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ABSTRACT: 

 

Urban heat island is the difference in thermal temperature between rural and urban areas. The urbanization process alters the material type 

with impervious surfaces being absorbers of incoming radiation during the day and emitting it at night. The research involved the use of 

time-series satellite imagery from Sentinel, Landsat, ASTER and MODIS for the period 1986, 1995, 2000, 2005, 2011, 2015 and 2017 

over the Upper Hill, Nairobi. Morning, afternoon and night land surface temperatures (LST) were calculated for each of these years and 

analyzed together with the land cover. The mean albedo was calculated to determine the relationship between each land cover and mean 

LST. The contribution index was calculated to determine whether a land contributed positively or negatively to the mean LST in Upper 

Hill. Results indicated that built-up land cover had increased from 1986 to 2017 by 0.86% per annum while forest land cover had decreased 

by 0.99% per annum. Sparse grassland had higher albedo and LST values of 0.81 and 27.9 0C respectively, whereas water had lower albedo 

and LST values of 0.09 and 25.1 0C. Water had the lowest mean LST during the day but highest mean LST in the afternoon and night in 

each of the years due to its high thermal capacity. Bare ground tends to have a higher contribution index compared to other land covers, 

while forest land cover has a negative contribution index, indicating the impact land cover types have on LST and the urban heat island 

effect. 

 

 

1. INTRODUCTION 
 

Human activities have led to irreversible changes to the ecosystem 

and it is likely that further damage will occur (Schipper et al., 

2010). Perceived changes in temperature, sea-level rise have been 

reported in many cities and this has been attributed to climate 

change (Carmin et al., 2012). Whether or not causes of climate 

change can be attributed to anthropogenic activities, it is evident 

that there are new climate and weather patterns. This potentially 

puts urban residents at risk, affecting their health and wellbeing, 

while stressing the environment, buildings and other assets 

(Carmin et al., 2012). 

 
The earth’s energy budget is affected by human activities that alter 

properties of the land surface and pollutant emissions (Wu & Lung, 

2016). In cities, urban heat islands (UHI) has been intensively 

studied and involves computing the differences in surface and air 

temperature between nearby rural and urban areas (Zhan et al., 

2015). Boundary layer urban heat island (BUHI), canopy urban 

heat island (CUHI) and surface urban heat island (SUHI) are the 

main UHI identified, with SUHI being great both day and night 

(James, 2000). Differences in cooling between urban and rural 

areas results to formation of urban heat (UH) in the air (Voogt, 

2007) . The land surface temperature (LST), which considered an 

important parameter in urban climate, directly controls UHI 

(Feizizadeh & Blaschke, 2013). 

 

Spatial metrics enable correct interpretation about patterns and 

structure of changes such as in patch sizes, landscape fragmentation 

etc. (Koukoulas et al., 2008). Spatial metrics are impactful tools 

when combined with remote sensing techniques to link urban land-

use patterns and dynamic processes (Zhao & Murayama, 2011). 

Studying patterns of land cover changes enables one to quantify the 

effects and patterns of these changes. The urbanization process 

alters the surface albedo, leading to increased air temperatures 

compared to rural areas, resulting to UHI effect (Bhargava & 

Bhargava, 2018). Vegetation is thus considered an important part 

of the urban landscape due to its effects on air quality, temperature 

and air humidity (Mishra, 2009). Tree cover and natural vegetation, 

through the evapotranspiration process, effectively cools 

surrounding areas (Grover & Singh, 2015). 

 

The effects of increased urbanization, on land surface temperature 

needs to be evaluated. Contribution of these changes on the UHI is 

important in developing adaptive and mitigative measures on the 

climate change challenges facing the world in the 21st century and 

in future. 

 

 

2. METHODOLOGY 

 

2.1 Study Area 

 

The study area is Upper Hill, Nairobi Kenya and is 4.2 square 

kilometers and has an average altitude of 1700 meters above sea 

level. Nairobi has two rainy seasons: ‘long’ rainy season in March-

May (MAM) and a ‘short’ rainy season in October-December 

(OND). Predominant winds are easterlies which are linked to 
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moisture inflow from the Indian ocean into the country (Ongoma 

et al., 2016). Average temperature and rainfall data between 1984-

2013 from Wilson meteorological station  indicates that the coldest 

season occurs in June-August (JJA) (Figure 1) due to the advection 

of cold air from the southern hemisphere (Ongoma et al., 2016). 

