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ABSTRACT:

Fully convolutional neural networks (FCN) are successfully used for pixel-wise land cover classification - the task of identifying
the physical material of the Earth’s surface for every pixel in an image. The acquisition of large training datasets is challenging,
especially in remote sensing, but necessary for a FCN to perform well. One way to circumvent manual labelling is the usage of
existing databases, which usually contain a certain amount of label noise when combined with another data source. As a first part
of this work, we investigate the impact of training data on a FCN. We experiment with different amounts of training data, varying
w.r.t. the covered area, the available acquisition dates and the amount of label noise. We conclude that the more data is used for
training, the better is the generalization performance of the model, and the FCN is able to mitigate the effect of label noise to a high
degree. Another challenge is the imbalanced class distribution in most real-world datasets, which can cause the classifier to focus
on the majority classes, leading to poor classification performance for minority classes. To tackle this problem, in this paper, we
use the cosine similarity loss to force feature vectors of the same class to be close to each other in feature space. Our experiments
show that the cosine loss helps to obtain more similar feature vectors, but the similarity of the cluster centers also increases.

1. INTRODUCTION

Pixel-wise classification of land cover is the task of assigning
a class label to each pixel in an image. The classes correspond
to different physical materials of the Earth’s surface, e.g. settle-
ment or vegetation. The most popular methods for this task are
variants of Fully Convolutional Networks (FCNs) (Long et al.,
2015) based on architectures such as U-Net (Ronneberger et al.,
2015) or Deeplab (Chen et al., 2018).

Deep neural networks need a sufficient amount of labeled data
for training (Krizhevsky et al., 2012). In remote sensing, it is
hard to obtain enough reliable data as manual labeling is time
consuming and costly, and existing datasets are limited in size
(Zhu et al., 2017). This may lead to overfitting, so that the clas-
sifier does not generalize well to unseen data (Goodfellow et al.,
2016). In remote sensing, large amounts of training data can be
obtained automatically if the class labels are extracted from ex-
isting geospatial databases (called maps hereafter). However,
some of these labels will be incorrect, e.g. due to temporal
changes (Maas et al., 2019), i.e. the data will be affected by
label noise (Frenay and Verleysen, 2014). Many strategies have
been proposed to deal with label noise, e.g. the use of robust
classifiers (Song et al., 2020) or training strategies (Maas et al.,
2019). Drory et al. (2018) showed that FCN are robust to label
noise to a certain degree if the noise is spread randomly and the
errors are not concentrated in some classes. However, it is un-
clear whether this applies to the case when training labels are
extracted from existing maps, where, for instance, errors oc-
cur in spatial clusters. Thus, the first question investigated in
this paper is related to the generalization capabilities of a FCN
for land cover classification trained on large amounts of noisy
∗ Corresponding author

training data. We conduct experiments in which, starting from
a large pool of data with noisy annotations, we vary the train-
ing data set with respect to size, composition and level of label
noise and compare the results of the trained classifier to a refer-
ence to investigate the impact of these variations on the results.

Another common problem in training is an imbalanced distribu-
tion of the classes in the training data, which occurs frequently
in remote sensing applications. Such an imbalance causes the
classifier to focus on the majority classes and, consequently,
leads to poor results for the underrepresented classes (Johnson
and Khoshgoftaar, 2019). To cope with this problem one can
adapt the training procedure to focus on the underrepresented
classes. This can be achieved by weights in the loss function
that force the classifier to focus on samples that are hard to clas-
sify (Lin et al., 2017). Another approach is to adapt the training
strategy so that samples from different classes form distinct and
separate clusters in feature space. Motivated by (Voelsen et al.,
2020), where the imbalanced class distribution was identified
to be one of the limiting factors for the classification of satellite
images, we investigate the cosine similarity loss, e.g. (Yang et
al., 2020), to ensure that feature vectors of the same class are
close to each other in feature space. In this context, we also
investigate which is the best FCN layer at which to apply this
loss to obtain an optimal classification performance.

In our experiments, based on a variant of U-Net (Ronneberger
et al., 2015), we use optical Sentinel-2 data covering the en-
tire German state of Lower Saxony (47600 km2) at 16 epochs.
The training labels are derived from a topographic database and
differentiate six land cover classes.

