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ABSTRACT: 

 

Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide 

a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to 

understand its distribution and location within Atlantic Canada. The purpose of this study was to assess the capability of Sentinel-2 

and UAV imagery to map the presence of eelgrass beds within the Souris River in Prince Edward Island. Both imageries were classified 

using the non-parametric Random Forests (RF) supervised classifier and the resulting classification was validated using sonar data. 

The Sentinel-2 classified image had a lower validation accuracy at 77.7%, while the UAV classified image had a validation accuracy 

of 90.9%. The limitations of the study and recommendations for future work are also presented. 

 

1. INTRODUCTION 

Eelgrass (Zostera marina L.) is an angiosperm plant that grows 

in brackish and salt waters of coastal areas. It is the common 

species in Atlantic Canada. Eelgrass beds are critical in coastal 

ecosystems as they provide vital ecological functions, including 

stabilizing sediment, providing fish habitat, influencing current 

dynamics, and contributing significant amounts of biomass to 

food webs (Heck et al., 1995). Eelgrass has the potential to serve 

as a sentinel of coastal environmental change associated with 

both natural and anthropogenic disturbances (Nahirnick et al., 

2020) and has proven useful as a measure of nearshore ecosystem 

health. While populations are stable under pristine conditions 

(Ward et al., 1997), eelgrasses around the world are declining at 

an annual rate of 7% due to various disturbances in coastal and 

estuarine environments (Short, Wyllie-Echeverria, 1996). 

Declines in the eelgrass population have also been observed in 

Canada (Morris et al., 2011) and Atlantic Canada (DFO, 2009).  

 

To properly monitor eelgrasses and to study the impacts of 

anthropogenic disturbances on their distribution, it is important 

to have a reliable method of accurately mapping the extent of 

eelgrass beds (Hogrefe et al., 2014). Acoustic methods can be 

used (Kenny et al., 2003), but they use very expensive equipment 

that cannot be used under certain weather conditions and they are 

transects that require interpolation to produce a map. The same 

applies to the bathymetric lidar data (Webster et al., 2015; Collins 

et al., 2016). By contrast, optical imagery can cover the entirety 

of a study area. Air photographs can be used (Mumby et al., 1997) 

but satellite imagery provides a larger level of coverage at a 

reduced cost (Dekker et al., 2006; Hossain et al., 2015). Most 

published studies that use optical satellite imagery have occurred 

only recently in Canada (O’Neill, Costa, 2013; Reshitnyk et al., 

2014; Stantec, 2014; 2016; Barrell et al., 2015; Forsey et al., 

2020; Leblanc et al., 2021). Temperate water poses additional 

challenges for mapping eelgrass compared to tropical and sub-

tropical waters because they tend to have lower clarity, which 

allows for low light penetration and lower resolution between 

features (O’Neill, Costa, 2013; Reshitnyk et al., 2014). While 
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satellite imagery can be a valuable tool, the availability of the 

imagery is limited under cloudy conditions and the imagery can 

be costly when imagery from commercial satellites is used. A 

flexible and cost-effective approach is to use unmanned aerial 

vehicle (UAV) images. After its development for military 

applications, UAV has become a popular tool for civil 

applications (Peasgood, Valentin, 2015). This new technology is 

mobile, fast, adaptable, and easy to use. UAVs can also operate 

at much lower altitudes, which leads to high spatial resolution 

images (Pajares, 2015). So far, there are only a few studies using 

UAV images for mapping eelgrass beds in tropical / 

Mediterranean and temperate environments using mostly RGB 

cameras (Ventura et al., 2018; Konar, Iken, 2017).  

