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ABSTRACT: 

In this work the problem of change detection in high-resolution (HR) satellite images is addressed. The active learning (AL) algorithm 

Bayesian active learning disagreement (BALD) is applied on WorldView images of urban and suburban areas in the island of Crete, 

Greece. Comparisons with results from random sampling (RS) on AL are carried out. Several cases of selecting different amounts of 

images in the training set of a convolutional neural network (CNN) are experimented. The results show that the validation accuracy of 

classification as changed or unchanged of the BALD algorithm is superior to that of the RS algorithm. Indeed, the BALD algorithm 

achieves zero test error against the test errors 34.6% and 38.5% of the RS algorithm. Actually, as the amount of training images 

increases, the accuracy also increases. Interesting experiments could be executed in the future utilizing estimators from robust statistics 

inside the AL acquisition function framework. Up to now in the literature no other work has appeared to present deep AL on 

WorldView images for change detection. 

1. INTRODUCTION

       A significant challenge in remote sensing (RMSS) 

applications is obtaining labelled data as changed or unchanged 

(Ruzicka et al., 2020). Intercontinentally, maps over huge areas 

have to be kept up-to-date by being renewed with gradual 

renovations. In fact, data which have been acquired across aerial 

or satellite surveys serve for recognizing the potential changes 

which have to be introduced into the map. Therefore, change 

detection through automatic image analysis is a problem needed 

to be addressed in RMSS.  

        Machine learning (ML) and in specific active learning (AL) 

can face the above-mentioned challenge of change detection in 

RMSS. In AL frameworks a system has the potential to learn 

from small amounts of data and choose unattended what data it 

would prefer to be labelled by the user. Cost and time can be 

saved when training a ML system via AL, due to the reduced 

amount of required labelling.  

        In the literature, several works utilizing AL across RMSS 

have been presented. Gaussian processes (GP) and Dirichlet 

processes serve for creating a probabilistic framework in Sun et 

al. (2015), Wu, Prasad (2016), with which the model uncertainty 

is estimated and the data points to be labelled are selected. More 

specifically, in Sun et al. (2015) three new AL heuristics that rely 

on the posterior probability output of the GP classifiers are 

introduced for the selection of the most uncertain candidate data 

samples from the unlabeled pool. Also, repeated training of the 

GP classifiers is avoided by means of an incremental model 

updating scheme. The proposed AL approach can be used in 

conjuction with other classifiers, which deal with the multiclass   

classification problem.  In Wu, Prasad (2016) the AL problem is 

addressed in the context of domain shift and RMSS, where 

source and target domains, along with an optimal transport 

method, are utilized for data labelling and efficient AL. An AL 

framework, which is robust in classification with least manual 

labelling attempt, is proposed. Simultaneously, undisclosed 

classes are brought to light. Local information density serves for 

the query strategy, where clustering based on Dirichlet process 

mixture model gives the local density. The proposed 

methodology is advantageous for numerous applications where it 

is often impossible that the initial training library includes all 

classes or accounts for multimodal distributions caused by class 

variability. Also, in Haut et al. (2018) a new AL-driven 

framework for classification is presented, where both the spectral 

and the spatial contextual information of the hyperspectral data 

is utilized. Bayesian convolutional neural networks (CNN) are 

incorporated in the proposed framework. Robust hyperspectral 

image classification with very short training sets is achieved, due 

to avoiding the dimensionality curse and the overfitting problem. 

RMSS datasets serve for evaluating various deep AL techniques. 

Monte Carlo (CM) dropout is demonstrated as capable of 

effective model uncertainty estimation.  

        Furthermore, AL is proposed in Hamrouni et al. (2021) to 

be utilized for adapting a classifier trained on a source image to 

spatially distinct target images with as small as possible labelling 

load. Poplar plantations are classified among other tree types in 

an operational framework. A local model is adjusted into a global 

model being appropriate for a national scale mapping. Fitting 

samples from the unexplored areas are queried as well as novel 

classes get uncovered.  Experiments are carried out on Sentinel-2 

time series and poplar plantations are identified at a local scale 

with an average F-score ranging from 89.5% to 99.3%. In Feng 

et al. (2019) an AL method for training a LiDAR 3D object 

detector with as few as possible labeled data is presented. In 

order to decrease the search space of objects and accelerate the 
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learning process, the detector leverages 2D region proposals 

having been created from the RGB images. According to the 

experimental results, the proposed method works under various 

uncertainty estimations and query functions while up to 60% of 

the labelling efforts can be saved without sacrifying network 

performance.   