The scientific contribution of this paper can be summarized as
follows: (1) We investigate the generalization capabilities of an
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FCN trained using a very large set of noisy training data; (2) In
this context, we assess the impact of the size and composition
of the training dataset on the results to see how the selection
of the epochs to be used for training affects the results. We
also investigate the influence of different degrees of simulated
label noise on the classifier; (3) We investigate the cosine loss
as a strategy for increasing the classification accuracy for under-
represented classes.

2. RELATED WORK

While recent advances in the FCN architecture have led to vast
improvements in different remote sensing applications; see (Zhu
et al., 2017) or (Shi et al., 2020) for overviews, a major limit-
ing factor is the lack of large representative datasets that are
publicly available for training such networks. Most existing
remote sensing datasets are limited in size or in the seasonal
variation, or they are only relevant for some very specific task;
see (Hoeser et al., 2020) for an overview. One possibility to
create large amounts of training data without manual labelling
is the automatic generation of class labels by using data from
existing maps, assuming that most of the objects did not change
between the generation of the map and the acquisition of the
images to be classified, e.g. (Kaiser et al., 2017; Zhang et al.,
2020). However, a certain amount of the class labels thus pro-
duced will be wrong for various reasons, e.g. temporal changes
(Maas et al., 2019). Song et al. (2020) categorized seven differ-
ent research directions to cope with label noise, including the
use of robust architectures, regularization of loss functions and
the selection of samples that are least likely to have wrong la-
bels. In remote sensing, Mnih and Hinton (2012) proposed a
convolutional neural network (CNN) for the binary classifica-
tion of aerial images using training labels derived from Open
Street Map (OSM) data. They proposed an error model tailored
to the most frequent error types, relying on the availability of
some error-free data in order to determine its parameters. Li
et al. (2020) also used OSM to generate training labels. They
developed a probabilistic noise model which is based on the
dependencies between the input images, the noisy labels and
the true labels and outperforms other state-of-the-art methods.
Zhang et al. (2020) proposed a noise-adaptive FCN framework
using noisy building footprints from a database. Their frame-
work consists of the base FCN combined with a module that
captures the relationship between the true labels and the noisy
ones and is robust to label noise in their data. Maas et al. (2019)
proposed a label-noise robust random forest classifier for image
classification based on maps. Besides, OSM there are a lot of
other possible data sources to obtain class labels: Ulmas and
Liiv (2020) used Sentinel-2 images together with the CORINE
Land Cover map 2018. Schmitz et al. (2020) combined inform-
ation from OSM, CORINE Land Cover 2018, Global Surface
Water and SAR data to create more reliable class labels than any
of the single products can provide. Postadjian et al. (2017) used
existing very high resolution land cover maps to train a simple
FCN architecture. They trained and tested different models on
different regions and conclude that the accuracy drops when
the model is used to predict labels of another geographical area.
Using a fine tuning step, the results are improved. However,
none of these papers rely on the availability of a very large
(state-level) dataset to train a model so that it remains unclear
to which extent the results of these methods can be generalized.

Thus, before developing methods to cope with label noise, it
is important to assess its impact on the classification results.
Drory et al. (2018) showed that the impact of label noise on the

performance of a neural network depends on its statistical prop-
erties. If the neighbourhood of noisy samples contains mostly
correct samples in feature space and if it affects all classes in
the same way, the influence of label noise is relatively low; oth-
erwise, it has a clear negative effect on the results. Whether
this is the case in the application envisaged in this paper is un-
clear. Kaiser et al. (2017) investigated the influence of noisy
training data on a FCN, using OSM data and aerial images
from Google Maps from five different cities. They show that
the results of classification are affected in a negative way if no
hand-labelled data are used at all for the imagery to be classi-
fied. However, using the OSM data to pre-train the network and
fine-tune it using noise-free data from the imagery to be classi-
fied improves the classification accuracy considerably. It is un-
clear whether these conclusions also hold for the classification
of multi-temporal satellite images with a coarser resolution, a
more fine-grained class structure and labels that have different
error characteristics (e.g., maps produced by crowdsourcing vs.
by professional mapping agencies). Furthermore, the aspect of
using data with noisy labels at the level of an entire state has not
been considered so far. This paper investigates these questions
based on multi-temporal Sentinel-2 data.

