it 

was proposed to integrate both imageries as they could produce 

better results (Torbick et al, 2017; Boschetti et al, 2015; Joshi et 

al, 2016, Dusseux et al, 2014). 

 

 
*  Corresponding author 

 

This study therefore aims to support the agriculture industry in 

the country by developing an operational methodology to 

produce Land Use and Land Cover (LULC) change maps, 

specifically focusing on agricultural land conversion, using 

optical and radar remote sensing datasets. This paper presents the 

following: (1) generation of LULC change maps of the study area 

using multi-sensor and single-sensor image analysis; (2) 

comparison of the approaches and results based on the accuracies 

of the generated LULC change maps; and (3) assessment of the 

spatio-temporal dynamics of agricultural land conversion in the 

study area. 

 

Since free access to radar images was realized only recently, the 

timeframe of this study has been limited to 2016 and 2019 only. 

Moreover, the study focused on agricultural to built-up LULC 

changes only. Agricultural land, in this study, is defined to 

include cultivated and uncultivated croplands, grasslands and 

fallow lands. These sub-categories of agricultural lands are not 

distinguished in this study. 

 

 

2. RESEARCH BACKGROUND 

2.1 Integration of Optical and SAR Satellite Imagery 

While both types of datasets have been utilized in LULC 

mapping applications, each has its own advantages and 

limitations. Optical remote sensing uses visible, near infrared 

(NIR), shortwave infrared (SWIR) sensors, and their derivative 

indices to assess and monitor vegetation growth and land cover 

dynamics (Lefsky and Cohen, 2003; Shaw and Burke, 2003; 
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Dusseux et al., 2014; Fieuzal, 2011). However, for temporal 

analysis, compositing/mosaicking is needed as optical imagery is 

more prone to cloud cover. This leads to sparse time series and 

ambiguous pixels due to the temporal differences and 

atmospheric variations of the optical images being mosaicked 

(Dusseux et al, 2014; Erasmi and Twele, 2009; Joshi et al., 2016; 

Torbick et al., 2017). 

 

Radar remote sensing can capture surface information and 

produce dense time series regardless of weather and the Sun’s 

presence (Idol, Haack and Mahabir, 2015; Erasmi and Twele, 

2009). With varying dielectric constant to the surface, radar 

remote sensing can monitor soil conditions (Lefsky and Cohen, 

2003; Fieuzal et al., 2011). However, it is limited to a single 

microwave. The inherent presence of speckle in the images 

results to uncertainties and poor accuracies during analysis (Idol, 

Haack and Mahabir, 2015; Joshi et al., 2016). 

 

The combination of optical and radar-based datasets for land use 

and land cover mapping is really suggested as the synergism 

between both datasets can be utilized for improved analysis and 

results (Joshi et al., 2016; Erasmi and Twele, 2009). 

  

2.2 Dimensionality Reduction and Variable Selection 

Combining optical and radar-based datasets directly usually 

results to high data dimensionality and redundant information. 

This combination compromises interpretability. Principal 

Components (PC) analysis and Random Forest (RF) variable 

selection help in simplifying datasets with high dimensionality 

(King and Jackson, 1999; Genuer, Poggi and Malot, 2010; 

Argamosa et al., 2018). PC analysis summarizes variances of 

variables into uncorrelated dimensions producing different 

components with newly extracted information which are 

weighed using eigenvalues (King and Jackson, 1999). On the 

other hand, RF designates variables with importance scores 

based on the increase in the mean of the error of a tree in a forest 

when the variable is employed during a regression or 

classification process (Genuer, Poggi and Malot, 2010). A high 

variable importance signifies a greater contribution to a model’s 

accuracy while a low variable importance suggests that a variable 

has no significant contribution to the model regardless of the 

permutation applied (Argamosa et al., 2018). 

 

Various studies utilize RF for variable selection. In 2006, Sandri 

and Zuccolotto proposed RF variable importance which is 

measured by calculating the centroid of the variable importance 

values then selecting variables that are within a given 

threshold/average distance. This method has been effective as the 

noise variables tend to cluster together while significant variables 

appear as outliers (Sandri and Zuccolotto, 2006). On the other 

hand, Argamosa et al. (2018) uses a different implementation of 

variable selection following Liaw and Wiener (2015). In their 

study, the variables were arranged by increasing variable 

importance scores and grouped into different regions based on 

the similarity of scores as defined by a relatively flat slope (Liaw 

and Wiener, 2015). An abrupt change in slope denotes a new 

region and for each region, the variable having the highest 

variable importance score was selected (Liaw and Wiener, 2015). 

