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ABSTRACT:

Although very efficient in a number of application fields, deep learning based models are known to demand large amounts of
labeled data for training. Particularly for remote sensing applications, responding to that demand is generally expensive and time
consuming. Moreover, supervised training methods tend to perform poorly when they are tested with a set of samples that does not
match the general characteristics of the training set. Domain adaptation methods can be used to mitigate those problems, especially
in applications where labeled data is only available for a particular region or epoch, i.e., for a source domain, but not for a target
domain on which the model should be tested. In this work we introduce a domain adaptation approach based on representation
matching for the deforestation detection task. The approach follows the Adversarial Discriminative Domain Adaptation (ADDA)
framework, and we introduce a margin-based regularization constraint in the learning process that promotes a better convergence
of the model parameters during training. The approach is evaluated using three different domains, which represent sites in different
forest biomes. The experimental results show that the approach is successful in the adaptation of most of the domain combination
scenarios, usually with considerable gains in relation to the baselines.

1. INTRODUCTION

Deforestation is an important problem, responsible for the re-
duction of carbon storage, greenhouse gas emissions, and other
serious environmental issues, such as biodiversity losses and
climate change (De Sy et al., 2015). Deforestation monitoring
has become, therefore, a priority for many public authorities
and institutions around the world.

In this respect, many initiatives based on remote sensing (RS)
data have been developed for the periodic updating of deforest-
ation maps. A notable example is the Deforestation Monitoring
Program (PRODES) developed by the Brazilian National Insti-
tute for Space Research (INPE), which produces annual reports
about deforestation of native vegetation in Brazilian forest bio-
mes based on the analysis of Landsat images (Valeriano et al.,
2004). However, due to the high level of accuracy expected for
the official information provided by PRODES and similar ini-
tiatives to different stakeholders, such projects rely mostly on
visual interpretation and manual operations. There is, therefore,
a demand for automatic methods that can support deforestation
monitoring applications in ways that can further improve the
accuracies obtained and, at the same time, diminish the need
for human intervention, so as to shorten their response times
(Andrade et al., 2020).

With the rise of deep learning technology, highly accurate mod-
els have been developed for image interpretation applications,
but under the premise of using a large amount of labeled train-
ing data (Krizhevsky et al., 2017). In RS applications, however,
∗ Corresponding author

the annotation process depends on expensive field campaigns
and human experts, which limits the use of supervised classific-
ation methods. Those applications can, therefore, highly benefit
from classifiers that are able to properly generalize in the pres-
ence of samples with characteristics not seen during training.

Unfortunately, supervised training methods, particularly deep
learning models, tend to perform poorly when tested with a set
of samples that does not match closely the general characterist-
ics of the training set. Regularization techniques (Kukačka et
al., 2017) may help to improve the generalization capacity of
supervised classifiers, but only if the test data is already similar
to the training data. Supervised transfer learning (Huh et al.,
2016) can also help as they provide ways to learn from a few
annotated test samples. However, those techniques are of little
help when no labeled samples are available for the test set.

Considering the training and test sets as different domains, we
can say that the performance of the classification models de-
teriorates depending on the respective domain shift (Wang and
Deng, 2018). In RS applications the shift between training
(source) and test (target) domains may be due to different ac-
quisition conditions, e.g., data acquired at different epochs or
using different sensors; or to data collected from different geo-
graphical areas (Soto et al., 2020).

To mitigate the problem, a number of Domain Adaptation (DA)
techniques have been proposed (Tuia et al., 2016). Most of such
techniques attempt either to align the features extracted from
the images of both domains, or to adapt the appearance of those
images (Li et al., 2020; Tasar et al., 2020). For example, in
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(Deng et al., 2018) a Cycle-Consistent Generative Adversarial
Network (CycleGAN) (Zhu et al., 2017) is used to translate im-
ages from one domain to the other, preserving the content but
transforming their visual appearance. With CycleGANs, two
protocols can be adopted for DA. One can use the classifier
trained with the labeled source images to classify the adapted
target images (i.e., translated to the source domain) or to trans-
late in the opposite direction for training the classifier using the
adapted source images (i.e., translated to the target domain) and
corresponding labels. The major drawback of this approach is
that the CycleGAN tends to generate artifacts during the trans-
lation, which may seriously hinder classification accuracy. To
overcome that problem, Tasar et al. (2020) propose the so-called
ColorMapGAN, another image translation method, which tries
to find mappings for all color intensities in the images from the
source and target domains. This method, however, has limita-
tions such as noisy outcomes due to the exclusive use of local
information, and a computational load that grows exponentially
with the spectral and radiometric resolutions, making it virtu-
ally impossible to work with Landsat images, for instance.