Another common problem in training is an imbalanced class
distribution in the training data. Johnson and Khoshgoftaar
(2019) differentiated methods that modify the data, e.g. by
under- or oversampling, to solve this problem, and algorithmic
approaches relying on modified training procedures. The latter
approaches have the advantage that they do not require data pre-
processing. Frequently, the training procedure is modified by
considering weights in the loss function that force the classifier
to focus on samples that are hard to classify. Examples for such
loss functions are the focal loss (Lin et al., 2017) or its exten-
sion to multi-class problems (Yang et al., 2020), or the dice loss
(Ren et al., 2020), the latter references giving applications in re-
mote sensing. Another approach is to adapt the training strategy
so that samples from different classes form distinct and separate
clusters in feature space. If a FCN learns to produce such a rep-
resentation, it might also be more likely for features from under-
represented classes to form distinct clusters and, consequently,
to be classified correctly (Wang et al., 2020). In order to do
so, similarity measures such as the Euclidean distance or co-
sine similarity are applied to formulate additional loss function
terms. Hadsell et al. (2006) proposed the contrastive loss that
minimizes the Euclidean distance of similar pairs and maxim-
izes the distance of dissimilar pairs. In the triplet loss of Schroff
et al. (2015), triplets of positive and negative pairs are used to
push feature vectors of positive pairs to be close to and those of
negative pairs to be far away from each other. Yang et al. (2020)
applied a cosine similarity loss for pixel-wise land cover clas-
sification from aerial imagery to ensure that features belonging
to the same class are close to their centroids in feature space.
Using this method they improved the average F1-score by 3%.
However, it is unclear how such a loss performs in cases in-
volving satellite data and in which the imbalance is more pro-
nounced.

A high intra-class variability in combination with label noise,
which is not present in (Yang et al., 2020), might make it im-
possible for the classifier to find separate distinct clusters in fea-
ture space. We investigate this question by using the cosine
similarity loss in the training process based on multi-temporal
Sentinel-2 data. Another question not dealt with by existing
work is related to the definition of the feature representation
to which such a loss should be applied; we try to answer this
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question by applying this loss to various layers of the FCN and
compare the results.

3. METHODOLOGY

3.1 Network Architecture

The network architecture used in this paper is a variant of U-
Net (Ronneberger et al., 2015) designed for Sentinel-2 imagery
and shown figure 1. The input layer consists of an image of size
256×256 with 10 spectral bands. The encoder is composed of
four convolutional blocks, each consisting of two 3×3 convo-
lutional layers followed by batch normalization (BN) (Ioffe and
Szegedy, 2015) and a rectified linear unit (ReLU). To reduce
the spatial dimension, we add a max-pooling layer after each
encoder block. The encoder is linked to the decoder by another
convolutional block without a downsampling layer. The de-
coder consists of four upsampling layers that use bilinear inter-
polation, each followed by another convolutional block. Simil-
arly to U-Net, there are skip connections between correspond-
ing layers of the encoder and the decoder; the corresponding
features are concatenated before further processing. Finally, a
1×1 convolution maps the feature vectors to raw class scores,
which are normalized by a softmax layer.

3.2 Training

Training is based on minimizing a loss function using stochastic
minibatch gradient descent (Bishop, 2006). Our baseline method
uses the cross entropy loss with class weights to counteract the
imbalanced class distribution (Section 3.2.1). In addition, a co-
sine similarity loss forcing features of samples of the same class
to be close to the class centroid (Yang et al., 2020) will be used
in some experiments; it is described in Section 3.2.2.