 

        In the present work the AL algorithm called Bayesian active 

learning disagreement (BALD) (Gal et al., 2017) is applied on 

WorldView images of urban and suburban areas, demonstrating 

the application of change detection. The results that are obtained 

are compared against those from AL using random sampling 

(RS). The study area is Georgioupoli, in the island of Crete, 

Greece. A CNN model is trained on the WorldView images by 

various cases of selecting different amounts of images in the 

training set. Experimentation demonstrates that the testing 

accuracy of classification as changed or unchanged of the BALD 

algorithm is superior to that of the RS algorithm. Actually, the 

validation accuracy increases as the number of training images 

also increases. The novelty of the present work lies on applying 

deep AL on HR satellite images, i.e. the WorldView images, to 

perform change detection.   

  

        This work is organized into five sections. In Section 2 the  

BALD acquisition function into CNNs is presented. AL for 

change detection utilizing the WorldView images is given in 

detail in Section 3. Discussion is carried out in Section 4 while 

the conclusions are drawn in Section 5. 

 

 

2. ACQUISITION FUNCTION: BAYESIAN ACTIVE 

LEARNING DISAGREEMENT 

        In AL a model gets trained on an initial dataset of small 

amount and an acquisition function determines which data points 

to ask to be labelled by an external oracle. There is a pool of 

unlabeled data points, lying outside of the training set, from 

which the acquisition function selects one or more points. Then, 

the selected data points are labelled by an oracle, they are added 

to the training set and a novel model gets trained on the re-

equipped training dataset. The above-mentioned process is 

repeated while the data is progressively enlarged (Gal et al. 

2017). 

 

        For AL to be performed, a certain model should exhibit 

learnability under small amounts of data and also act for its 

uncertainty over unknown data. Practically, Bayesian deep 

learning is combined with AL to cope with high dimensional 

data. In this work AL is demonstrated on such image data and the 

employed model presents the potential to represent prediction 

uncertainty on the data. The Bayesian equivalent of CNNs (Gal, 

Ghahramani, 2016) is applied on image data. These Bayesian 

CNNs present prior probability distributions that are set over a 

group of model parameters: 

 

                                                                                     (1) 

            

where         may be a standard Gaussian prior. For 

classification, a likelihood model: 

 

                                                                                                    (2)  

 

 is also defined, where  
            is the model output.  

Practical approximate inference in multiplex deep models, such 

as the Bayesian CNNs, can be performed by utilizing stochastic 

regularization techniques like the dropout technique 

(Panagiotopoulou, Anastassopoulos, 2009), (Hinton et al., 

2012), (Srivastava et al., 2014), (Gal, Ghahramani, 2016).  

 

        Specifically, in Bayesian CNNs inference is reached through 

training a model with dropout every weight layer and by 

executing dropout during testing in addition to sample from the 

approximate posterior. These are stochastic forward passes and 

have been named MC dropout. Bayesian nets prove efficient with 

small amounts of data. In addition, these nets hold uncertainty 

information which can be exploited in conjuction with existing 

acquisition functions. In fact, acquisition functions for the 

classification task are of interest in the present work. 

 

        Different AL algorithms or strategies make use of different 

metric or acquisition function for the selection of data to be 

labeled. The goal is to minimize the number of data annotation 

that is queried from an oracle during training. Therefore, an 

acquisition function                    is a function of  , through 

which the AL algorithm decides where to query next: 

  

                                                                                                    (3)    

 

where  denotes the model and       stands for the pool of data. 

Queries from informative areas and not queries from noise 

should be made. So, the selected data for labeling should 

decrease model uncertainty.  

 

        The BALD acquisition function relies on Bayesian 

uncertainty (Houlsby et al., 2011) and can be utilized in view of 

the classification task. According to BALD principle, the pool 

data points which are anticipated to maximize the information 

gained about the model parameters, that is the common 

information between predictions and model posterior, should be 

chosen. The model presents on average uncertainty regarding the 

data points that maximize the BALD acquisition function. 

However, some model parameters give disagreeing predictions of 

high certainty, which brings points of high variance in the 

softmax layer input. Thereafter, the highest probability assigned 

to a different class would be presented by each stochastic 

forward pass across the model.  

 

 

3. ACTIVE LEARNING FOR CHANGE DETECTION IN 

URBAN AND SUBURBAN AREAS 

3.1 Image data 

        The study area is Georgioupoli in the island of Crete, 

Greece (Ragia, Krassakis, 2019). The experimental data consist 

of two different scenes near the shore. WorldView images of 

spatial resolution 30cm/pixel and QuickBird images of 

60cm/pixel are utilized. In fact, there is a time difference of 

thirteen years among the satellite images. 