A variable was not selected in the first region due to its low 

importance (Liaw and Wiener, 2015). Kursa and Rudnicki 

(2010) used “shadow variables” which are generated with 

random pixel values. Z-scores of the variables are computed and 

all variables with an importance lower than the maximum Z-

score value among the shadow variables were omitted (Kursa 

and Rudnicki, 2010). 

 

2.3 Random Forest Classification 

For multi-sensor remote sensing applications, Random Forest 

(RF) classifiers have been proven to produce superior and 

consistent accuracies even for large sets of data with high 

dimensionality (Torbick et al, 2016; Pal, 2003; Baghdadi and 

Zribi, 2016; Pelletier et al, 2016). Furthermore, RF requires 

shorter training time and easy stable parameterization because its 

parameters cause only small influence on the classification 

accuracy (Pelletier et al, 2016). However, RF shows possible 

overfitting of data but is still advantageous due to its ability to 

produce higher accuracies and efficiently process large and 

diverse datasets (Pal, 2003). 

 

2.4 Dataset Derivatives 

Various derivatives can be utilized for improved classification 

resulting in better LULC maps. For optical imagery, Normalized 

Difference Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI), Normalized Difference Built-up Index 

(NDBI) and the Normalized Difference Bareness Index (NDBal) 

are among the indices which help discriminate land features 

(Ghosh, Chatterjee and Dinda, 2018; Li and Chen, 2014; Sharma, 

Ghosh and Joshi, 2012). NDVI utilizes the Red and Near infrared 

regions to emphasize greenness of land features making 

vegetation more visible compared to other features (Torbick et 

al, 2017; Szabo, Gacsi and Balazs, 2016). For water features, 

NDWI takes advantage of the near and short-wave infrared 

regions (Szabo, Gacsi and Balazs, 2016). NDBI is another index 

used to extract built-up features and lastly, the NDBal index 

discriminates bare soil features however, alternative to this index 

is the Bare Soil Index (BI), developed to model Forest Canopy 

Density (FCD) and exhibited better discrimination of the built-

up and bare soil features (Macarof and Statescu, 2017; Li and 

Chen,2014; Sharma, Ghosh, and Joshi, 2012; Rikimaru, Roy and 

Miyatake, 2002). 

 

Similarly, radar-based imagery also has its derivatives and 

among the commonly used are the different combinations of 

polarizations such as the difference, mean and ratio of vertical 

and horizontal polarizations. These have been found to 

significantly increase classification accuracy (Abdikan et al, 

2016). 

 

3. MATERIALS AND METHODS 

3.1 Study Area 

The area of study is the rice-producing province of Cavite, 

located in the CALABARZON region of the Philippines (Figure 

3). CALABARZON, one of the main producers of rice, fears for 

food security as agricultural lands are continuously converted 

due to urban development or expansion (Cabildo, 2017; 

Philippine Statistics Authority CAF, 2012).  

 

 
Figure 1. Study Area (Cavite) 
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3.2 Materials 

3.2.1 Data Processing 

 

Cloud Computing - Google Earth Engine (GEE): Pre-

processing of satellite imagery up to generation of conversion 

maps were all performed in Google Earth Engine. Google Earth 

Engine (GEE) was used as a tool for cloud computing and 

processing most especially for researchers who lack high-

performance computational resources (Torbick et al, 2017).  

 

Google Earth Pro: Generated KML files were overlaid in 

Google Earth Pro to validate conversion. Said Regions-of-

interest (ROIs) were checked individually to determine 

conversion mapping accuracy for each category. 

 

3.2.2 Satellite Data 

This study utilized Landsat 8 and Sentinel-1 satellites. With a 16-

day repeat cycle Earth coverage and having a total of 11 bands 

ranging from visible to infrared wavelengths with an average 

30m spatial resolution, Landsat is able to provide timely and 

high-quality optical multispectral data which can be utilized for 

global and regional change detection and surface 

characterization applications (United States Geological Survey, 

2020). Sentinel-1 offers SAR data with a 6 day repeat cycle at 

the equator which can be used for improved temporal change 

detection and analysis (ESA, 2019).  