 

The goal of this study is to compare the potential of Sentinel-2 

and UAV multispectral imagery to map eelgrass bed distribution 

in the Souris River (Prince Edward Island) estuary. One of the 

challenges of mapping eelgrass beds in this area is that it has a 

temperate climate where light penetration in water is generally 

low. In this study, both imageries will be classified with the non-

parametric Random Forests (RF) supervised classifier, which 

does not require a normal data distribution (Breiman, 2001). RF 

was showed to outperform the maximum likelihood classifier in 

several studies (Pal, 2005; Gislason et al., 2006; Waske, Braun, 

2009; Aarts et al., 2020). The classified images will then be 

validated by comparison with sonar data. 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The study area is located just above the mouth of the Souris River 

(Figure 1), which drains into Coville Bay, Prince Edward Island, 

Canada (Latitude: 46°21’57” N; Longitude: 62°16’48” W). The 

Souris River has two branches that meet in Gowan Brae: the east 

branch flowing from Harmony Junction, and the west branch 

flowing from the west end of Bear River Road. From Gowan 

Brae, the river flows south and empties into Coville Bay, 

considered an inlet of the Northumberland Strait. The Souris 
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River Watershed totals 52 km2 of streams and 5971 ha of lands, 

the majority of which being forested or having agricultural lands. 

Only a small portion of the watershed is made up of wetlands. 

The river is an important feature for the immediate and 

surrounding areas, providing significant economic, 

environmental, and social benefits. The watershed is also 

responsible for replenishing groundwater stores for drinking 

water. The study area was chosen for its sheltered nature, the 

river is separated from the bay by a causeway and a beach, 

providing much calmer waters for eelgrass growth. The river 

bottom composition is mostly sandy, with deeper channels in 

areas of faster water velocity.  

 

 

Figure 1.  Location of the study area and limits of the area that 

was imaged by the Sentinel-2 imagery and the UAV 

imagery over a Google Earth image 

 

2.2 Image acquisition 

The UAV images were acquired using a MicaSense RedEdge 

narrowband camera (MicaSense Inc., Seattle, U.S.A.) mounted on 

a DJI Matrice 100 quadcopter (Dajiang Innovations Dajiang 

Baiwang Technology Co., Ltd. Shenzhen, China) (Figure 2). The 

images were taken on August 6th, 2019 when the eelgrass was 

fully developed. According to the weather measurements taken 

at the East Point Weather Station (Latitude: 46°27'36" N; 

Longitude: 61°59'18" W), the air temperature was around 20˚C 

and the relative humidity was approximately 60%. Just before the 

imagery acquisition, the camera was calibrated by taking an 

image over a Spectralon panel. The MicaSense RedEdge camera 

has five bands described in Table 1. Both the camera and UAV 

were connected to mission planner software to fly at 70 m above 

the ground with a 70% overlap between adjacent images. Each 

image has a spatial resolution close to 7 cm.  

 

 

Figure 2. Picture of the DJI Matrice 100 quadcopter mounted 

with a Micasense RedEdge narrowband camera 

 

The satellite image was acquired by the Multispectral Instrument 

(MSI) onboard the Sentinel-2 satellite from the European Space 

Agency (ESA). The image was resampled to a pixel resolution of 

10 m and has a swath of 290 km. It is projected to the ground 

range on the WGS84 coordinate system (European Space 

Agency, 2020). The Sentinel-2 image was acquired in the 

summer of 2019, as close as possible to the acquisition date of 

the UAV imagery. The characteristics of the image and related 

environmental conditions during image acquisition are described 

in Table 2. 

 

 

Table 1.  Spectral characteristics of the five MicaSense bands. 

 

 
(1) Source: Souris tidal station (#1650); (2) Charlottetown 

Airport station (WMO 71706) 

Table 2.  Characteristics of the Sentinel-2 image used in this 

study and related environmental conditions during the 

image acquisition. 

 

2.3 Field data 

103 GPS pictures were taken with a GoPro camera, at the same 

time as the UAV image acquisition to ground-truth the bottom 

composition within the study area. A sample of the picture for 

each class is provided in Figure 3. These photos were used to help 

delineate all the training areas over both the Sentinel-2 and UAV 

images. A sonar track was also acquired with a Biosonics MX 

Aquatic Habitat Echosounder (Biosonics Inc, Seattle, U.S.A.). 

Random points selected from the sonar track were used as 

validation points for both the Sentinel-2 and UAV classified 

images. 

