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ABSTRACT: 

 

The eastern coastline of James Bay (Eeyou Istchee) is known to be home to beds of subarctic eelgrass (Zostera marina L.). These 

eelgrass beds provide valuable habitat and food source for coastal and marine animals and contribute valuable ecosystem services such 

as stabilization of the shoreline all along the coast. Despite reports from Cree communities that eelgrass bed health has declined, limited 

research has been performed to assess and map the spatial distribution of eelgrass within the bay. This study aims to address that issue 

by evaluating the capability of Landsat-8 Operational Land Imager (OLI) imagery to establish a baseline map of eelgrass distribution 

in 2019 in the relatively turbid waters of Eeyou Istchee. Three images acquired in September 2019 were merged and classified using 

Random Forests into the following classes: Eelgrass, Turbid Water, Highly Turbid Water, and Optically Deep Water. The resulting 

classified image was validated against 108 ground truth data that were obtained from both the eelgrass health and Hydro-Quebec 

research team. The resulting overall accuracy was 78.7%, indicating the potential of the Random Forests classifier to estimate baseline 

eelgrass coverage in James Bay using Landsat-8 imagery. This project is part of a Cree driven project, the Coastal Habitat 

Comprehensive Research Program (CHCRP). The CHCRP aims to combine Cree's traditional knowledge with Western science to 

better understand environmental changes in the coastal ecosystems and ecosystem services of eastern James Bay. The study is funded 

by a MITACS grant sponsored by Niskamoon Corporation, an indigenous non-profit organization.  

 

 

1. INTRODUCTION 

Zostera marina L., more commonly known as eelgrass, is a 

marine flowering plant found in a wide range of coastal marine 

environments across the Northern Hemisphere (Murphy et al., 

2011). It occurs primarily in the sublittoral zone, in areas 

sheltered from wave action with a soft or sandy substrate and is 

generally submerged at low tide (DFO, 2009). Seagrasses, 

including eelgrass, provide a wide variety of ecosystem services, 

which make them an important indicator of environmental health 

(Bos et al., 2007; Wong et al., 2013). Some of the services they 

provide include protection from wave and tidal action, shelter for 

juvenile fish and invertebrates (Joseph et al., 2013; Kennedy et 

al., 2018), carbon sequestration (Macreadie et al., 2014), and a 

foraging environment for migratory and/or residential waterfowl 

(Seymour et al., 2002; Kollars et al., 2017). Seagrasses can also 

play an important role in sediment stabilization and erosion 

reduction (Potouroglou et al., 2017), making it an important 

feature for coastline preservation (Waycott et al., 2009).  

 

The Eastern coastline of James Bay, Quebec (also referred to as 

Eeyou Istchee by the Cree First Nation) offers an excellent 

growing environment for eelgrass (Lalumière et al., 1994). The 

coastline is dotted with numerous islands providing shelter from 

wind and wave action (Martini, 1986), and coastal development 

by humans is low. In Eeyou Istchee, eelgrass beds are critical 

food for waterfowl (Nienhuis, Groenendijk, 1986), particularly 

for the Canada Geese (Branta canadensis) and Atlantic Brant (B. 

bernicla rota), as documented by the Cree hunter experience and 

 
* Corresponding author 

described in Dignard et al. (1991), COMEX (2013), and Royer 

(2016). To this day, migratory waterfowl hunting is an important1 

activity in coastal communities and contributes to maintaining 

traditional food security.  

 

Eeyou Istchee has been subject to climate change and large-scale 

hydroelectric development in the past fifty years. Hydroelectric 

development in the eastern James Bay watershed, which began 

in the 1970s, has entailed diverting water from the Ungava Bay 

watershed and the Rupert and Eastmain Rivers of southern James 

Bay into the La Grande River watershed that drains into northeast 

James Bay. Although the coastal zones have been monitored 

since the early 1980s, many of the hydrological changes and 

implications for eelgrass distribution within the bay are largely 

understudied. The Cree Land Users of Eeyou-Istchee have noted 

steady declines in eelgrass coverage along the coast especially 

near Chisasibi in the late 1980s, and then a drastic decline in 

1997-1998 (Consortium Genivar Waska, 2017). Cree report that 

since the decline in the late 1990s, recovery of the eelgrass has 

been very slow, and the eelgrass currently observed in some 

areas seems unhealthy (e.g. shorter, less dense, discoloured) 

(Consortium Genivar Waska, 2017) 

 