 

The integration of the optical and radar-based datasets requires 

the same temporal coverage for the images. The Google Earth 

Engine Data Catalog provides an overlap of satellite imagery for 

both sensors starting mid-2015 pushing the timeframe of the 

study from 2016 to 2019. 

 

Optical-based Data: USGS Landsat 8 Surface Reflectance Tier 

1 imagery derived from the Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) were utilized in this study. 

Images were grouped by year to generate annual cloud-free 

composite images. Two image collections were formed, one for 

the year 2016 and another for 2019. The ‘pixel_qa’ band derived 

from the CFMASK algorithm detects pixels with cloud and cloud 

shadow attributes masking clouds in the surface reflectance 

image. Annual cloud-free composites were then formulated by 

taking the median of the multiple intra-year pixel values as its 

value.  

 

Optical-based Spectral Indices were used to improve 

classification accuracy. NDVI (Rouse et al, 1974) distinguished 

vegetation while NDWI (Gao, 1996), BU (He et al, 2010) and BI 

(Rikimaru et al, 2002) distinguished water, built-up, and bare soil 

areas, respectively. NDVI, NDWI, BU, and BI are calculated 

using the following equations (Eq. 1-4). 

 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷),  (1) 

𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅),  (2) 

𝐵𝑈 = [
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
] − [

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
],                  (3) 

𝐵𝐼 =
𝑅𝐸𝐷+𝐵𝐿𝑈𝐸+𝐺𝑅𝐸𝐸𝑁

𝑅𝐸𝐷+𝐵𝐿𝑈𝐸−𝐺𝑅𝐸𝐸𝑁
,                                  (4) 

 

where    RED = pixel values of the red band  

             BLUE = pixel values of the green band  

             GREEN = pixel values of the green band  

             NIR = pixel values of the near infrared band  

             SWIR = pixel values of the shortwave infrared band 

 

Radar-based Data: Level 1 C-band Synthetic Aperture Radar 

Ground Range Detected (SAR GRD) of Sentinel was utilized. 

Images were grouped by month before radiometric and 

geometric calibration. The polarizations ‘VV’ and ‘VH’ were 

selected before taking the mean value of each group. This was 

used to compute for other derivatives of the radar-based dataset.  

 

𝑀𝑒𝑎𝑛 =
𝑉𝑉+𝑉𝐻

2
,                  (5) 

𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑉

𝑉𝐻
,                        (6) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑉𝑉 − 𝑉𝐻,  (7) 

 

3.3 Methods 

3.3.1 Land Use and Land Cover Mapping  

Land cover classes need to be defined before generating LULC 

maps (Baghdadi et al., 2016; Jin et al., 2018; Torbick et al., 

2017). For this study, the land cover classes to be used are (1) 

Agriculture: cultivated and uncultivated croplands, grasslands 

and fallow lands, (2) Built-up: settlements, lands used for 

artificial or industrial use such as roads, (3) Bare soil: bare fields 

and mining sites, (4) Pure and mixed forests, and (5) Water: 

inland waters, lakes, reservoirs, and flooded lands. 

 

According to Jensen and Lulla (1987), the minimum number of 

training pixels should be at least 10 times the number of variables 

used in the classification model. Since there are five land cover 

classes, the minimum training population was 50 pixels. 

However, to improve training for the LULC classification model, 

250 training pixels were selected and a total of 150 pixels were 

used for testing. Training pixels were marked through high 

resolution satellite imagery as seen from Google Earth Pro. 

Marking of these features were also based on the familiarity and 

personal knowledge of the researchers on the study area 

eliminating confusion in classification of some pixels. 

   

3.3.2 Principal Component Analysis (PCA) 

Before Random Forest Classification, the number of variables 

for a single composite was seventy (70): ten (10) from the optical 

dataset and sixty (60) from the radar dataset. This was 

computationally expensive and time consuming for Google Earth 

Engine; thus, dimensionality reduction was implemented. 