 

2.4 Pre-Classification Image Processing 

Figure 4 presents a flowchart describing the method used to 

process both the Sentinel-2 and UAV images. The individual 

UAV images corresponding to the same band were first 

mosaicked together with the Pix4Dmapper (Pix4D, Lausanne, 

Switzerland) software. The template used for the mosaicking was 

Advanced Multispectral under the advanced category in the 

processing options. Different settings were attempted to create 
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the best mosaic, and the final processing options used were as 

follows. For the initial processing, the key points image scale, 

which defines the image size from which the points are extracted 

compared to the size of the image, was set to full. For the point 

cloud and mesh, the point cloud densification was set to one, 

which indicates that the whole images were used to compute 

additional points. The point density was set to high with a 

minimum match of 2.  

 

(a)Eelgrass 

 

(b)Algae 

 
(c)Eelgrass + Algae 

 

(d)Sand Floor 

 

Figure 3.  Ground pictures acquired with a GoPro camera for 

the following classes: a) eelgrass, b) algae, c) eelgrass 

and algae, and d) sand floor. 

 

 

Figure 4. Flowchart presenting the methodology used for 

processing both the Sentinel-2 and UAV images. 

 

The “Classify point cloud” option was selected. Under the 3D 

textured mesh tab, the custom option was selected, with a 

maximum octree depth of 8 and a texture size of 16384 x 16384. 

The decimation criterion was set to quantitative to allow 

identifying the maximum number of triangles as 5000000. The 

“use color balancing for texture” box was selected. For the DSM, 

the Orthomosaic, and the Index settings, the resolution was set to 

automatic and the DSM filters for noise filtering and surface 

smoothing were selected. Finally, the orthomosaic was outputted 

in GeoTiff file format. The mosaics were then calibrated in 

reflectance for each band in Pix4Dmapper, using the Spectralon 

reflectance panel images taken on the day of acquisition.  

 

For the Sentinel-2 image, the atmospheric correction was 

performed in Acolite, free software developed by the Royal 

Belgian Institute of Natural Sciences, which allows a simple and 

fast image processing for coastal and inland water applications 

(Vanhellemont, 2019). Acolite uses a “dark spectrum fitting” 

(DSF) approach to perform atmospheric corrections, which has 

shown acceptable results when applied to multispectral imagery 

[Pereira et al., 2019; Vanhellemont, 2019; Warren et al., 2019). 

The DSF uses one or more dark targets in the (sub)scene to 

construct a “dark spectrum” which is used to estimate the 

atmospheric path reflectance according to an aerosol look-up 

table (LUT). The look-up table contains the atmospheric path 

reflectance (𝜌𝑝𝑎𝑡ℎ), the two-way diffuse atmospheric 

transmittance (𝑡𝑑𝑤), the spherical albedo of the atmosphere (𝑠𝑎), 

and the total optical thickness of the atmosphere (𝜏𝑡) and is based 

on the 6S radiative transfer model (Kotchenova et al., 2006; 

Vanhellemont et al., 2018). These values are then linearly 

interpolated to the 𝜌dark to give an estimated 𝜏a for each band and 

aerosol model. The aerosol model is selected by determining the 

aerosol and band combination with the lowest Root Mean 

Squared Difference (RMSD) between the 𝜌dark and the estimated 

𝜌path. The directional surface reflectance (𝜌𝑠) is then computed as 

follows: 

 𝜌𝑠 =
𝜌𝑐

𝑡𝑡𝑜𝑡+𝑠𝑎∗ 𝜌𝑝𝑐
 (1) 

where: ttot = two-way total atmospheric transmittance  

 sa = spherical albedo of the atmosphere  

 ρpc = “path-corrected” reflectance which is computed 

by: 

 

 𝜌𝑝𝑐 =
𝜌𝑡

𝑡𝑔𝑎𝑠
−  𝜌𝑝𝑎𝑡ℎ − 𝜌𝑠𝑘𝑦  (2) 

where: tgas = gas transmittance  

 ρsky = estimate of the air-water interface sky 

reflectance 

 