Techniques based on feature alignment, also denoted as rep-
resentation matching methods, seek to learn domain-invariant
features from both source and target domains. Some methods
(Sun and Saenko, 2016; Long et al., 2017) focus on minimizing
a divergence metric between source and target features; oth-
ers (Ganin et al., 2016; Tzeng et al., 2017; Li et al., 2020) try
to learn to directly generate domain-invariant features through
adversarial training (Goodfellow et al., 2014). The Domain
Adversarial Neural Network (DANN) (Ganin et al., 2016), for
example, learns a symmetric mapping of both domains to a
common feature space using a single feature extractor. Al-
ternatively, the Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al., 2017) approach relies on an asymmetric
mapping of the domain features using distinct feature generat-
ors. Based on the assumption of shared information between
source and target representations, Huang et al. (2018) incorpor-
ated a regularization term in the ADDA loss function to ensure
that the parameters of the source and target generator models do
not deviate too much, generally leading to a better adaptation.

Besides the ColorMapGAN (Tasar et al., 2020), some other
works have employed the aforementioned DA approaches in
the context of semantic segmentation of RS images. For in-
stance, Wittich and Rottensteiner (2019) adapted the ADDA
strategy for pixel-wise classification of aerial images and height
maps of different urban areas. Specifically for deforestation
detection, Soto et al. (2020) evaluated the adaptation of im-
ages of the same location acquired at different epochs using
a CycleGAN-based approach. Despite the promising results,
the latter method is still affected by artifacts generated in the
appearance adaptation process.

In this work, we introduce a DA approach based on repres-
entation matching for the task of deforestation detection. The
proposed approach follows the Adversarial Discriminative Do-
main Adaptation (ADDA) framework, and includes a margin-
based regularization term in the loss function used for train-
ing. The new regularization term was devised to better control
the divergence between the source and target feature extractor
components of the framework, as described in sections 2 and
3. While the proposed regularization term was devised in the
context of a specific application, we believe it can help to better
tune ADDA-based models for other RS applications. Further-
more, we evaluated the approach using three different domains,

represented by images of different sites in two Brazilian forest
biomes, namely, the Amazon and the Brazilian Cerrado.

The remainder of this paper is organized as follows. Section 2
explains the ADDA framework. Section 3 describes and presents
the intuition behind the proposed regularization term. Section 4
describes the experimental protocol adopted in the evaluation.
Section 5 presents the obtained results, and a discussion about
those results. Finally, in Section 6 we present conclusions and
directions for further research.

2. ADVERSARIAL DISCRIMINATIVE DOMAIN
ADAPTATION

ADDA was originally proposed in (Tzeng et al., 2017), aiming
at improving the performance of scene classifiers (for image la-
beling) trained with labeled images from a source domain, and
afterwards applied to images of a target domain, doing without
any labeled target samples. In (Huang et al., 2018) the method
was extended for semantic segmentation (pixel-wise classifica-
tion), and in (Wittich and Rottensteiner, 2019) it was success-
fully employed in semantic segmentation of remote sensing im-
ages.

The ADDA domain adaptation strategy enables learning to map
features extracted from the images of the source and target do-
mains to a common (source) space, but so that the mapped fea-
tures remain category discriminative. Let {xSn, ySn}Nn=1 ∈ S
and {xTm}Mm=1 ∈ T be two sets of images belonging to the
source (S) and target (T ) domains, respectively. We denote as
ySn the label that corresponds to sample xSn , and as N and M
the number of images in the two sets, respectively.