  

PCA allowed the creation of a linear combination of variables 

while retaining the influence of variables that were most 

important to the classification (King & Jackson, 1999). Google 

Earth Engine (GEE), however, has a limit of twelve (12) input 

variables when performing PCA. This was performed first on the 

optical dataset as it only had ten (10) variables, although this did 

not produce positive results as each variable was unique to its 

counterparts. The radar dataset was split into five (5) groups: one 

for each polarization derivative consisting of the month values 

intra-year. It appeared as that the variables in each group showed 

more relationship as a single Principal Component (PC) 

eigenvalue already accounted for more than 95% of the sum of 

the eigenvalues of all the PCs.  

 

3.3.3 Random Forest Classification 

 

Number of Decision Trees: The optimal number of trees was 

determined by slowly increasing it and watching for out-of-the 

bag error (OOB) convergence (Jin et al., 2018). Its effect on the 

overall accuracy of the model was also observed. 
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Models based on Variable Importance: The original seventy 

(70) variables were reduced to just twenty-six variables (26) after 

the implementation of PCA. 

 

A model was constructed based on the method of dictating which 

variables were deemed to be important, some of which led to the 

reduction of many variables while one, none. Five (5) models 

were created: (a) the method of Sandri and Zuccolotto (2006), 

(b) the method of Liaw and Wiener (2015), (c) the method of 

Kursa and Rudnicki (2010), (d) a method inspecting whether a 

single-sensor (optical) would suffice to accurately perform land 

cover classification; (e) a combination of the three (3) former 

methods by taking the mode of the generated composites. 

 

3.3.4 Land Cover Change Detection 

 

Conversion Map Generation: Conversion maps were produced 

by taking the bi-annual differences of LULC maps from 2016 to 

2019. Pixels that did not change land cover or were not of 

agricultural land cover in the year 2016 were masked out or given 

a value of 0 representing no agricultural conversion present. Four 

(4) conversion maps were generated; this was done to compare 

conversion maps using the different models. 

 

Spatial Filtering: Spatial filtering simplified raster maps before 

converting them into a vector format. A majority filter changes a 

raster value based on its contiguous neighbouring cells while 

boundary filter uses the expand and shrink method to clean 

ragged edges between zones (ESRI, 2014). 

 

Categorizing Conversion: Final raster maps were converted 

into vector format. Shape areas of individual polygons were 

computed and categorized according to size: (a) 50,000 sqm and 

above; (b) 10,000 sqm to 50,000 sqm; (c) 5,000 sqm to 10,000 

sqm; (d) 1,000 sqm to 5,000 sqm; (e) 500 sqm to 1,000 sqm. Each 

category was exported as a separate KML file and was imported 

into Google Earth Pro for accuracy assessment. 

 

 
Figure 3. General Methodology – Validation 

 

4. RESULTS AND DISCUSSION 

4.1 Variable Reduction 

4.1.1 Principal Component Analysis (PCA): The first 

principal component (PC1) of the VH, VV, Mean Backscatter, 

and Backscatter Ratio groups represented more than 90% of the 

total variation of all data. Thus, for these groups, the respective 

PC1s were used. This is not the case for the backscatter 

difference group, for which at least ten (10) PCs are needed to 

sufficiently describe variability. The twelve (12) backscatter 

difference variables were therefore retained instead of using the 

PCs to preserve all the information. 

 

Table 1 shows the final pool of variables for the Random Forest 

Classification. The optical imagery dataset comprised of ten (10) 

variables: six (6) spectral bands and four (4) spectral indices. The 

radar-based imagery dataset had sixteen (16) variables: four (4) 

principal components and twelve (12) backscatter differences, 

one for each month of the year. The total number of variables in 

the pool was twenty-six (26). 

 

Optical Imagery Variables 
Radar-based Imagery 

Variables 

Spectral Bands: 

B2, B3, B4, B5, B6, B7 

 

Spectral Indices: 

NDVI, NDWI, BI and BU 

PC1 - VV Backscatter 

PC1 - VH Backscatter 

PC1 - Mean Backscatter 

PC1 - Backscatter Ratio 

 

12 Backscatter Difference 

Table 1. Variables for reduced stacked image 

 

Table 2 lists the variables used for each variable selection 

method. Liaw and Wiener’s method (2015) had the least 

variables at eight (8) while Kursa and Rudnicki’s method (2010) 

remained with twenty-six (26) variables. Variables labelled 

‘diff_n” refers to the backscatter difference for the nth month of 

the year.  