Since the DSF selects the band giving the lowest estimate of 

atmospheric path reflectance, pixels with severe sun glint are 

avoided in the 𝜌 path estimation. It is therefore necessary to 

remove the effects of glint from the image. The glint reflectance 

(𝜌𝑔) can be estimated by assuming zero water-leaving 

reflectance in a reference band. Such a reference can be the NIR 

band but the NIR band often has a non-zero reflectance in turbid 

water. Therefore, Acolite uses the Shortwave Infrared 2 (SWIR2) 

band to estimate 𝜌𝑔 as follows: 

 𝜌𝑔(λSWIR) =  𝜌𝑠(λSWIR) (3) 

 

2.5 Image Classification 

Before the image classification, training areas were delineated for 

each class over each image. For the Sentinel-2 image, 60 training 

areas were randomly delineated for the 5 following classes: 

Eelgrass, Algae, Eelgrass + Algae, Sand, and Deep Water (Table 

3, Figure 5). In each case, each training area has only a 1-pixel 

size given the spatial resolution of the image and the small area 

covered by the study.  

 

Class  Training Area 

Eelgrass 10 

Algae  6 

Eelgrass + Algae 4 

Sand 17 

Deep Water 23 

Total 60 

Table 3. Number of training area per class for the Sentinel-2 

image classification 

 

For the UAV imagery, a total of 572 training areas were 

delineated for the following 5 classes: Eelgrass, Algae in Shallow 

Water, Algae in deep water, Sand, and Deep Water (Table 4, 

Figure 6). Each training area has a size of 5 by 5 pixels.  
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Figure 5. Distribution of training areas used in the Sentinel-2 

image classification 

 

Class  Training Polygons 

Eelgrass 88 

Algae in Shallow Water 95 

Algae in Deep Water 71 

Sand 229 

Deep Water 89 

Total 572 

Table 4.  Number of training polygons per class in the 

Micasense UAV image 

 

 

Figure 6.  Sample of training areas used in the UAV Micasense 

image classification 

 

The PCI Geomatica Banff® software (PCI Geomatics, Markham, 

Canada) was used to compute the J-M distance between class 

pairs. The closer the J-M distance to 2, the better the spectral 

separability between the two classes is (Richards, 1994). The 

training areas were then used in the RF classifier, which is a non-

parametric decision tree type supervised classifier. Such a 

classifier can handle both Gaussian and non-normally distributed 

data as it does not consider the data distribution parameters. RF 

was originally developed by Breiman and Cutler (Breiman, 2001) 

and implemented in R (Liaw, Wiener, 2018). The algorithm used 

for this study was the “all-polygon” version developed in the R 

programming language (R Development Core Team, 2013, 

(Byatt et al., 2018) because this version was already showed to 

outperform the other version (Liaw, Wiener, 2018). Indeed, it 

uses all the pixels within the training area polygons and thus takes 

into account the actual class size. The settings of the classifier 

were a forest of 500 independent decision trees with the default 

mtry variable. This variable represents the number of variables 

randomly sampled as candidates at each split of every node. Its 

default value is the square root of p, where p is the number of 

variables in x, i.e., the matrix of predictors for the classification 

(Liaw, Wiener, 2018). Such default values lead to a setting that 

includes all input features, i.e., all pixels are randomly sampled 

as candidates at each split of every node. The RF classifier 

randomly selects two-thirds of the training data (that are not the 

same for each decision tree and that are referred to as “In Bag” 

data) to develop one decision tree. This tree is then validated 

using the remaining third of the training data referred to as “Out 

of Bag data”. The process is repeated for the 500 individual 

decision trees and produces 500 independent classifications. 

These independent classifications are then combined into the 

final classification map (Waske, Braun, 2009). For classes with 

relatively limited training data, RF allows bootstrap aggregating 

of the “In Bag” data to increase the number of training pixels. 