3.2.1 Cross Entropy Loss: The weighted cross-entropy loss
LCrEn is based on the softmax predictions ykn for sample xn to
belong to class k,

LCrEn = −
∑
n

∑
k

Ck
n · ln(ykn) · cwk. (1)

In eq. 1, Ck
n = 1 if the nth sample belongs to class k, otherwise

Ck
n = 0. The class weights cwk are based on the number of

occurences nk of class k in the training data (Patel, 2020):

cwk =
log(N)− log(nk)

max
j

(log(N)− log(nj))
, (2)

where N is the total number of pixels in all training patches.
These weights are equal or near to one for the under-represented
classes and lower for the majority classes. Thus, the impact of
samples from a minority class with incorrect predictions on the
loss is much higher, which compensates for the imbalance of
the dataset up to a certain degree.

3.2.2 Cosine Loss: As a further measure to counteract an
imbalanced class distribution, we consider a constraint based
on cosine similarity in training. The cosine similarity, i.e. the
cosine of the angle between two vectors, can be used to measure
feature differences. It forces feature vectors of samples belong-
ing to the same class to be close to each other in feature space,
which is assumed to help to produce well-formed clusters also
for the minority classes and, thus, improve the results. In this

context, the cosine similarity can be computed based on fea-
tures from any layer of the FCN; in our experiments we com-
pare four variants (cf. f1-f4 in figure 1). The cosine similar-
ity loss obviously needs the class labels of the feature vectors.
Thus, if it is applied to layers of lower resolution than the input,
the corresponding feature maps are upsampled by bilinear in-
terpolation before being passed on to the loss function, so that
the class labels of the upsampled feature map can be taken from
the reference.

The implementation of the cosine loss follows (Yang et al.,
2020). First, the raw features ~f i for each pixel i at the selected
layer in the current minibatch are passed through the ReLU ac-
tivation function, resulting in feature vectors ~ai = ReLU(f i).
By using the class labels of the images, the number of pixels
mk of class k can be calculated for the minibatch. Then, the
mean feature vector ~uk is calculated using all feature vectors
belonging to class k:

~uk =
1

mk

M∑
i

Ck
i ~a

i, (3)

whereCk
i = 1 if feauture vector~ai belongs to class k andCk

i =
0 otherwise and M is the total number of pixels in the minibatch.
Next, the cosine similarity between each feature vector ~ai and
the corresponding mean feature vector ~uk is computed:

cos(~ai, ~uk) =
~ai · ~uk

||~ai||2 · ||~uk||2
. (4)

As it is the goal of using the cosine similarity to obtain a fea-
ture representation that forms compact clusters, the sum of co-
sine similarity of all pixels in the minibatch would have to be
maximized. Thus, it cannot be used directly to define a loss
function, because the loss has to be minimized in training. Con-
sequently, the cosine similarity loss is defined according to:

Lcos =
1

M

M∑
i

max(1− cos(~ai, ~uci)− t, 0), (5)

where ci is the class pixel i belongs to, M is the number of
all pixels in the current minibatch and t defines a margin inside
which the cosine similarity can vary without a negative effect
on the loss (e.g. a margin of 0.1 would define a range of 0.9
- 1). For all experiments using the cosine similarity loss it is
combined with the cross entropy loss, leading to a combined
loss function Lcomb:

Lcomb = LCrEn + α · Lcos. (6)

The parameter α controls the trade-off between both losses.

4. EXPERIMENTS

4.1 Test Data and Test Setup

4.1.1 Test Data: The study site covers the whole area of the
German federal state of Lower Saxony (47600 km2). The data-
set comprises Sentinel-2 images from 16 dates between May
2016 and November 2020, provided by the European Space
Agency (ESA). We use Sentinel-2 Level-2A data, which con-
tain georeferenced bottom-of-atmosphere reflectance and cloud
masks from the top-of-atmosphere reflectance of every pixel
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Figure 1. The network architecture. f1 - f4 identify layers that are used as input to the cosine similarity loss in some experiments.
Squared numbers indicate the size of the feature maps in pixel, numbers on top of the layers indicate the number of filters.

(Fletcher, 2012). We use the four spectral bands with a ground
sampling distance (GSD) of 10 m (red, green, blue, near in-
frared) and six bands with 20 m GSD. The latter are upsampled
to 10 m using bilinear interpolation. The cloud mask is used to
exclude parts of the images that contain more than 5% cloud
coverage. The dataset contains images from all seasons, ac-
quired at the following days: 2016-04-02, 2016-05-02, 2016-
05-05, 2016-05-08, 2016-09-12, 2017-10-15, 2018-04-10, 2018-
07-24, 2018-12-11, 2019-02-14, 2019-08-31, 2020-03-23, 2020-
04-24, 2020-06-23, 2020-08-07, 2020-11-08.