Due to the inaccessibility of much of the coastline, quantifying 

and mapping eelgrass extent within the bay presents a major 

challenge. Multispectral satellite imagery offers the only source 

of continuous data spanning the entire extent of the coastline, and 

much of it is freely available. The objectives of this study are to 

assess the capability of the Landsat-8 Operational Land Imager 
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(OLI) imagery to detect eelgrass in Eeyou Istchee waters, as well 

as to assess and map the distribution of eelgrass along the eastern 

coastline of James Bay in the summer of 2019. Temperate and 

subarctic water, such as in Eeyou Istchee, poses additional 

challenges for mapping eelgrass compared to tropical and sub-

tropical waters because this region tends to have lower water 

clarity, and therefore low light penetration, like West coast 

waters (O’Neill, Costa, 2013, Reshitnyk et al., 2014). Local 

indigenous knowledge about the eelgrass beds was employed 

during field data collection. The study is part of a Cree driven 

project, the Coastal Habitat Comprehensive Research Program 

(CHCRP), which aims to combine Cree traditional knowledge 

with Western science to better understand environmental changes 

in the coastal ecosystems and ecosystem services of eastern 

James Bay. 

 

2. MATERIALS AND METHODS 

2.1  Study area  

The study area encompasses the entire Eastern coastline of James 

Bay, from about 54.7 °N latitude in the north to 51.1 °N in the 

south (Figure 1). James Bay represents the southernmost portion 

of Hudson Bay. Eastern James Bay is ice-covered between 

December and early June each year (El-Sabh, Koutitonsky, 

1977), although the date of fast ice breakup has gotten 

progressively earlier since 1980 (Taha et al., 2019). 

 

 

Figure 1.  Location the four main Cree coastal communities 

along the Western coastline of Eeyou-Istchee.  

 

James Bay is essentially a postglacial depression, and as such is 

affected by the isostatic rebound. Thus, the eastern coastline can 

be characterized by having a low coastal slope and many islands 

that dot the shoreline, protecting it from wind and tidal action. 

According to Dignard et al. (1991), eelgrass meadows are 

abundant in every inlet along the eastern coast of James Bay, 

except at the mouth of large rivers. Towards the open sea, 

eelgrass meadows generally are replaced by a zone colonized by 

Fucus distichus and Ascophyllum nodosum (Dignard et al., 

1991). Four coastal communities, namely Chisasibi, Wemindji, 

Eastmain, and Waskaganish, with populations (mostly Cree First 

Nations) ranging from about 900 people in Eastmain to nearly 

5000 people in Chisasibi, are located along this coast. Except for 

the hydroelectric development initiated in the early 1970s 

(Marsh, 2015), there is little coastal development in the region. 

 

2.2  Image Acquisition  

The study used freely available imagery acquired by the Landsat-

8 Operational Land Imager (OLI) (Table 1). Images were 

obtained on the United States Geological Survey’s (USGS) Earth 

Explorer website. Three images were acquired on September 16, 

2019, during the period where the eelgrass was reached its peak 

biomass (Lalumière et al., 1994). Given that there was cloud 

cover over Chisasibi on the September image, we used a cloud-

free image which was acquired on August 26, 2019, as close as 

possible to the September image. 

 

Scene Identifier 

Image 

Date 

Image 

Time 

(UTC) 

Tide 

Height 

(m) 

LC80200222019259LGN00 2019-09-16 16:12:59 1.1 

LC80200232019259LGN00 2019-09-16 16:13:23 1.1 

LC80200242019259LGN00 2019-09-16 16:13:47 1.1 

LC80210222019234LGN00 2019-08-22 16:19:19 1.4 

Table 1. List of the Landsat-8 OLI images acquired from the 

USGS EarthExplorer website for use in the study. 

 

2.3  Field data  

Field data were acquired during the summer of 2019 from two 

different sources: Hydro-Quebec’s eelgrass monitoring program 

(Hydro-Québec: Englobe corporation, 2019) and the CHCRP’s 

field surveys (O’Connor et al., 2019) (Table 2). Both datasets 

evaluated eelgrass presence/absence at several sites throughout 

the study area that was determined using snorkeling surveys by 

SCUBA divers and snorkelling divers of the CHCRP eelgrass 

health team and Hydro-Québec. The location of the sites assess 

by the CHCRP dataset was guided by local Cree land users who 

have a good understanding of their coastal environment. Each 

dataset recorded each point’s location using a GPS. The CHCRP 

dataset from the field research team was scored into two classes: 

eelgrass present and eelgrass absent. The Hydro-Quebec dataset 

scored eelgrass density at each site on a scale from 1-4, with 4 

representing continuous eelgrass and 1 representing a complete 

absence of eelgrass. To compare the two datasets, any score from 

2-4 in the Hydro-Quebec dataset was considered eelgrass present. 