Higher temperatures occur in February-March (Figure 1). 

 

 
 

Figure 1: Mean monthly temperature and rainfall from Wilson 

Station, Nairobi 

 

Upper Hill has seen rapid transformation from residential use to 

commercial, office and government institutions, with high-rise 

buildings being the main development (Mwangi et al., 2020).  

 

 
 

Figure 2: Location of Upper Hill in Nairobi  

(Sentinel-2 (ESA) imagery courtesy of USGS, 2017) 

 

Changes in zoning policies on plot ratio (PR) and ground coverage 

ratio (GCR) have contributed to land use changes and eventual 

lover changes. Proximity to the central business district (CBD) has 

also contributed to its transformation with pressures from 

businesses relocating and eventual construction of high-rise 

buildings (Mwangi et al., 2020; Kiai et al., 2008). The 

transformation has resulted in urban greenery being transformed to 

impervious surfaces (Karanja & Matara, 2013), resulting to 

increased surface temperatures. Effects of land cover changes on 

the albedo and eventual surface temperature needs to be modelled 

for necessary mitigative measures. Lack of indicators on the 

interaction of land cover with incoming radiation becomes a 

challenge in formulating policies on dealing with changing climate 

in urban areas. 

 

 

2.2 Processing of Satellite Imagery 
 

Satellite imagery was downloaded from USGS website and 

processed in respect to the datasets required for the analysis. A 

summary of the image processing processes is shown in figure 3.  

 
 

Figure 3: Flowchart of satellite image processing 

 

Satellites acquired for the analysis included: Landsat 5, 7 and 8; 

ASTER; MODIS and Sentinel-2 imagery. Sentinel-2 was only used 

in land cover analysis as it does not have thermal bands. All 

downloaded imagery was transformed from UTM WGS84 Zone 37 

N/S projection system to UTM Arc1960 South in ArcGIS 10.7, 

after which the area of interest (AOI) (Figure 2) was clipped. 

 

2.3 Land Cover Classification 

 

Cloud-free level-1 tier satellite imagery was acquired from USGS 

for different sensors on different days in the months of January and 

February. These are considered warms month in the year in Kenya 

(Table 1). These datasets were also used in determining the LST 

and albedo over Upper Hill. 

 

Date Satellite Time  

of Day 

Resolution 

05-01-1986 Landsat 5 TM 10:00am 30m 

30-01-1995 Landsat 5 TM 10:00am 30m 

21-02-2000 Landsat 7 ETM+ 10:00am 30m 

18-02-2005 ASTER 10:30am 15m 

25-01-2011 ASTER 10:30am 15m 

11-02-2017 Landsat 8 OLR/ TIR 10:00am 30m 

08-02-2017 Sentinel-2 10:30am 10m 

Table 1: Satellite imagery acquired  

 

Cloud-free satellite imagery collected during the cold seasons was 

not available within the same years as datasets collected in table 1. 

Hence only imagery collected in January and February were used. 

Five land cover were identified following the Food and Agriculture 

Organization (FAO) land cover classification system (LCCS) in 

Upper Hill namely: forest, built-up, water, open grassland and 

sparse grassland. These were used to define training sites. Cropped 

imagery and training sites were imported in R studio for land cover 

classification using random forests. Classification accuracy was 

determined using the confusion matrix. Land cover changes were 

carried out between the years 1986-1995, 1995-2000, 2000-2005, 

2005-2011 and 2011-2017. Land cover changes included: 

vegetated to built-up, forest to open grassland, forest to sparse 

grassland and no change. A minimum mapping unit (MMU) was 

applied to eliminate small land cover (LC) pixels, where 1986 and 
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1995, 1995 and 2000 an MMU of 0.09 Ha was used as the spatial 

resolution of Landsat is 30m. In 2000-2005 and 2005-2011 an 

MMU of 0.045 Ha was applied as ASTER has a spatial resolution 

of 15m. In 2011-2017 an MMU of 0.0225 Ha was applied as 

Sentinel’s spatial resolution is 10m. LST changes between the same 

year intervals were spatially linked to the land cover changes. This 

was to determine whether changes in land cover had subsequent 

effects on the changes in LST in areas where changes had been 

mapped. 