First, a deep neural network model is trained to classify the
source domain images xS using their corresponding labels yS

(see Figure 1a). Such a model is composed of a feature ex-
tractor ES with parameter values θES and a label predictor P
(a dense label predictor in our case). Next, another feature ex-
tractor network ET , having the same architecture as the source
feature extractor ES , is initialized using the pre-trained para-
meter values θES , i.e., θET is initialized with the θES values.
Finally, using an adversarial training procedure that relies on a
domain discriminator D, ET is trained to produce features for
the target domain images that can be properly classified by the
pre-trained label predictor P .

The DA procedure is represented in Figure 1b. ES extracts
features from source images, and ET does so from the target
images. During the training process, the parameter values θES

are frozen, while ET learns to produce features that D cannot
distinguish from the ones extracted from the source domain. In
order to achieve this goal, an adversarial training (Goodfellow
et al., 2014) is performed using the loss function described in
Equation 1, which is minimized and maximized by updates of
the parameters in the feature extractorET and the discriminator
D, respectively.

L(ET , D) = ES [logD(ES(xS))]

+ ET [log(1−D(ET (xT )))] + λLreg,
(1)

According to Huang et al. (2018), if the domains are similar
enough for DA to be feasible, the parameter values θET should
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(a) (b) (c)

Figure 1. Steps for Adversarial Discriminative Domain
Adaptation. (a) Training of the source classifier. (b) Adaptation
of the target features. (c) Adapted model able to classify target

samples.

not be very different from θES . Therefore, the regularization
term Lreg in Equation 1, weighted by the hyperparameter λ, is
meant to prevent the drift of the target parameter values θET ,
keeping them similar to θES according to a distance function
such as the L1 norm (see Equation 2).

Lreg = ‖θES − θET ‖1 (2)

Finally, to classify the target samples, a classification model is
built using the feature extractor ET and the label predictor P
(see Figure 1c).

3. MARGIN-BASED L1-REGULARIZATION

During the development of this research, we found out that the
regularization loss term Lreg in Equation 2 was too restrictive
to achieve an adequate adaptation. We recall that the weight λ
can be tuned for different applications, which consider domains
with different characteristics. In principle, for larger domain
shifts, lower λ values should be selected, so that the target fea-
ture extractorET can have more room to learn proper mappings
for the target features to the source feature space.

Figure 2 shows the L1 distances between θES and θET as a
function of the training iterations for different values of λ. Note
that all curves in the figure begin at a value of zero because θET

is initialized with θES . This figure is based on one of the DA
scenarios tested in the experiments (source: RO, target: MA;
cf. Section 4.1 for the definition of the data).

As it can be observed in Figure 2a, higher λ values better pre-
vent the parameter values θET from drifting away from θES in
terms of the L1 distance. On the other hand, lower values of
λ introduce a considerable amount of instability in the learning
process, which may prevent a successful adaptation. To tackle
the problem, we included a marginm in the regularization term,
which defines a minimum desirable distance between θES and
θET . The proposed regularization term is given by Equation 3.
Note that for L1 distance values lower than m, the regulariz-
ation loss will be zero and, thus, will not influence the target
feature extractor ET parameter updates.

Lm
reg = max(0,Lreg −m) (3)

(a)

(b)

Figure 2. Record of ‖θES − θET ‖1 over 140,000 iterations. (a)
Using Lreg for regularization. (b) Using Lm

reg for regularization,
with m = 3.

Figure 2b shows the L1 distance values obtained using the new
regularization term with an arbitrary margin m = 3, for the
same λ values used in Figure 2a. One can see that the new term
enables to set θES and θET parameter values apart, without the
need to decrease λ values too much, and thus be subject to un-
stable weight drifts. Therefore, this modification makes it easier
for ET to learn a proper mapping for the target samples to the
common feature space, favoring the convergence of the adapt-
ation process. It is noteworthy that m represents an additional
hyperparameter to be tuned.

4. EXPERIMENTS

The proposed DA approach was evaluated using several scen-
arios in the context of deforestation detection in which different
source and target domains are considered. The code developed
in this research is publicly available1.