 

Method Count Variables 

Multi-sensor 

with Sandri & 

Zuccolotto 
(2006) 

12 
'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'BI', 'BU', 

'NDVI', 'PC1_VH', 'PC1_VV', 

'PC1_meanSAR 

Multi-sensor 

with Liaw & 

Wiener (2015) 

8 
'B2', 'B3', 'B5', 'BU', 'NDVI', 

'PC1_meanSAR', 'diff_3', 'diff_11' 

Multi-sensor 

with Kursa & 
Rudnicki (2010) 

26 

'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'BI', 'BU', 

'NDVI', 'NDWI', 'PC1_VH','PC1_VV', 
'PC1_meanSAR', 'PC1_ratioSAR', 

'diff_0', 'diff_1', 'diff_2', 'diff_3', 'diff_4', 

'diff_5', 'diff_6', 'diff_7', 'diff_8', 'diff_9', 
'diff_10', 'diff_11' 

Single-sensor 
Optical Dataset 

10 
'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'BI', 'BU', 

'NDVI', 'NDWI' 

Single-sensor 

Radar Dataset 
16 

'PC1_VH','PC1_VV', 'PC1_meanSAR', 

'PC1_ratioSAR', 'diff_0', 'diff_1', 'diff_2', 

'diff_3', 'diff_4', 'diff_5', 'diff_6', 'diff_7', 
'diff_8', 'diff_9', 'diff_10', 'diff_11' 

Table 2. List of Variables for each method 
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4.1.2 Summary of Image Classification Accuracies: Table 

3 shows the accuracy assessment of the different methods under 

Random Forest Classification. All methods used the same 

number of decision trees (1000). The first four (4) methods 

showed very close overall accuracies (OA), suggesting that any 

one of these four (4) methods can be used to produce accurate 

LULC maps. 

 

One thing to note, however, is the number of variables used in 

each method, the least of which is the method of Liaw & Wiener 

(2015) with just eight (8) variables. On the other hand, the 

method of Kursa and Rudnicki (2010) produced the best overall 

accuracy but required all twenty-six (26) variables to attain such 

accuracy.   

 

Comparing the confusion matrices, Sandri and Zuccolotto’s 

method (2006) presented a lower error of commission for 

agriculture and built-up land cover. Kursa and Rudnicki’s 

method (2010) inched over the other methods in terms of 

commission error for bare soil land cover. The opposite 

happened when analyzing the omission errors. Kursa and 

Rudnicki’s method (2010) performed best in classifying 

agriculture and built-up land cover.  

 

Consequently, Sandri and Zuccolotto’s method (2006) 

dominated the rest for bare soil land cover. The optical based 

dataset led in terms of omission error for the forest land cover. 

All methods yielded the same accuracy for water land cover as 

the first three (3) indicated fewer numbers of unmasked pixels 

due to the inclusion of the SAR dataset. 

 

The single-sensor radar-based dataset exhibited very poor 

results. LULC change maps for this method were not generated 

due to its low classification accuracies. 

 

Model Class 
Producer’s 

Accuracy  

User’s 

Accuracy 

Overall 

Accuracy 

(%) 

Multi-sensor with 

Sandri and 

Zuccolotto (2006) 

Agri 97.95 95.33 

96.38 

Built Up 94.74 96.64 

Bare Soil 96.53 92.67 

Forest 95.54 100.00 

Water 100.00 100.00 

Multi-sensor with 

Liaw and Wiener 
(2015) 

Agri 97.95 95.33 

96.06 

Built Up 95.24 93.96 

Bare Soil 94.63 94.00 

Forest 95.54 100.00 

Water 100.00 100.00 

Multi-sensor with 

Kursa and 

Rudnicki (2010) 

Agri 99.30 94.67 

96.54 

Built Up 95.33 95.97 

Bare Soil 95.30 94.67 

Forest 95.54 100.00 

Water 100.00 100.00 

Single-sensor 

Optical Dataset 

Agri 97.35 98.00 

96.13 

Built Up 90.32 93.33 

Bare Soil 95.04 89.33 

Forest 98.04 100.00 

Water 100.00 100.00 

Single-sensor 
Radar-based 

Dataset 

Agri 49.48 63.33 

53.23 Built Up 58.18 64.43 

Bare Soil 62.26 22.00 

Forest 42.25 52.67 

Water 92.11 97.22 

Table 3. Random Forest Classification Statistics 

 