 

2.4 Land Surface Temperature Computation 

 

Day, afternoon and night LST was analyzed to determine changes 

in minimum, maximum and mean temperatures. Satellite imagery 

indicated in table 1 were used to determine the morning LST, 

except for Sentinel-2.  

 

Date Satellite Time of Day Resolution 

18-02-2005 MODIS (Aqua) 13:30pm 1Km 

25-01-2011 MODIS (Aqua) 13:30pm 1Km 
10-02-2017 MODIS (Aqua) 13:30 pm 1Km 
26-02-2000 MODIS (Terra) 22:30 pm 1Km 
18-02-2005 MODIS (Terra) 22:30 pm 1Km 
25-01-2011 MODIS (Terra) 22:30 pm 1Km 
10-02-2017 MODIS (Terra) 22:30 pm 1Km 

Table 2: Satellite imagery acquired for LST analysis 

 

Available satellite imagery for afternoon and night time was for the 

years 2000, 2005, 2011 and 2017. LST from Landsat 5, Landsat 7 

and Landsat 8 were derived using the ‘single channel method’ in 

ArcMap 10.7 where one band was used (Cristóbal et al., 2018). 

ASTER imagery was processed in ENVI 5.1 where all thermal 

bands were analyzed together using the three-step method to 

calculate the LST. Landsat 5 TM was converted to Landsat 7 

ETM+ equivalent data to compute the top of atmosphere (TOA) 

(Equation 1). This has been elaborated by Vogelmann et al., 

(2001), with  Firl & Carter (2011) describing how one can compute 

to Landsat 5 TM from Landsat 7 ETM+.  
 

𝐷𝑁7 = (𝑆𝑙𝑜𝑝𝑒𝑦 ∗ 𝐷𝑁5) + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑦                       (1) 

 

Where DN7 and DN5 are the digital numbers of Landsat 7 ETM+ 

and Landsat 5 TM respectively. 

 
The slope and intercept values are band specific and these have 

been calculated by Firl & Carter (2011). Band 6, the thermal band, 

was not recalculated. 

 

2.4.1 Converting to Top of Atmosphere (TOA) from DN: 

The digital number (DN) spectral information was transformed into 

TOA radiometric values for Landsat 7 (Equation 2) and Landsat 8 

(Equation 3). Band 6a in Landsat 7 was used for the analysis as it 

has a low radiance variance compared to band 6b (Patricia Wanjiku 

Mwangi, Karanja, & Kamau, 2018). 

 

𝐿𝑦′ = (
𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛

𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛
) ∗ (𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛          (2) 

 

Where: 

Ly’  is the spectral radiance 

Qcalmin is minimum quantized calibrated pixel value in DN 

Qcalmax is maximum quantized calibrated pixel value in DN 

Qcal is pixel DN value 

Lmin is minimum radiance detected by sensor 

Lmax is maximum radiance detected by sensor 

 

Band 10 in Landsat 8 is recommended for calculating TOA 

radiance values as band 11 has been contaminated with stray light,  

thus making it unsuitable (USGS, 2016).  

 

𝐿𝑦′′ = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿                                      (3) 

 

Where:  

Ly’’ is TOA radiance (W/ (m2 *sr * μm)) 

ML is Multiplicative rescaling factor     

(RADIANCE_MULT_BAND_x where x is the band 

number) and is band specific 

Qcal is digital number (DN) 

AL is additive rescaling factor 

(RADIANCE_ADD_BAND_x where x is the band 

number) which is band specific 

 

Conversion to true TOA, using the solar elevation angle from 

metadata, was carried out for all bands except thermal bands 

(USGS, 2016).  
 