4.1 Datasets

In the experiments, we considered three remote sensing data-
sets with particular characteristics as the domains of interest.
Each dataset represents pairs of images acquired in consecut-
ive years, covering forested areas located in different Brazilian
states: Pará (PA), Rondônia (RO), and Maranhão (MA). The PA
and RO sites are located in the Amazon biome, and cover areas
characterized as Dense Ombrophyll Forest and Open Ombro-
phyll Forest, respectively. The MA site is located in a transition
zone between the Amazon and the Brazilian Cerrado biomes,
covering a Seasonal Deciduous and Semi-Deciduous Forest area.
The forest canopy variability in the MA site is the highest, and
the lowest in PA. Additionally, the deforestation footprints in
MA are more marked, as clearcutting is the usual deforesta-
tion practice. Conversely, selective logging is more common

1 https://github.com/jnoat92/Adversarial-Domain-Adaptation-for-
Change-Detection
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in PA, while deforestation practices are more diverse in RO
(Muchagata and Brown, 2003; Marris, 2005).

All images were downloaded from the Earth Explorer web ser-
vice from the United States Geological Survey (USGS)2, and
were produced with the Landsat-8 OLI sensor system. The im-
ages have 7 spectral bands with 30m spatial resolution. The re-
spective deforestation references were provided by the PRODES
program, from the Brazilian National Institute of Space Re-
search (INPE) and are freely available at the Terrabrasilis web-
site3. The images of the PA site were acquired in August 2016
and July 2017. The RO site images are from July 2016 and July
2017, and the MA images are from August 2017 and August
2018. The selected images are the same ones used in PRODES
for deforestation mapping in the respective sites/epochs. Fig-
ure 3 shows the image (RGB bands) of the second date for each
dataset and the corresponding geographical extents. Table 1 in-
dicates the coordinates of each site and the sizes of the respect-
ive images.

4.2 Experimental Setup

The proposed approach was evaluated on six scenarios. In each
of these scenarios, one dataset served as the source domain, and
one of the two remaining datasets as the target domain. We first
trained a pixel-wise classifier using the labeled images from the
source domain. Next, we performed the ADDA-based domain
adaptation scheme on the target domain and assessed the re-
spective prediction. For each of the six scenarios, we compared
the two ADDA variants, i.e., training with the alternative loss
terms Lreg and Lm

reg , in order to evaluate the influence of the
proposed regularization term on the results.

The experiments were run five times, and we report the accur-
acy metrics (mean average precision and F1-score) using the
mean of the predicted probabilities. The images of each dataset
were split into three disjoint sets of tiles, of which approxim-
ately 20% were used for training, 5% for validation and 75%
for testing. The source domain training tiles were used in both
stages of the adaptation approach, i.e., in the training of the
source domain classifier and in the feature alignment proced-
ure. In the latter procedure, the validation tiles from the target
domain were only used to track performance during training;
they had no influence in the respective training process. The
accuracies reported for all experiments were accessed using the
test tiles.

In the datasets, the references provide no (change) information
in areas that were deforested in previous years. After deforesta-
tion is first detected by the PRODES program, the correspond-
ing regions remain marked as deforestation, regardless of any
future change. Therefore, both in the source classifiers train-
ing and in the evaluation, the pixels that correspond to areas
that were deforested prior to the acquisition of the first image in
each domain image pair were ignored.

4.3 Classifier Architecture

The deforestation detection classifier follows a fully convolu-
tional encoder-decoder architecture with input size of 128×128
pixels; hence, patches of that size were extracted from the im-
age tiles through a sliding window procedure. For training, the
overlap between consecutive patches was of 96% for PA and

2 https://earthexplorer.usgs.gov/
3 http://terrabrasilis.dpi.inpe.br/map/deforestation

MA, and of 94% for RO. The patches used for testing did not
overlap each other. The input of the network follows an early
fusion configuration, in which the images of a pair are stacked
along the spectral dimension. As Table 2 shows, the architec-
ture contains convolutional layers (C) in the encoder, and trans-
posed convolutions (TC) in the decoder; no padding was used.
Dropout with rate = 10% and ReLU activation were employed
after all convolutions, except in the last layer before the softmax.

In all of the datasets the proportion of deforested areas is very
low. To mitigate such class imbalance, we used the weighted
cross entropy loss (Panchapagesan et al., 2016) in the training
of the source classifier. The weights defined for the classes de-
forestation/no-deforestation were inversely proportional to their
representation in the source domain training set. Another strate-
gy used for alleviating the class imbalance was to select patches
with at least 2% of deforestation pixels during training. Natur-
ally, that was only done for the source domain patches, since
only source labels are available to build the DA model.