Each tree is constructed using a different bootstrap sample from 

the original data. RF is not sensitive to noise or over-fitting and 

produces a “Mean Decrease Accuracy” plot that ranks the degree 

of usefulness of each input image in the classification (Louppe et 

al., 2013, Waske, Braun, 2009, Strobl et al., 2008, Gislason et al., 

2006). 

 

 

Figure 7.  Distribution of the sonar points over the Sentinel-2 

image 

 

2.6 Accuracy Assessment 

The classification accuracy was assessed first by comparing the 

training areas with the equivalent class in the imagery. Such 

comparison was performed using a “confusion matrix” or error 

matrix”, where each cell expresses the number of pixels classified 

to a particular class with the class defined by the training areas 

(Byatt et al., 2018). The confusion matrix allows for computing 

the average, overall accuracies, the Kappa coefficient as well as 

the individual class User’s and Producer’s accuracies and their 

related errors (omission and commission), as described in (Byatt 

et al., 2018). However, the classification accuracy is based on 

training areas and does not give a good assessment of the actual 

map accuracy. A more robust and independent accuracy 

assessment is needed to compare the resulting classified image 
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with an independent dataset. For such an assessment, we 

randomly selected 300 sonar points for the Sentinel-2 image 

(Figure 7), and 207 points for the UAV image (Figure 8). These 

validation points were categorized into two classes: Eelgrass 

Present and Eelgrass absent. For each sonar point, the class was 

extracted from the classified image using the Extract Values to 

Points tool of ArcMap® (ESRI, Redlands, U.S.A.). For the 

Sentinel-2, both the Eelgrass and Eelgrass+Algae classes were 

classified as “Eelgrass present”, while the Sand and Deep water 

classes were labelled as “Eelgrass absent”. For the UAV image, 

both the Eelgrass class was listed as “Eelgrass present, while the 

other classes were categorized as “Eelgrass absent”. A confusion 

matrix and associated accuracies were then computed in R. 

 

 

Figure 8. Distribution of the sonar points over the UAV image 

 

3. RESULTS AND DISCUSSION 

3.1 Class Spectral Separability 

Tables 5 and 6 present the J-M distances between the class pairs 

for the Sentinel-2 image and the UAV image, respectively. The 

average separability for Sentinel-2 was 1.992, indicating a good 

spectral separability between the classes. The lowest separability 

was between the Eelgrass and Eelgrass+Algae classes, with a 

value of 1.924, which is still a good separability. Both classes 

include eelgrass, which may make it difficult to differentiate on 

the Sentinel-2 image as they correspond to similar reflectance, 

most notably in the RedEdge2, RedEdge3, NIR, RedEdge4, and 

SWIR2 bands (results not shown). The highest separability for 

the Sentinel-2 image was a value of 2.0, between the following 

class pairs: Eelgrass and Sand, Algae and Deep Water, and Sand 

and Deep Water. Sand is more easily distinguishable as it is a 

lighter color and therefore has a much higher reflectance than the 

other classes. This difference in reflectance is most notable in the 

Coastal, Blue, Green, and RedEdge1 bands (results not shown).  

 

Class Eelgrass Algae Eelgrass + 

Algae 

Sand 

Algae 1.996    

Algae + Eelgrass 1.924 1.996   

Sand 2.000 1.999 1.999  

Deep Water 1.999 2.000 1.999 2.000 

Table 5.  J-M Distances computed with all 11 bands from the 

Sentinel-2 image 

The average separability for the UAV image was 1.96, indicating 

an excellent spectral separability between the classes. The lowest 

separability occurred between the “Algae in deep water” and 

“Deep water” classes with a value of 1.86, indicating a poor 

separability, probably because both classes are related to deep 

water. This is most notable in the NIR and RedEdge bands 

(results not shown) The best separability occurred between the 

Eelgrass, the Sand, and Deep water classes, with a value of 1.999. 

This difference is best seen in the RedEdge, Red, and Green 

bands (results not shown). 