4.1.3 Integration of Different Variable Selection Methods: 

An integrated LULC map was also generated in this study. It 

used the methods of Sandri and Zuccolotto (2006), Kursa and 

Rudnicki (2010) and Liaw and Wiener (2015) and were 

compared to one another at pixel level. The integrated map is 

based on the mode of the land cover class pixel values from the 

three LULC maps. As seen in Table 4, the different LULC maps 

agreed mostly with one another. Pixels which showed little or no 

agreement could be attributed to mixed land cover present in one 

pixel or uncertainties during random forest classification. 

 

Agreement Level # of Pixels Percent Distribution 

100% Agreement 11860054 91.88% 

75% Agreement 1038932 8.05% 

50% Agreement 4068 0.03% 

No Agreement 5641 0.04% 

Table 4. Agreement Map Summary 

 

4.2 Mapping of Conversion of Agricultural Lands to Built-

up 

Figure 3 illustrates accurately classified agricultural land 

conversions within the study area. As seen in the figure, the 

region-of-interest (ROI) must have been agricultural land before 

or in 2016; by 2019, it must have been built-up land. The 

conversion in the ROI must have the same area, more or less, as 

the classified ROI. Errors in area overlaps and gaps were 

attributed to limitations in spatial resolution as long as they were 

kept to a minimum. 

 

  

  

  
Figure 3. Samples of accurately classified regions-of-interest; 

From top to bottom: (a) Camella Bucandala, Imus, Cavite, (b) 

Lancaster Westwood, General Trias, Cavite, (c) Gentree Villas, 

General Trias, Cavite 

 

The LULC conversion maps were not entirely accurate. 

Accuracy assessment of the detected conversion of agricultural 

lands to built-up was implemented using visual inspection with 

Google Earth Pro. Misclassifications of converted agricultural 

lands were also detected. Various cases can be attributed due to 

changes in image color despite showing the same land cover. 

Another factor was differences in phenological stages. These 

were attributed to the compositing of the optical datasets. The 

compositing of different Landsat 8 images with different 

temporal description resulted in the ambiguity of some regions 

in the output composite image.  
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Aside from misclassification, there were also cases of omitted 

agricultural land conversions. For some, while there were 

detected conversions, the size of the resulting ROI did not reflect 

the actual size of the conversion. This was attributed to the 

misclassification of the model between built-up and bare soil 

features. The limitation of the study to detect agricultural land 

conversions to built-up only could have resulted in the omission 

of other agricultural land conversion to built-up which were 

rather classified as conversion to bare soil due to the 

misclassification of the produced RF classification model. 

 

4.3 Spatio-temporal Assessment of Agricultural Land 

Conversion 

 
Figure 4. LULC change maps of Cavite from 2016 to 2017, 2016 

to 2018, and 2016 to 2019.   

 

From 2016 to 2019, the number of agriculturally converted lands 

continued to increase. Looking at the maps above, the locations 

of these lands are in the northern part of Cavite bounded in the 

same direction by National Capital Region (NCR), the seat of 

government and a metropolitan area in the country. Agri-urban 

conversions were classified by size to assess accuracy as 

detections become smaller. Table 7 shows that along with the 

number of detected conversions to increase, it can be implied that 

the total area of conversion also increases. From 59 conversions 

in the time frame 2016 to 2017, there were an additional 503 

detected conversions in the next two years. Also, from just about 

605,503 square meters being converted to built-up in the time 

frame 2016 to 2017, this rose to 1,950,588 in 2018 and 3,558,541 

in 2019. 

 

Time frame 

Number of 

Detected 

Conversions 
Total Area of Conversion (sq.m.) 

2016-2017 59 605,503 

2016-2018 209 1,950,588 

2016 - 2019 562 3,558,541 

Table 7. Summary of Agricultural Land Conversion from 2016 

to 2019 

 

Figure 5 shows examples of detected agricultural land 

conversion that increased in size over time. The regions in pink 

exhibited conversion that occurred in the year 2016 to 2017; 

those in red showed conversion in the year 2017 to 2018. Finally, 

those in maroon - 2018 to 2019. The following changes in 

conversion are very common for subdivisions, usually starting as 

small projects and expanding as they progress.  