For the training procedure of the source classifier (cf. Figure 1a)
we stipulated early stopping after 10 epochs without improving
the performance on the validation set. The Adam optimizer
(Kingma and Ba, 2014) was used with a fixed learning rate of
0.0001, and we used batches of 32 image patches. For data
augmentation, the training patches were randomly transformed
using anticlockwise 90◦ rotations and flips.

4.4 Adaptation

Referring to the architecture described in Table 2, the layers up
to the one chosen as the adaptation layer (marked with an aster-
isk ∗ in the table) compose the feature extractors ES and ET .
The subsequent layers compose the label predictor P . There-
fore, the activation maps produced by the adaptation layer rep-
resent the features of interest for the adaptation process, i.e., the
features that comprise the input to the domain discriminator D.
Following Wittich and Rottensteiner (2019), we chose a layer
prior to the bottleneck of the network as the adaptation layer.

The discriminator architectureD comprises four 1×1 convolu-
tional layers with 512 filters and leaky-ReLU activations, and a
final 1×1 convolutional layer with one filter and sigmoid activa-
tion. As in (Wittich and Rottensteiner, 2019), this discriminator
uses padding and stride = 1, and returns dense probability
predictions.

For the regularization term defined in Equation 3, we set λ = 2
and m = 2.5. The λ value is the same used in (Wittich and
Rottensteiner, 2019). The m value was empirically defined in
experiments that used the domain combination RO (source) and
MA (target). The batch size was set to 1. The set of training im-
age patches from both domains was also augmented using ran-
dom flips and anticlockwise 90◦ rotations. We used the Adam
optimizer with an initial learning rate of 0.0001. To guarantee a
stable model at the end of the training procedure we used learn-
ing rate decay after the first 40 epochs. In that sense, we trained
the DA phase (cf. Figure 1b) for 150 epochs in total.

5. RESULTS

Figure 4 shows the precision vs. recall curves for the class
deforestation. The curves represent the trade-off between
precision and recall for different probability decision thresholds,
varying the latter from 1 to 0. The informed mean average
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RO

PA

MA

Figure 3. Study areas on Brazilian Biomes; the images are those of the second acquisition epoch in all three test areas.

PA RO MA
Latitude (S) 03◦08’21” - 03◦26’16” 09◦36’51” - 10◦18’35” 04◦44’52” - 05◦12’48”

Longitude (W) 50◦34’04” - 51◦16’12” 62◦56’41” - 64◦20’51” 43◦37’55” - 44◦01’23”
Size (pixels) 1098 × 2599 2550 × 5120 1700 × 1440

Table 1. Locations of the three test areas and size of the corresponding Landsat images.

Encoder Decoder
C(5× 5, 96, 1) TC(3× 3, 512, 1)
C(2× 2, 96, 2) TC(2× 2, 256, 2)

C(3× 3, 128, 1)∗ TC(3× 3, 256, 1)
C(2× 2, 128, 2) TC(2× 2, 128, 2)
C(3× 3, 256, 1) TC(3× 3, 128, 1)
C(2× 2, 256, 2) TC(2× 2, 64, 2)
C(3× 3, 512, 1) TC(5× 5, 64, 1)

softmax()
∗ adaptation layer.

Table 2. Network Architecture; (w × w, k, s) denotes (kernel
size, number of kernels, strides)

precision values were obtained by computing the area under
the respective curves. For each scenario, four cases were con-
sidered: (1) Tr:T,Ts:T, i.e., training and testing on the target
domain; (2) Tr:S,Ts:T, i.e., training on the source domain and
testing on the target domain; (3) ADDA using Lreg , tested on
the target domain; (4) ADDA using Lm

reg , which we refer to as
variant ADDAm, also tested on the target domain. Cases (1)
and (2) are expected to be upper and lower bounds for the ad-
aptation results, respectively; case (2), which corresponds to a
classification of the target domain without DA, is regarded as
the baseline against which to compare the DA results.