 
Class Eelgrass Algae 

(shallow 

water) 

Algae 

(deep 

water) 

Sand 

Algae (shallow water) 1.996    

Algae (deep water) 1.998 1.906   

Sand 1.999 1.887 1.993  

Deep Water 1.999 1.982 1.860 1.940 

Table 6.  J–M distances computed with all the 5 bands of the 

UAV image 

 

3.2 Classification 

The confusion matrices and associated classification accuracies 

resulting from the comparison of the training areas with the RF-

classified image are presented in Table 7 in the case of the 

Sentinel-2 image and Table 8 in the case of the UAV image. The 

Sentinel-2 classification achieved an overall accuracy (OA) of 

99.3%, indicating an excellent classification accuracy. The 

lowest User’s accuracy (UA) (91.67%) and Producer’s accuracy 

(PA) (97.06%) corresponded to the eelgrass + algae class, 

probably because of confusion with the other vegetation classes. 

The UAV imagery classification achieved an overall accuracy of 

98.91%, indicating an excellent classification accuracy. The 

lowest User’s accuracy was for the algae in shallow water class 

at 96.53%, while the lowest Producer’s accuracy was for the 

eelgrass class (97.76%). Given that the eelgrass class is the class 

of interest for this study, this class has a User’s and Producer’s 

accuracy of 100% and 98.90% respectively with the Sentinel-2 

image classification. There was almost no confusion with the 

other classes.  

 

(*) Bold figures indicated well-classified pixels  

Table 7.  Confusion matrix (in pixels) and associated 

accuracies when the RF classifier is applied to all the 

Sentinel-2 image bands.  

 

With the UAV image classification, the User’s and Producer’s 

accuracies were 98.1% and 97.8% respectively, because of some 

confusion with the Algae in Shallow Water class. The resulting 

classified images for the Sentinel-2 (Figure 9) and UAV (Figure 

10) both show that in most cases, the eelgrass beds are mostly 

surrounded by eelgrass + algae as well as patches of algae. Both 

classifications also show that most of the eelgrass beds are 

located in shallow water, with smaller areas of eelgrass along the 

edges of deep water channels. The UAV classification also 

produces a more detailed map due to the higher spatial resolution 

(7 cm) of the image, compared to the Sentinel-2 image, which 

has a spatial resolution of 10 m.  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-125-2021 | © Author(s) 2021. CC BY 4.0 License.

 
129



 

 
(*) Bold figures indicated well-classified pixels 

Table 8.  Confusion matrix (in pixels) and associated 

accuracies when the RF classifier is applied to all the 

UAV image bands.  

 

 

Figure 9.  Classified image produced with the RF Classifier 

applied to all the bands of the Sentinel-2 image.  

 

 

Figure 10.  Classified image produced with the RF Classifier 

applied to all the bands of the UAV image.  

 

The RF classifier also produces a variable importance plot, which 

ranks the importance of each input feature, in our case, individual 

band images, in the overall classification. The plot is shown in 

Figure 11 for the Sentinel-2 image classification and in Figure 12 

for the UAV image classification. For both classifications, the 

Red-edge 1 band was the most important variable in the 

classification. The RedEdge1 band showed the most variation in 

reflectance values between classes for both the Sentinel-2 image 

(results not shown) and the UAV image (results not shown). 

RedEdge bands are known to be sensitive to vegetation and have 

been determined in previous studies to increase classification 

accuracy in vegetation mapping (Qiu et al., 2017). Both plots also 

list the Red band as the second most important band. The Red 

band is associated with one of the chlorophyll absorption bands, 

which is sensitive to the presence of green vegetation. For the 

Sentinel-2 classification, the SWIR2 band was determined to be 

the least important variable, while the Blue band was determined 

to be the least important for the UAV classification 

 

 

Figure 11. Variable importance plot for the Sentinel-2 image 

classification with RF  

 

 

Figure 12. Variable importance plot for the UAV MicaSense 

image classification with RF.  