𝑅𝑇𝑂𝐴𝑦
=

𝜋𝐿𝑦𝑑2

𝐸𝑠𝑢𝑛𝑦𝑆𝑖𝑛𝜃𝑆𝐸
                                     (4) 

 

Where: 

RTOAy TOA planetary reflectance for band y and is unitless 

𝝅 3.141592654 

d Earth_Sun_distance in astronomical units 

𝐸𝑠𝑢𝑛𝑦
 Band specific mean solar exoatmospheric irradiance 

𝞱SE Sun elevation angle from metadata; in degrees and 

converted to radians 
 

For Landsat 8, TOA was calculated using scaling factors  (USGS, 

2016) from metadata (Equation 5): 

 

𝜌𝑦´ = 𝑀′𝐿𝑄𝑐𝑎𝑙 + 𝐴′𝐿                                  (5) 

 

Where: 

ρy’ TOA reflectance and is unitless 

ML Multiplicative rescaling factor 

(REFLECTANCE_MULT_BAND_x where x is band 

number) and is band specific 

Qcal Digital number (DN) 

AL Additive rescaling factor 

(REFLECTANCE_ADD_BAND_x where x is the band 

number) and is band specific 

 

Sun angle correction for TOA reflectance results in true TOA 

reflectance (Equation 6): 

 

𝜌𝜆 =
𝜌𝜆′

𝑆𝑖𝑛𝜃
                                          (6) 

Where: 

ρy TOA planetary reflectance in Landsat 8 and is unitless 

𝞱 Solar elevation angle from metadata and is converted to 

radians 

 

The effective temperature viewed by a satellite with an assumption 

of unity emission is the at-satellite brightness. This is calculated for 
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thermal bands only in equation for both Landsat 7 and Landsat 8 

(Equation 7). 

𝑇𝑆𝐵 = 𝐾2/𝑙𝑛 (
𝐾1

𝐿𝑦
+ 1)                                  (7)  

 

Where: 

TSB At-satellite-brightness temperature in degrees Celsius 

K1 Thermal conversion constant 

(K1_CONSTANT_BAND_m, where m is 6a in Landsat 

7 and 10 in Landsat 8) and is band specific 

K2 Thermal conversion constant 

(K2_CONSTANT_BAND_m, where m is 6a in Landsat 

7 and 10 in Landsat 8) and is band specific 

Ly TOA radiance for Landsat 7 or Landsat 8 

 

2.4.2  Emissivity: Red (R) and near-infrared (NIR) reflectance 

values (Equation 4) were used to calculate normalized difference 

vegetated index (NDVI) for Landsat 7 and Landsat 8 (Equation 8): 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                          (8) 

 

Vegetation portion was calculated as (Equation 9): 

 

𝑉𝑃 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2
                                (9) 

Where: 

Vp Vegetation portion 

NDVI Normalized difference vegetation index 

NDVImin Minimum NDVI for pure soil, normally at 0.2 

NDVImax Maximum NDVI for pure vegetation, normally at 0.5 

 

Land surface emissivity (LSE) was computed as (Equation 10): 

 

𝐿𝑆𝐸 = 0.004 ∗ 𝑉𝑃 + 0.986                             (10) 

 

2.4.3 Land Surface Temperature: The land surface 

emissivity and at-satellite brightness were used to calculate the land 

surface temperature in Celsius (Equation 11): 

 

𝐿𝑆𝑇 = [
𝑇𝑆𝐵

(1+(𝜆∗
𝑇𝑆𝐵

𝜌
)∗𝑙𝑛(𝐿𝑆𝐸))

] − 273.15                       (11) 

 

Where: 

LST Land surface temperature 

TSB At-satellite brightness temperature 

λ Wavelength of emitted radiance (λ = 11.5μm) 

ρ ℎ ∗
𝑐

𝜎
 (1.438 ∗ 10−2 𝑚 𝐾) 

𝞼 Bolzmann’s constant (1.38 * 10-23 J K-1) 

h Planck’s constant (6.26 * 10-34 J s) 

c Velocity of light (2.998 * 10-8 m s-1) 

 

2.5 Albedo Computation 
 

The albedo, which is the surface material type of a surface, for each 

of the five land cover classes for the years 1986, 1995, 2000, 2005, 

2011 and 2017 was calculated using the satellite imagery Landsat 

7 (Equation 12), Landsat 8 (Equation 13), and ASTER (Equation 

14 & 15). The relationship between the five land cover, mean 

morning LST and albedo for each year was determined.  