To obtain the class labels to be used in training, information
from the official German landscape model ATKIS is used (AdV,
2008). This database contains information about 64 different
land use classes, which is too detailed for automatic classific-
ation. To define a suitable class structure for land cover, sev-
eral land use classes from the database are merged, so that in
the end, six classes are differentiated: Building (bld.), Sealed
area (sld.), Agriculture (agr.), Greenland (grl.), Water (wat.)
and Forest (for.). In addition, the class others is used for areas
without label information that occur due to errors in the data-
base or for areas outside the state borders. This information
is used to disregard samples of this class in training and eval-
uation. The database is updated at irregular intervals that can
vary between a few days and three years. For the experiments
reported in this paper, one reference label image at the geo-
metrical resolution of the satellite imagery is created for every
year, and each Sentinel-2 image is combined with the label im-
age corresponding to the year of its acquisition. This will lead
to some label noise, as some more recent changes will not yet
be contained in the database.

For computational reasons, the available data is split into tiles
of 8×8 km2 (800 × 800 pixels), which leads to a total num-
ber of 950 tiles covering Lower Saxony (cf. figure 2). For one
tile (shown in red in figure 2), the corresponding reference la-
bel image was corrected manually for two epochs (2016-05-05,
2020-04-24) to obtain a reference for the evaluation that is not
affected by label noise. In this process, about 8% of the pixels
were changed, which gives an indication to the amount of label

noise to be expected in the remaining data. Figure 3 shows one
of the two images and the reference for that dataset.

Figure 2. Overview of the available data tiles of 8×8 km2.
Grey / green: potential training / validation tiles. Red: test tile
with corrected reference (dataset R1). Black: test tiles without

corrected reference (dataset R2).

10%
1%

38%

18%

1%

31%
Building

Sealed area

Agriculture

Greenland

Water

Forest

Figure 3. One Sentinel-2 image of size 8×8 km2 (left) and
corrected reference (middle) for dataset R1.
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4.1.2 General Test Setup: In our experiments, we compare
results of the method described in Section 3 for different scen-
arios. For that purpose, 37 of the available tiles are set aside
for testing (black and red tiles in figure 2), another 37 tiles are
used for validation (green tiles in figure 2), and the remaining
876 tiles form a pool of training data. Training is based on the
method described in Section 3.2. We randomly crop windows
of 256×256 pixels from the available training tiles and apply
random data augmentation, including rotations by 90◦, 180◦,
270◦, horizontal and vertical flipping. As this results in a large
set of training patches, the number of patches used in one epoch
is restricted to 2000. Training continues for a maximum num-
ber of epochs of 250, but it is stopped earlier if the validation
accuracy does not increase for 30 epochs. The minibatch size
is set to 2. The training process is started with a learning rate of
0.01 that decreases by a factor of 0.7 after every 10 epochs. In
the experiments involving the cosine similarity loss, the para-
meter α (equ. 6) is set to 1 and t (equ. 5) is set to 0.2.

For the evaluation, the results of the FCN achieved for the test
tiles is compared to the available reference and quality indicat-
ors are determined based on this comparison on a per-pixel level
in all experiments. We report the Overall Accuracy (OA), i.e.
the percentage of pixels with correctly predicted class labels,
the F1-scores per class, i.e. the harmonic mean of precision
and recall, and the average F1-score (avg.F1), i.e. the mean of
the F1-scores for the individual classes, as a compound quality
metric that is more susceptible to problems in underrepresented
classes than OA. On the one hand, these indicators are deter-
mined on the basis of the tile with the corrected labels and the
images from 2016-05-05 and 2020-04-24 (referred to as dataset
R1; red tile in figure 2). These numbers are not affected by er-
rors in the reference, but they are only based on a small sample.
Note that the images of the acquisition dates of the reference
are not used for training in any of the experiments. In order
to obtain indicators based on a larger set of samples, we use
a second reference dataset R2 consisting of data from 37 tiles
(black in figure 2). However, these indicators will be biased due
to the label noise present in the reference. We carried out three
sets of experiments, investigating different aspects, as will be
explained in the subsequent subsections.