 

        Figures 1 and 2 depict the QuickBird and WorldView 

images, respectively, of “Scene 1”. Concerning “Scene 2”, the 

satellite images are shown in Figures 3 and 4. The four spectral 

bands of the images are given in Table 1. The bands 2, 3, 4 and 5 

of the WorldView image correspond to the blue, green, yellow 

and red channels, respectively. Regarding the QuickBird image, 

the bands 1, 2, 3 and 4 represent the blue, green, red and near-
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infrared channels, correspondingly.  

 

        All images that are shown in Figures 1-4 have the same 

spatial resolution (Bratsolis et al., 2018) equal to 30cm/pixel. 

Actually, QuickBird images have been bicubicly interpolated per 

the factor of 2. Additionally, the QuickBird images have been 

spatially or geometrically co-registered to the WorldView 

images. Actually, the WorldView images demonstrate a more 

developed area than the QuickBird images, due to human 

intervention during the time of thirteen years.  

 

 

WorldView QuickBird 

2, 3, 4, 5 1, 2, 3, 4  

Blue, green, yellow, red Blue, green, red, near-infrared 

Table 1. Satellite image bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. QuickBird image of “Scene 1” at spatial 

resolution 30cm/pixel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. WorldView image of “Scene 1” at spatial resolution 

30cm/pixel, after thirteeen years have passed from the Quickbird 

image of Figure 1. 

 

        The two scenes of interest, “Scene 1” and “Scene 2”, get 

tiled into a total of 210 tiles and 190 tiles, respectively, of size 

28x28 pixels. Then, the QuickBird images serve for labeling the 

WorldView images into “changed” and “unchanged”. Before the 

labeling into two classes is performed, the four channel satellite 

images are converted to grayscale images. Specifically, per-tile 

labels are calculated, where tiles with >10% changed pixels are 

considered as changed while tiles with <=10% changed pixels are 

regarded unchanged. Pixel intensities which differ in value more 

than 0.02 are considered as changed. An example is shown in 

Figure 5. The labeling threshold is data dependent and can be 

decided through trial and error. The datasets are highly 

unbalanced. There are only 15 and 33 tiles with changes in cases 

of “Scene 1” and “Scene 2”, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. QuickBird image of “Scene 2” at spatial resolution 

30cm/pixel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. WorldView image of “Scene 2” at spatial resolution 

30cm/pixel, after thirteeen years have passed from the QuickBird 

image of Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Example image tiles for change detection. The 

labelling threshold is equal to 10% of pixels differing in value 

more than 0.02. 
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3.2 Experimental Procedure and Results 

        In this work the BALD acquisition function with the 

Bayesian CNN trained on the Georgioupoli dataset is studied. In 

specific, the BALD function is assessed with the following model 

structure: convolution-relu-convolution-relu-max pooling-

dropout-dense-relu-dropout-dense-softmax with 32 convolution 

kernels, 4x4 kernel size, 2x2 pooling, dense layer with 128 units 

and dropout probabilities 0.25 and 0.5. All experiments are 

carried out with learning rate equal to 0.005, with momentum of 

gradient descent of value 0.1 and during training of 10 epochs.  

 

        The model is trained on the WorldView images, separately 

for the two scenes, by several cases of selecting different 

amounts of images in the training set. In particular, for “Scene 

1”, the model is trained with 42, 84, 126, 168 and 210 images, 

whereas testing is always performed with 38 undisclosed to the 

model images, Table 2.  

 

        As far as “Scene 2” is concerned, model training is carried 

out with the following numbers of images 76, 114, 152 and 190, 

Table 3. Regarding the number of testing images, it always 

equals 42 and the images are unknown to the model. The above 

mentioned image groups are formed by random split of the initial 

whole set of images. 

 

        In the current study using a small model the system achieves 

zero test error on Georgioupoli WorldView data with 84, 126, 

168 and 210 labelled images of “Scene 1”, while it presents 

54.6% test error when only 42 labelled images are utilized. The 

above results regard the BALD acquisition function. However, in 

the case of the RS algorithm, the larger test error equal to 38.5% 

is reached when 84 and 126 labelled images are used. Also, RS 

reaches 34.6% test error with 168 and 210 sample training 

images as well as 63.6% error in case of 42 labelled images, 

Table 2.  

 

        As far as “Scene 2” is concerned, the model with BALD 

acquisition function becomes able of 100% test accuracy when 

114, 152 and 190 sample training images are utilized. 