 

𝐴𝐿7 =
0.356𝛼1+0.13𝛼3+0.373𝛼4+0.085𝛼5+0.072𝛼7−0.0018

0.356+0.130+0.373+0.085+0.072
         (12) 

 

𝐴𝐿8 =
0.116𝛼2+0.321𝛼3+0.355𝛼4−0.027𝛼5+0.150𝛼7−0.0037

0.116+0.321+0.355−0.027+0.150
          (13)                       

 

𝐴𝐴𝑆𝑇𝐸𝑅05
= 0.484𝛼𝐴1 + 0.335𝛼𝐴3 − 0.324𝐴5 + 0.551𝐴6 +

                      0.305𝐴8 − 0.367𝐴9                                                      (14) 

𝐴𝐴𝑆𝑇𝐸𝑅11
= 0.697𝛼𝐴1 + 0.298𝛼𝐴3 + 0.008                             (15) 

 

Where:  

AL7 and AL8 are values of surface albedo for Landsat 7 and 8 

AASTER05 are surface albedo values for ASTER 2005 imagery 

AASTER11 are surface albedo values for ASTER 2011 imagery 

αi are Landsat TOA reflectance values for bands i  

αAx are ASTER reflectance values for band x 

 

2.6 Contribution Index Computation 

 

The contribution index (CI) indicates whether a land cover type 

contributes positively or negatively to the surface temperature in 

the study area. A positive value indicates that the land cover 

positively contributes to the LST in the study area while negative 

values indicate that it negatively contributes to the surface 

temperature and therefore lowers it. CI was determined using 

equation 16. 

CI = A * TD                                                           (16) 

 

Where A is a ratio between the land cover area and the total area of 

the study area, while TD is the difference in mean temperature 

between a land cover and the study area. 

 

  

3. RESULTS  

 

3.1 Land Cover Change 

 

Land cover changes from 1986 to 2017 showed an increase in built-

up land cover of 0.86% per annum while forest land cover 

decreased by 0.99% per annum. Water bodies did not show any 

significant changes as there is only one within the study area used 

for recreational purposes. Open and sparse grassland showed 

alternating fluctuations between the years due to changes in 

climatic conditions (Table 3). 

 

Land 

Cover 

1986 1995 2000 2005 2011 2017 

Built-up 23.2 25.1 32.5 37.8 42.8 50.0 

Forest 46.9 41.2 29.6 23.2 24.8 16.1 

Sparse 

grassland 

17.7 11.1 14.2 27.8 22.6 21.2 

Water 0.2 0.2 0.5 0.2 0.4 0.2 

Open 

grassland 

12.0 22.4 23.3 10.9 9.4 12.4 

Table 3: Percentage change in land cover from 1986 to 2017 

 

3.2 LST and Land Cover 

 

Analysis of LST acquired in the morning indicated that the years 

2000, 2005 and 2011 had higher temperature, with 2005 being the 

highest compared to other years analyzed (Figure 4).  
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a. b. 

  
c. d. 

  
e. f. 

 

Figure 4: Land cover classification for 1986(a), 1995(b), 2000(c), 

2005(d), 2011(e) and 2017(f), in Upper Hill, Nairobi 

 

This was attributed to dry conditions in each of these years, with 

2010 to 2011 drought being the worst drought in 60 years (Mbogo 

et al., 2015). 1986 had lower mean LST which indicated increased 

mean LST thus changing climatic conditions (Table 4).  

 

Year 1986 1995 2000 2005 2011 2017 

Min (0C) 19.98 21.49 24.97 28.17 24.26 23.96 

Max (0C) 27.67 29.37 38.83 41.44 34.39 32.33 

Mean (0C) 24.35 25.28 32.52 35.00 39.14 28.10 

Table 4: Minimum, maximum and mean LST from 1986 to 2017 

 

In all years analyzed (Figure 6), sparse grassland had higher LST 

compared to other land cover with 25.50C in 1986 (figure 6a) and 

35.7 0C in 2005 (figure 6d). 

 

  
a. b. 

  
c. d. 

  
e. f. 

 

Figure 5: Morning land surface temperature for 1986(a), 1995(b), 

2000(c), 2005(d), 2011(e) and 2017(f), in Upper Hill, Nairobi 

 

Open grassland land had the same LST with built-up areas, except 

for in 2005 where built-up areas had a mean LST of 35.40C 

compared to 34.50C in open grassland. Bare ground and that which 

does not have much vegetative cover tends to warm up faster 

compared to other land cover as it reflects incoming radiation. 