4.1.3 Test Series 1 - Amount and Composition of Train-
ing Data: In the first set of experiments, described in Sec-
tion 4.2, we want to assess the impact of varying the amount
and the composition of the training data on the generalization
performance of the FCN. To this end, we train the same clas-
sifier with training data varying in size, in the number of in-
cluded Sentinel-2 dates, and in both aspects. For that purpose,
we defined three sets of training data of different size (sets A, B
and C in table 1, containing 100%, 20% and 1% of the area of
Lower Saxony, respectively); in three of the experiments, im-
ages from 14 epochs were used for training, but using different
numbers of tiles (i.e. all except for the two epochs from which
the reference dataset R1 was generated), in one experiment we
only used the four epochs from 2020, and in two experiments
we only used the data from one epoch (2020-06-23). Table 1
also shows the class distributions in the different datasets. First
of all, it is obvious that this distribution is very imbalanced. In
particular, sealed area is extremely underrepresented, covering
only 0.7% of the pixels of the overall area (set A). There are
also variations between the datasets, especially for class water.

4.1.4 Series 2 - Different Levels of Label Noise: In the
second set of experiments, reported in Section 4.3, we evaluate

Set Ntiles
Distribution of classes [%]

bld. sld. agr. grl. wat. for.
A 950 8.7 0.7 38.0 21.5 12.9 18.2
B 159 9.0 0.8 42.0 19.8 1.3 27.1
C 9 15.4 1.7 52.4 14.1 4.9 11.6
R1 1 9.4 1.7 61.7 11.4 1.4 14.3

Table 1. Number of tiles (Ntiles) of the different training
datasets (A, B, C) and the reference R1 used in the experiments,

and the corresponding class label distributions.

the impact of different degrees of label noise on the generaliza-
tion performance of the classifier. For that purpose, we use the
entire training set (set A in table 1) with data from 14 epochs (all
except those used for generating R1), but we randomly change
a certain percentage of the training labels, thus producing ad-
ditional reference data sets with 5%, 10%, 20% and 30% of
changed labels, respectively; at each level of additional label
noise, we create two variants of the contaminated reference to
see whether the spatial distribution has an impact on the results.
As the original data already contain a certain amount of label
noise the total amount of noise cannot be specified. Neverthe-
less, these experiments should give an indication for the direc-
tion of change of classification accuracy with increasing noise
level. The noise is added by changing class labels in rectangles
of random side lengths in the range of 20 and 50 pixels. To keep
the class distribution approximately the same, the probability
that the area inside the rectangle is assigned to a specific class
is based on the class distribution of dataset A (e.g a rectangle
is assigned to Agriculture with a chance of 38%, see Table 1).
An example of different amounts of introduced label noise is
shown in figure 4.

(a) No noise (b) 10% noise (c) 30% noise

Figure 4. Examples for training data with different percentages
of simulated label noise. Colour code: cf. figure 3.

4.1.5 Series 3 - Cosine Loss: The third set of experiments,
presented in Section 4.4, evaluates the cosine loss as a strategy
to increase the accuracy of underrepresented classes. We use
different layers of the FCN as input features for the cosine loss
to investigate the degree to which the quality of the results de-
pends on this selection. We selected four candidate layers f1
- f4 (highlighted in figure 1) and use subsets to compute the
cosine loss in different variants. An overview of the different
input variants is shown in table 2. When f2, f3 or f4 is used
as input, the number of feature maps is high (up to 512) and
the cosine similarity computation becomes very slow. Thus, a
selection step is integrated before passing the features into the
cosine similarity calculation. For this selection the feature vari-
ance is calculated for every layer per class. Afterwards, the
highest variances per layer are compared and the 10 features
having the highest variance are used for cosine similarity cal-
culation for a number of 100 minibatches before the selection
process starts again. For these experiments, we also want to
investigate the degree of feature similarity both between and
across classes depending on whether the cosine loss is used for
training or not. To do so, we calculate the mean feature vector
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per class (eq. 3) and then the cosine similarity (eq. 4) between
the individual feature vectors and the mean feature vector of
the respective class. Afterward, the mean cosine similarity and
its variance can be calculated for each class. In addition the co-
sine similarity between the mean feature vectors of each class is
calculated. This evaluation should help to understand whether
the goal of obtaining more distinct clusters for the individual
classes is achieved and to see how compact these clusters are.