These field data were used to validate the final classified image 

mosaic. Points that were classified as turbid water were omitted 

from the validation analysis, since the reflectance signal in turbid 

waters is dominated by particulate matter in the water column, 

and therefore should not show the spectral signature of eelgrass. 

 

Dataset Eelgrass 

Present 

Eelgrass 

Absent 

Turbid 

water in the 

classified 

image 

Total 

Hydro-

Quebec 

51 0 12 63 

CHCRP 

Field 

Team 

31 35 18 84 

Total 82 35 36 147 

Table 2. Number of ground-truth data points coming from 

each dataset for a) the present eelgrass class; b) the 

absent eelgrass class, and c) the turbid water class 

 

2.4 Image Processing 

The four images obtained from the USGS Earthexplorer were 

top-of-atmosphere (TOA) reflectance images that were 

converted into surface reflectance images using Acolite, a free 

atmospheric correction software by the Royal Belgian Institute of 

Natural Sciences designed for simple and fast processing of 

coastal scenes (Vanhellemont, Ruddick, 2018). The atmospheric 

correction in the Acolite software is based on the dark-spectrum 
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fitting algorithm, and a sun glint correction is also applied during 

the correction (Vanhellemont, 2019). Acolite was also used to 

mosaic the three images acquired on September 16, 2019. Once 

processing was completed, the resulting image mosaic was 

clipped to the coastline. The September image mosaic produced 

by Acolite can be seen in Figure 2.  

 

Figure 2. RGB composite for the mosaic created using Acolite 

with the images acquired over James Bay on 

September 16, 2019. 

 

2.5 Training Areas 

Both the September mosaics and the August imagery were 

classified using the Random Forests supervised classifier, which 

requires training areas. Representative training areas were 

delineated through photointerpretation of the satellite imagery for 

the four following classes: Eelgrass (EG), Turbid Water (TW), 

Highly Turbid Water (HTW), Optically Deep Water (DW). 

Spectral separability between representative training classes was 

assessed using Jeffries-Matusita (J-M) distance computed using 

Geomatica (Sen et al., 2019) the late summer of 2019, much of 

the eastern coastline of James Bay contained turbid water, either 

within bays near the coastline or out in deeper waters in the 

southern end of the bay (as exhibited in Figure 2). To account for 

this turbidity, a “Turbid Water” class was created through a 

manual selection of visibly turbid waters. Another class was 

created as “Highly turbid water”, which encompasses the 

reflectance signal of optically shallow sandy James Bay waters 

as well as visually highly turbid waters (water that appeared very 

light brown or red on RGB imagery). Optically shallow sandy 

waters showed a similar spectral curve to highly turbid waters, 

and both highly turbid waters and optically shallow waters 

displayed higher reflectance values than any other class in every 

visible band as well as the near-infrared band. To avoid 

conflating the two classes, these classes were merged. Besides, 

the deep-water class was meant to encompass all optically deep 

water that theoretically should not contain eelgrass.  

 

2.6 Additional Input Layers  

To bolster the potential separability between the four training 

classes, additional layers were created as inputs for the classifier. 

Acolite provides the option to compute the so-called “L2W 

Parameters”, which include: Turbidity (Dogliotti et al., 2015), 

Suspended Material Concentration (Nechad et al., 2010), 

Floating Algal Index (Dogliotti et al., 2018), and Orange 

reflectance (Castagna et al., 2020). The four layers are computed 

during the atmospheric correction. Additionally, we used 11 

vegetation indices as shown in Table 3. Finally, to separate 

optically deep-water areas, four bathymetric ratios were 

computed (Table 3). They are based on the ratio decay algorithm 

designed for evaluating satellite-derived bathymetry (Stumpf et 

al., 2003). The computed layers were combined with the surface 

reflectance mosaic from Acolite and used as inputs for the RF 

classifier.  

 

Variable Expression* 

DVI NIR – R 

GDVI NIR – G 

GNDVI (NIR – G) / (NIR + G) 

NDVI (NIR – R) / (NIR + R) 

NG G / (NIR + R + G) 

NR R / (NIR + R + G) 

NNIR NIR / (NIR + R + G) 

RVI NIR / R 

GRVI NIR / G 

NDAVI (NIR – B) / (NIR + B) 

WAVI 1.5 * (NIR – B) / (NIR + B + 0.5) 

Bathy 1 Ln(B/G) 

Bathy 2 Ln (Ub/G) 

Bathy 3 Ln (B/R) 

Bathy 4 Ln (Ub/R) 

* NIR = NIR-Band (0.845 – 0.885 µm) reflectance, R = Red 

Band (0.630 – 0.680 µm) reflectance, G = Green Band (0.525 – 

0.600 µm) reflectance, B = Blue Band (0.450 – 0.515 µm) 

reflectance, Ub = Ultrablue Band (0.433 – 0.453 µm) 

reflectance. 