However, the amount of moisture in the soil affects the surface 

temperature (Tian et al., 2012). Forest land cover and water bodies 

had a low LST with a mean of 23.5 0C in 1986. Forests have a 

cooling effect due to evapotranspiration while water takes longer 

to warm up due to its large thermal heat capacity thus taking longer 

to warm up. Water had the lowest temperature ranges indicating 

minimal differences between the maximum and minimum 

calculated LST, while forests had the largest ranges in all years 

(figure 6). 
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a. 

 
b. 

 
c. 

 
d. 

 
e. 

 
f. 

 

Figure 6: Mean LST of land cover from 1986 to 2017 

 

Mean afternoon and night LST extracted from MODIS imagery 

indicated a decrease in LST from the year 2000 to 2017 (Table 5). 

This was attributed to the dry conditions experienced in 2000, 2005 

and 2011 which indicates a similar trend with the morning LST 

(Table 4).  

 

Year Afternoon Mean (0C) Night Mean (0C) 

2000 - 18.87 

2005 45.49 18.80 

2011 38.90 16.45 

2017 40.41 13.77 

Table 5: Mean afternoon and night LST from 2000 to 2017 

 

Mean afternoon and night time temperatures were compared with 

each land cover for the years 2005, 2011, 2015 and 2017 (Figure 

7). Results showed that water had the highest LST in all years, both 

afternoon and night. Its high thermal capacity allows it to absorb 

and store heat from incoming solar radiation, slowly emitting it in 

form of long wave radiation. This creates a warming effect in the 

surrounding environments. This is contrary to LST of water taken 

in the morning at 10:00 am where it had the lowest mean LST 

(Figure 6). 

 

 
a. 

 
b. 

 
c. 

 

Figure 7: Mean afternoon and night LST of land cover 

 

In the afternoon, forests LST was slightly higher than built-up, 

which had the lowest LST in 2005 and 2011, while in 2017, forest 

LC had the lowest LST at 40.370C. At night, forest land cover had 

higher LST than built-up, open and closed grassland. Forests also 
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have a warming effect as seen in the figure 7, as they release heat 

energy that has been stored during the day (Li et al., 2015).  

However, this warming effect tends to be lower than its cooling 

effect during the day. Trapped humidity and heat within urban 

canopy layers results in cool day-time and warmer night-time 

temperatures of forests (Sodoudi et al., 2018). In the afternoon, 

sparse and open grassland had lower LST than water since heat is 

conducted downwards during the day in soils and conducted 

upwards at night. This means that at night, open grounds tend to 

cool faster than other land covers (Sodoudi et al., 2018). This can 

be noted in night LST where open and sparse grassland have the 

lowest LST in all years (Figure 7).  
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Table 6: Land cover and LST changes 

 

In the afternoon built-up land cover had the lowest LST in 2005 

and 2011, while in 2017 it was slightly higher than forest land cover 

(Figure 7c). During the day, built-up areas absorb incoming 

radiation, emitting it at night in long-wave radiation, hence having 

a higher night LST than open and sparse grassland.  

High negative temperature changes were experienced between the 

years 2005 and 2011 while high positive temperature changes 

occurred between the years 1995 to 2000. ‘No change’ areas, where 

no change in land cover occurred had the largest percentage in 

areas. Land cover that showed significant changes in area and LST 

are those that changed from vegetated to built-up compared to 

‘forest to open grassland’ and ‘forest to sparse grassland’. This 

indicates that type of land cover change does have a corresponding 

effect on LST (Table 6). Negative values were obtained in 2005-

2011 as LST in 2005 was higher than LST in 2011. The same trend 

occurred in 2011-2017. The change in the type of vegetation also 

has an effect on the LST. Forest to sparse grassland had lower 

percentage change in area between 1986 and 2005 than forest to 

open grassland. However the LST change was higher and this can 

be attributed to the physical characteristics of bare grounds with 

incoming radiation. 

 

Changes in land cover had an effect on mean albedo in Upper Hill, 

where higher LST was associated with high albedo values and 

lower LST with low albedo values (Table 7).  