 

3.3 Validation 

A validation against an independent dataset is needed as the 

confusion matrices of Tables 7 and 8 are based on the training 

areas provided and do not use points that have been validated in 

the field. The classified images were validated by comparison to 

sonar data that was collected within the study area. As shown in 

the confusion matrices associated with the validation, we 

achieved an overall accuracy of 77.7 % with the Sentinel-2 

classified image (Table 9). For the UAV classified image, the 

accuracies were better, with an overall accuracy of 90.8% (Table 

10). For the Sentinel-2 classified image, the highest Producer’s 

(80.9%) and User’s (84.7%) class accuracy occurred with the 

“eelgrass absent” class. For the “eelgrass present” class, the 

User’s and Producer’s accuracies were 65.5% and 71.3%. A 

similar result was obtained with the UAV classified image, where 

the highest Producer’s (93.5%) and User’s (96.1%) class 

accuracy occurred for the “eelgrass absent” class. For the 

“eelgrass present” class, the User’s and Producer’s accuracies 

were 57.1% and 69.6%. For both validations, there was a much 

higher proportion of sonar sites with an absence of eelgrass than 

there were sites with eelgrass present. Within the UAV image 

boundaries, only 23 of the 207 validation sites contained eelgrass, 

while in the Sentinel-2 boundaries, 101 of the 300 validation sites 

had eelgrass present, representing approximately one-third of the 

ground truth points.  
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Class Eelgrass 

Present 

Eelgrass 

Absent 

UA (%) EC (%) 

Eelgrass Present 72 38 65.5 34.5 
Eelgrass Absent 29 161 84.7 15.3 

PA (%) 71.3 80.9 Overall accuracy 

(%) = 77.7 EO (%) 28.7 19.1 

(*) Bold figures indicated well-classified sonar points 

Table 9.  Confusion matrix (in GPS sonar points) and 

associated accuracies when the Sentinel-2 RF 

classified image is compared to the sonar data 

 

Class Eelgrass 

Present 

Eelgrass 

Absent 

UA (%) EC (%) 

Eelgrass Present 16 12 57.1 42.9 
Eelgrass Absent 7 172 96.1 3.9 

PA (%) 69.6 93.5 Overall accuracy 

(%) = 90.8 EO (%) 30.4 6.5 

(*) Bold figures indicated well-classified sonar points 

Table 10. Confusion matrix (in sites) and associated accuracies 

when the UAV Micasense RF classified image is 

compared to the sonar data 

 

4. CONCLUSIONS 

Mapping of eelgrass beds is important to better understand their 

health, distribution, and sensitivity to anthropogenic 

disturbances. While aerial imagery and sonar are useful tools in 

detecting eelgrass beds, these options can often be expensive and 

require professionals to operate the equipment. This study has 

shown the potential of applying the Random Forests classifier to 

both Sentinel-2 and UAV images to produce accurate eelgrass 

bed distribution maps in the Souris River Estuary in Prince 

Edward Island. The high accuracy for both the classification 

(98.9%) and validation (90.8%) of the UAV image showed that 

the Micasense RedEdge narrowband camera is able of producing 

high spatial resolution eelgrass bed distribution maps at a reduced 

cost. While the Sentinel-2 image initially had a high classification 

overall accuracy (99.3%), the validation overall accuracy was 

much lower (77.7%). The confusion matrix revealed that for the 

Sentinel-2 image, the biggest source of error came from the 

confusion between the eelgrass+algae class and the individual 

eelgrass or algae classes. There was little confusion between the 

Eelgrass and Algae classes in the UAV image and the two classes 

can be identified separately. The Sentinel-2 image also had a 

much lower spatial resolution, meaning that the resulting map has 

lower spatial accuracy. The RedEdge bands were determined to 

be the most important variable for both classifications. Our study 

presents preliminary results about the test of Sentinel-2 and UAV 

imagery for mapping eelgrass bed distributions in an estuary in 

Atlantic Canada. The study only used the single band reflectance 

images. Further work is needed to include bathymetric ratios and 

vegetation index images, such as in Clyne et al. (2021). Also, 

there is the need to test the methodology in other estuaries of 

Atlantic Canada. 
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