 

Example A: Lancaster Westwood Subdivision, General Trias, 

Cavite (273,845 square meters) 

    
       2016                   2017                  2018                  2019  

    
Example B: Phist Park Homes and EEI ESG Yard, Tanza, 

Cavite (145,222 square meters) 

    
       2016                   2017                  2018                  2019  

    
Figure 5. Examples of detected spatio-temporal conversions. 

Colors of polygons refer to timeframe of conversion – 2016 to 

2017 (pink); 2017 to 2018 (red); 2018 to 2019 (maroon) 

 

4.4 Accuracy Assessment of Detecting Agri-Urban 

Conversions 

 
Figure 6. Cumulative Accuracies of different methods in 

detecting agri-urban conversions. 

 

Figure 6 illustrates a graphical representation of the cumulative 

accuracies of the different methods as the sizes of the regions-of-

interest (ROIs) decreased from greater than 5 hectares or 50,000 

square meters down to a range from 500 square meters to 1,000 

square meters. The four (4) multi-sensor methods: specifically, 

Sandri and Zuccolotto (2006), Liaw and Wiener (2015), Kursa 

and Rudnicki (2010) and the integration of methods, all began 

from an accuracy of unity and seemed to decrease linearly until 

ROIs of size 500 to 1,000 square meters where their accuracies 

lay within the range of 75.97 % to 79.23%. Comparing these 

methods, Liaw and Wiener’s method (2015) and Sandri and 

Zuccolotto's method (2006) had the highest and lowest final 

cumulative accuracy, respectively. The use of an exclusively 

optical dataset remained at the bottom compared to all the 

methods used in the study; nevertheless, its use was still deemed 

acceptable for detecting conversions larger than 50,000 square 

meters. 
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The overall accuracies of the multi-sensor methods remained 

close to one another, and the generated LULC Maps and 

Conversion maps appeared similar. The range of their 

neighbouring accuracies signified that using any of these 

methods can be used interchangeably without sacrificing too 

much on its accuracy.  

 

One thing that distinguished the multi-sensor methods from one 

another is the number of variables used in forming the model. 

Sandri and Zuccolotto's method (2006) used twelve (12) 

variables while Liaw and Wiener's method (2015) utilized eight 

(8) variables. These two (2) methods proved to be the most 

efficient as fewer number of variables translate to a lower time 

and computational complexity. Kursa and Rudnicki's method 

(2010) proved to be exhausting as it uses all twenty-six (26) 

variables for it to produce relatively the same results. Finally, the 

integration of the mentioned three (3) methods was the most 

burdensome as it required performing the first three methods 

before taking the mode of the generated LULC maps. 

Nevertheless, it remained superior in detecting land conversions 

from agricultural to built-up land cover up in areas 5,000 to 

10,000 square meters. 

 

5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The research was able to develop a multi-sensor remote sensing 

approach using Landsat 8 and Sentinel-1 imageries to generate 

LULC maps of the province of Cavite, Philippines from 2016 to 

2019 with overall accuracies at 96%.   By employing GIS 

techniques, LULC change maps were then produced allowing the 

assessment of the spatio-temporal dynamics of agri-urban land 

conversion through the dynamic detection and quantification of 

conversion of agricultural lands to built-up. Using the produced 

LULC change maps, it was also found out that while single-

sensor approach, specifically using optical satellite imagery, can 

also produce similar image classification accuracies to that of the 

multi-sensor approach, the developed multi-sensor approach 

proved to be superior when producing the LULC change maps 

having the capability to detect agri-urban conversions across 

ranges of areas.  

 

5.2 Recommendations 

As the study is limited to land cover change for agricultural to 

built-up only, it is recommended to extend the analysis of land 

cover change to other land cover classes as well. The 

methodology can also be further improved by developing a 

component that would allow identification of cultivated and 

uncultivated agricultural lands. Time-series analysis can also be 

integrated which may be used for estimation of crop yield. By 

doing so, the potential of the study could be maximized 

especially in generating comprehensive spatio-temporal analysis 

of agricultural lands which could be used by the government, 

most especially those involved in the agricultural sector in 

addressing the problem of food security and self-sufficiency in 

the country. 
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