 

 Built

-up 

Forest Open 

grassland 

Sparse 

grassland 

Water 

Albedo 0.16 0.15 0.18 0.18 0.09 

LST 

(0C) 

27.5 26.3 27.4 27.9 25.1 

 

Table 7: Mean albedo and LST for each land cover 

 

Water, having the lowest albedo, had the lowest mean LST in 

Upper Hill, whereas sparse and open grassland having high LST 

with corresponding high albedo mean values. This indicated that 

converting vegetated areas into impervious surfaces causes a shift 

in the local climate. Therefore, the local energy budget is controlled 

by the albedo, making it an important parameter in the urban heat 

island studies (Trlica et al., 2017). The amount of solar insolation 

is reflected back into the atmosphere is determined by the albedo 

(Odunuga & Badru, 2015). 

  

Figure 8 shows that forest land cover had the highest negative 

contribution index indicating that it does not contribute to the 

increased LST but instead reduces the surface temperature. 

However, its CI decreased from -0.40 in 1986 to -0.15 in 2017. This 

could be attributed to a reduction in percentage coverage in the area 

(Table 3).  

 

 
 

Figure 8: Contribution index of land cover 
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Sparse grassland had the highest positive contribution index 

indicating that it contributed to the increased surface temperature 

over Upper Hill (Figure 8). Water land cover did not show any 

significant contribution in 1986 and 1995. However, between the 

years 2000 and 2005 it had negative values of -0.02 and -0.01, 

indicating it had a cooling effect over the surface. Open grassland 

has a positive contribution index between 1986 and 2000 indicating 

that it had an overall warming effect over the land as it was higher 

than the mean LST over Upper Hill. In 2005 and 2011, it has a 

negative contribution index of -0.09 and -0.02 respectively, 

indicating that it had a lower surface temperature than the mean 

LST over Upper Hill. Built-up land cover has a positive 

contribution index from 1986 to 2011. However in 2017, it has a 

negative contribution index of -0.02 due to increased impervious 

surfaces which increases the thermal storage of the area (Yang et 

al., 2017). Built-up land cover, during the day, absorbs and stores 

thermal energy resulting to negative contribution index. 

 

 

4. CONCLUSION 

 

This paper investigated the relationship between changes of land 

cover on land surface temperature and its effect on the contribution 

index. Multi-temporal satellite imagery are important in change 

detection and analyzing patterns of development, which enables 

planning decisions based on environmental conditions. The study 

was limited to analyzing imagery available during the warmer 

periods of the year but not the colder seasons due to cloud cover. 

The study determined that policy changes on built-up development 

have encouraged expansion of urban areas. This has mostly 

affected vegetated land cover with its reduction with increased 

urban development. Zoning policies in urban areas should consider 

performance zoning that would ensure that development does not 

occur at the detriment of vegetated land cover. There is need for a 

comprehensive environmental management plan in urban areas that 

would handle issues of greening in urban areas. Open spaces are 

important in urban areas and there is need of their protection and 

maintenance due to their importance in mitigating effects of heat 

islands.  Forest land cover has experienced the greatest percentage 

decrease corresponding to increases in built-up density, resulting to 

a corresponding increase in LST. Increases in temperature occur 

where land cover changes from vegetated to impervious surfaces 

due to increases in mean albedo. Albedo influences the land surface 

temperature with vegetated areas having a lower albedo than built-

up areas. Surface albedo is thus an important parameter in the 

studies of urban heat island as it affects the surface energy budget 

of a material. The interaction between land cover and incoming 

radiation is affected by the time of day due to the inherent 

characteristics of the land cover. It is therefore important to analyze 

both day and night surface temperatures to determine the 

relationship between material type and LST. This is comparable 

with Zhao et al., (2015) where high albedo roofing materials in 

urban areas provide a cooling effect. Reducing the urban greenness 

of a city can have adverse effects and its potential effects can be 

determined on its residents from the contribution index. Increasing 

built-up densities increases the thermal storage within urban areas, 

resulting to warmer nights. Water bodies and tree cover are 

important as they reduce the surface and ambient temperature of an 

area. Analyzing the interaction of land cover and incoming 

radiation at different times of the day ensures a better 

understanding of the dynamics that changing landscapes can have 

on the thermal comfort of urban residents, and impacts of climate 

change.  
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