Table 3.  Input variables added to the classifier. 

 

2.7 Random Forests Classifier  

The classifier that was used is Random Forests, a non-parametric, 

decision-tree classifier that does not assume a normal distribution 

of the input data (Breiman, 2001). Random Forests can be run in 

two ways: “all-polygon” and “sub-polygon”. The all-polygon 

setting uses all the pixels within the training area polygons, while 

the sub-polygon version randomly selects a user-determined 

number of pixels from each training area polygons. For this 

study, the all-polygon setting was used, as it has the advantage of 

taking account of the actual class size. The forest size was 500 

independent decision trees. The mtry variable, which refers to the 

number of variables randomly sampled as candidates at each split 

of every node, was set to the default value (the square root of the 

total number of predictor variables, rounded down). The 

classifier randomly selects two-thirds of the training data 

(referred to as “In Bag” data) to develop one decision tree. This 

tree is then validated using the remaining third of the training data 

(referred to as “out of bag” data). The process is repeated for the 

500 individual decision trees and produces 500 independent 

classifications. These independent classifications are then 

combined to create the final classification. RF is not sensitive to 

noise or over-fitting and can estimate the importance of the 

individual input variables. The August image was classified 

separately from the September mosaic and the area covered by 

clouds was clipped from the August classified image and 
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mosaicked together on the September image to create one 

classified image mosaic. The classification accuracy assessment 

and the ground-truth validation accuracy assessment use the 

combined data from both image classifications. 

 

3. RESULTS 

3.1 Class Separability  

Training areas were delineated for each class (Eelgrass, Turbid 

Water, Highly Turbid Water, Clear Water) from the image 

mosaic on September 16 as well as the image obtained on August 

26, 2019. They were used to compute mean values for each class 

to assess the class separability in the case of the first 6 Landsat-8 

bands (Figure 3), the Acolite variables (Figures 4), the vegetation 

indices (Figure 5), and the bathymetric ratios (Figure 6).  

 

Figure 3.  Mean reflectance values for each class for the first 6 

Landsat-8 bands for both images 

 

 

Figure 4.  Mean values of the Acolite variables computed 

during the atmospheric correction for each class for 

both images 

 

 

Figure 5.  Mean values of the vegetation indices used in the 

study for each class for both images 

 

 

Figure 6.  Mean values of each bathymetric ratio for each class 

for both images 

 

The training areas of the September image were also used to 

assess the class spectral separability using the J-M distance 

computed with the 6 first Landsat-8 OLI bands (Table 4).  

 

Class Code EG TW HTW 

TW 1.341 - - 

HTW 1.986 1.939 - 

DW 1.388 1.674 1.999 

Table 4. J-M distances computed with the class training areas 

for the Landsat-8 OLI bands for the September 

image mosaic. 

 

3.2 Classification  

The September 16 and August 26 images were then classified in 

R using the Random Forests classifier (R Core Team, 2013), 

using the 6 first Landsat-8 OLI bands and all variables listed in 

Table 3. The confusion matrix assessing the out-of-bag training 

areas within the classifier was combined for both images and is 

presented in Table 5. The classification accuracy is high, with an 

overall accuracy of 99.3%. The classified image is shown in 

Figure 7. Detailed maps were created at a resolution of 1:250,000 

around each of the main Cree coastal communities: Chisasibi 

(Figure 8), Wemindji (Figure 9), Eastmain (Figure 10), and 

Waskaganish, (Figure 11).  

 

Class  EG TW HTW CW Total UA (%) 

EG 3139 56 43 268 3506 89.5 

TW 28 33129 78 197 33432 99.1 

HTW 58 55 96688 65 96866 99.8 

CW 69 274 74 37866 38283 98.9 

Total 3294 33514 96883 38396 172087   

PA 

(%) 
95.3 98.9 99.8 98.7 

 OA = 

99.3% 

Table 5. Confusion matrix for out-of-bag training pixels 

computed with the Random Forests classifier (bold 

values represent well-classified pixels) 

 

The classified image was then assessed for accuracy by 

comparing the mapped eelgrass presence/absence to the field 

dataset provided by Hydro-Quebec and the project’s field 

research team. Points that were classified as turbid water were 

excluded from the validation analysis. We achieved an overall 

accuracy of 78.7% (Table 6). The eelgrass present class resulted 

in a User’s accuracy of 84.2% and a Producer’s accuracy of 

87.3%, which are excellent considering the challenging 

environmental conditions. 
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Figure 7. Classified image produced by applying the Random 

Forests classifier to both Landsat-8 OLI images.  