Figure 5 shows the F1-scores obtained in the experiments, using
a probability threshold of 0.5, i.e. choosing the most probable
class label for each pixel. Each group of bars in the figure is
related to a different DA scenario. The green and orange bars

represent the results associated with the two classification cases
without DA, as described in the previous paragraph. The re-
maining bars represent the performance attained using the DA
alternatives.

As expected, the mean average precision and F1-score of cases
(1) are higher than those achieved in the other cases, because the
training and test sets were from the same domain. Conversely,
the classifications without adaptation (case (2)) generally show
the worst performance. Moreover, the DA procedure brought
significant performance improvements in most of the cross do-
main classification cases.

Analyzing the curves of cases (1), the results obtained with the
classifier trained and tested on MA (cf. figures 4b and 4d) and
PA (cf. figures 4c and 4f) domains are similar, but significantly
better than the ones obtained for the RO domain (cf. figures
4a and 4e). This may be due to the fact that deforestation in
MA and PA is mainly driven by agricultural purposes (Marris,
2005), which demand clearcuts of the forest. In RO, however,
selective logging, which is harder to detect, is the most common
deforestation method (Muchagata and Brown, 2003).

Regarding the domain adaptation results, the largest gaps be-
tween curves (1) and (2), i.e., the upper bound and the baseline,
occurred when PA was the source domain (figures 4a and 4b).
This may be due to a larger variability in the vegetation pat-
terns of the other domains, which makes the classifiers trained
on MA and RO more efficient in discerning changes (in the no-
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Precision vs. Recall curves and Mean Average Precision (mAP) in [%] for the six scenarios, considering the four variants
described in the main text. These metrics are related to the class deforestation. S / T: Source / Target domains.

deforestation class) that are not actually associated with defor-
estation.

Moreover, it can be observed in Figure 4 that the larger the gaps
between the upper bound and the baseline curves, the higher the
gains brought by the DA approach. Accordingly, in the cases in
which the gaps are smaller, e.g., S:MA,T:RO and S:MA,T:PA
(refer to figures 4e and 4f, respectively), the approach brought
quite small or even negligible improvements. Be that as it may,
in most of the scenarios, the variant that uses the proposed
margin-based regularization Lm

reg (ADDAm) was superior to
the variant based on the raw L1-distance Lreg regularization
(ADDA). The only exception was S:MA,T:PA (Figure 4f), but
this is the case with the smallest gap between curves (1) and (2),
in which, therefore, DA is not of much help.

As for the F1-scores (Figure 5), they show a consistent beha-

viour in relation to the results presented in Figure 4. In the first
three scenarios, both adaptation variants significantly outper-
formed the baselines, with a clear advantage of the ADDAm.
In the S:RO,T:MA scenario, the adaptations were also success-
ful, but with almost no difference between them. In the last two
scenarios, however, the adaptation approach delivered results
that are very similar to the baseline, but as mentioned before,
the effect of DA in those cases is restricted, as the gaps between
the upper bound and baseline were quite small.

6. CONCLUSIONS

In this work, we introduced a domain adaptation approach for
deforestation detection based on representation matching, fol-
lowing the Adversarial Discriminative Domain Adaptation (ADDA)
framework. We further introduced a margin-based regulariza-
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Figure 5. F1-Scores for the class deforestation for the six
different scenarios and the four classification variants.

tion constraint in the learning process, which promotes a better
convergence of the model parameters during training and which
is less restrictive than the original term in terms of the feature
adaptation process.

We evaluated the approach considering three different domains,
which represent sites in the Amazon and Brazilian Cerrado bio-
mes. The results showed that the approach was successful in
the adaptation of most of the domain combination scenarios,
usually with important gains in relation to the baselines. Un-
surprisingly, the larger the shift between domains, the higher
the gains brought by the DA approach. Moreover, the approach
variant that includes the proposed regularization term delivered
better results than the variant using the original regularization
loss formulation in most cases.

Finally, we believe that we can further improve the proposed
DA approach. For instance, we plan to study ways to select
the value of the margin regularization parameter m trough an
automatic/adaptive procedure. We also want to explore alternat-
ives to better generalize the cross domain classification, maybe
training the classification and adaptation procedures in a single
stage, or testing other discriminator architectures that are able
to incorporate more contextual information.
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