Nevertheless, zero test accuracy is observed for 76 training 

images. Regarding the model test performance with RS 

algorithm, there is 9.1% accuracy with 76 labelled images, while 

61.5% accuracy is reached with the greater numbers of 114 and 

152 training images. When 190 training samples are utilized, the 

RS acquisition function achieves 65.4% test accuracy, Table 3. 

 

        The validation accuracies or test errors are calculated by 

averaging after 25 rounds of repetition in all cases apart from the 

cases of training images number equal to 76 or 42 where 10 

rounds of repetition are followed. These repetition round 

numbers are chosen after experimentation to get favorable model 

performance. Figures 6 and 7 demonstrate graphical plot of test 

accuracy as a function of the number of training images.  

 

 

 

 

 

 

 

 

 

 

Number of Training 

Images 

Test Error % 

 BALD         RS 

42 54.6 63.6 

84 0 38.5 

126 0 38.5 

168 0 34.6 

210 0 34.6 

Table 2. Georgioupoli “Scene 1”: Test errors as resulting from 

the different acquisition functions a) Bayesian active learning 

disagreement and b) Random sampling, for the various amounts 

of training images. 

 

Number of Training 

Images 

Test Error % 

 BALD         RS 

76 100 90.9 

114 0 38.5 

152 0 38.5 

190 0 34.6 

Table 3. Georgioupoli “Scene 2”: Test errors as resulting from 

the different acquisition functions a) Bayesian active learning 

disagreement and b) Random sampling, for the various amounts 

of training images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Test accuracy as a function of the number of training 

images. Results from the acquisition functions Bayesian active 

learning disagreement and random sampling are demonstrated 

for “Scene 1”. 
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Figure 7. Test accuracy as a function of the number of training 

images. Results from the acquisition functions Bayesian active 

learning disagreement and random sampling are demonstrated 

for “Scene 2”. 

 

 

4. DISCUSSION 

        During AL the object of minimization is epistemic 

uncertainty, that relates to the CNN parameters. In Bayesian 

models dropout estimation for regularization is employed. In 

fact, uncertainty is propagated across the model which results in 

great influence on the model measuring its confidence. The 

acquisition functions which rely on Bayesian uncertainty avoid 

the selection of noisy points that are close-by images for which 

several noisy labels of different classes are available. The 

particular data points present large aleatoric uncertainty rather 

than epistemic uncertainty. The former uncertainty cannot be 

reduced (Gal et al., 2017). 

 

        Novel acquisition functions that would be prosperous in AL 

could be formed by employing robust estimators (Huber, 1981), 

(Tukey, 1983). In fact, interesting experiments of prediction for 

classification could be carried out with the Var-norm estimator 

(Panagiotopoulou, 2013) inside an acquisition function 

formulation in a Bayesian CNN framework. The mutual pieces of 

information between model predictions and model posterior 

could be maximized through the minimization of a Var-norm 

cost function that takes as argument the differences between 

prediction and prior expected results. Iterative forward passes 

through the model, where error back-propagation will have been 

incorporated, would lead to the selection of data points which are 

preferred for labelling and therefore, decrease model uncertainty.  

 

 

5. CONCLUSIONS 

        Change detection through automatic image analysis is a 

problem needed to be addressed in remote sensing. Time and 

resources can be saved when training a system via active learning 

due to the reduced amount of required labelling. In the present 

work the BALD algorithm is applied on WorldView images of 

urban and suburban areas, for the application of change 

detection. The results are compared with those from random 

sampling. The study area is Georgioupoli, in the island of Crete, 

Greece. A CNN model is trained on the WorldView images by 

various cases of selecting different amounts of images in the 

training set. Experimentation demonstrates that the testing 

accuracy of classification as changed or unchanged of the BALD 

algorithm is superior to that of the random sampling algorithm. 

Actually, the validation accuracy increases as the number of 

training images also increases. The testing accuracies are 

calculated by averaging after 25 rounds of repetition in most 

cases apart from certain cases of few training images where 10 

rounds of repetition are followed. Up to now in the literature no 

other work has been presented with deep active learning on 

WorldView images for change detection. 

   

        In future work additional active learning experiments will be 

executed to assess how many images in random sampling 

algorithm an expert is necessary to label so that to reach the 

same test accuracy with the BALD algorithm. Furthermore, 

interesting experiments of prediction for classification could be 

carried out utilizing estimators from robust statistics inside the 

acquisition function formulation in a Bayesian CNN model.  
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