 

Figure 8.  Classified image produced by applying the Random 

Forests classifier to both Landsat-8 OLI images for 

the coastline around Chisasibi. 

 

 

Figure 9.  Classified image produced by applying the Random 

Forests classifier to both Landsat-8 OLI images 

outlining the coastline around Wemindji. 

 

Figure 10. Classified image produced by applying the Random 

Forests classifier to both Landsat-8 OLI images 

outlining the coastline around Eastmain. 
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Figure 11. Classified image produced by applying the Random 

Forests classifier to both Landsat-8 OLI images 

outlining the coastline around Waskaganish. 

 

Class Present Absent Total UA (%) 

Present 69 13 82 84.2 

Absent 10 16 26 61.5 

Total 79 29 108 OA = 78.7% 

PA (%) 87.3 55.2  

Table 6.  Validation accuracies obtained by comparing field-

based ground-truth sites with the classified image 

(bold figures indicated well-mapped sites) 

 

 

4. DISCUSSIONS AND CONCLUSIONS 

Our study presents preliminary results on combining local 

indigenous knowledge and Landsat-8 OLI imagery for mapping 

eelgrass beds in water with high turbidity. The imagery was 

atmospherically corrected using the Acolite software. We show 

that eelgrass can be spectrally distinguished from optically deep 

and turbid waters. The spectral signature of eelgrass was not 

shown to be detectable underneath suspended material in the 

water column since the red and green reflectance of turbid waters 

is dominated by particulate matter in the water column. The 

overall accuracy for the validation was 78.70%. The addition of 

extra input layers to the Landsat-8 OLI reflectance bands 

improved the validation accuracy significantly. Decreasing or 

optimizing layers was shown not to increase the validation 

overall accuracy, and thus it is recommended to add these 

additional input layers to improve the accuracy of Landsat-8 

classifications.  

 

Our classified image mosaics did not show extensive eelgrass 

beds where it was possible to map them with the Landsat8-OLI 

imagery. Such observations agree with the Cree Land Users of 

Eeyou Istchee who have noted steady declines in eelgrass 

coverage along the coast in the late 1980s and then a drastic 

decline in 1997-1998 (Consortium Genivar Waska, 2017). Cree 

reported that since the decline in the late 1990s, the recovery of 

the eelgrass has been very slow. Such a study is therefore a good 

example of how local indigenous knowledge can be combined 

with Western science in a case study.  

 

Landsat-8 imagery, while providing exceptional temporal 

coverage, is limited in its spatial resolution. The 30 m pixel size 

of Landsat-8 imagery limits the creation of training areas to only 

large beds that dominate the reflectance signal of a single pixel. 

The use of Landsat-8 imagery may therefore not be suitable for  

classifying patchier eelgrass or smaller patches of turbid/clear 

water. The 30 m spatial resolution also makes an accurate 

location of the coastline difficult. This was not too much of an 

issue in James Bay, where optically shallow waters suitable for 

eelgrass extend far past the coastline-however it could present an 

issue if applied to a coastline with only a small strip (< 30 m 

width) of shallow enough water for eelgrass growth. Besides, 

while James Bay contains geographically large eelgrass beds, 

areas dominated by other types of submerged aquatic vegetation 

may have similar spectral characteristics. Therefore, this study 

framework may not be applicable for locations where multiple 

submerged aquatic vegetation may encompass a geographic area 

larger than 30 m. While this study provided a framework for 

mapping eelgrass beds on a large spatial scale in turbid waters, 

more work should be done researching the accuracy of the 

Random Forests classifier on smaller spatial scales using higher 

resolution imagery. Sentinel-2 imagery could potentially offer 

bay-wide coverage at a 10 m resolution and should be explored 

as a high-resolution multispectral alternative. High-resolution 

hyperspectral imagery would be a suitable option for mapping 

sections of the Bay, but the unpredictable bay-wide turbidity 

could also make hyperspectral imagery acquisition costly or not 

feasible. 

 

Lastly, substituting true bathymetry data for the ratio decay 

algorithms used in this study may improve classification; 

however, in the absence of bathymetry data, the high spectral 

separability between deep clear water and eelgrass makes the 

bathymetric ratios a good alternative as a classifier input. Our 

classified image was validated against 108 points and there is the 

need to add more validation points in further work. 
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