Variant Loss cosine loss input
Cr-En LCrEn -
CL-f1 Lcomb f1
CL-f13 Lcomb f1, f3
CL-f124 Lcomb f1, f2, f4
CL-f1234 Lcomb f1, f2, f3, f4

Table 2. Variants for comparisons related to the cosine loss.

4.2 Evaluation: Amount and Composition of Training Data

To assess the impact of the size and composition of the train-
ing data on the classification performance we carried out ex-
periments based on six different training datasets selected in
the way described in Section 4.1.3. The results are shown in
table 3. Figure 5 shows results for one of the epochs in the ref-
erence R1. As can clearly be seen a classifier trained on a large
amount of data which are also representative for the appearance
of objects in various seasons has better generalization proper-
ties. Trained using all available data (experiment 0 in table 3),
the FCN achieves an OA of 90% and a mean F1-score 75%
on R1. If data covering the entire area, but fewer epochs are
used (experiments 1 and 2 in table 3), the OA drops consider-
ably (9% if 4 epochs are used, 18% if only one epoch is used).
This is mainly due to the inability of the classifier to differen-
tiate forest and grassland, but also sealed area becomes much
worse. It would seem that a combination of data from multiple
epochs that would be more representative for vegetation classes
in terms of covering more stages of plant development has a
considerable stabilizing effect. However, the size of the area
also matters: if the area is reduced, the classification accuracy
is reduced by a similar margin even if all epochs are used (7%
and 15% in experiments 3 and 4, respectively). In this case,
the accuracy is also reduced for building; obviously, by using
only a subset of the data, the variability of the appearance of
settlements is no longer represented as well as before. For the

(a) 913 / 14 (b) 913 / 4 (c) 913 / 1

(d) 159 / 14 (e) 9 / 14 (f) 9 / 1

Figure 5. Exemplary prediction results on the tile corresponding
to R1 for different experiments from table 3. Captions: number

of tiles / epochs used for training. Colour code: cf. figure 3.

smallest training dataset (experiment 5) the OA drops to 70%
and the mean F1-score to 45%. As also shown in figure 5(f) the
classifier can just separate coarse structures like rural and urban
areas, but a differentiation between the different classes of ve-
getation is not possible. A classifier only trained on a very small
dataset that only consists of imagery from one season does not
generalize to the level of an entire state. To summarize, the per-
formance of the classifier becomes much better with an increas-
ing amount of data being used for training. Both, the size of
the area and the variability of the acquisition dates have a high
impact. Generally speaking, classes such as forest and grass-
land, the appearance of which varies between the seasons, are
affected more by a reduction of the amount of training samples.
For water it might be beneficial to separate sea and inland water
bodies, these latter findings have to be taken with care, however,
because they are based on a relatively small dataset. Table 3
also gives quality indices for the larger reference dataset R2.
On this dataset, the OA and the F1-scores are worse by ap-
proximately 10-15%. The actual numbers are not conclusive
because this reference is affected by label noise in the order of
the observed differences (8%; cf. Section 4.1.1). However, the
observations w.r.t. the trend in the quality indices is confirmed:
the larger the area and the more epochs are used, the better the
classification results. Thus, the availability of free satellite data
at high temporal frequency as well as the use of existing maps
for the automatic generation of training labels can improve the
prospects of classification considerably.

4.3 Evaluation: Influence of Label Noise

To evaluate the impact of different amounts of label noise on the
results, we produced eight variants of the reference with four
different levels of simulated noise as described in Section 4.1.4.
In all cases, we used training data from all tiles and 14 epochs.
The evaluation results based on the corrected reference R1 are
shown in table 4. Figure 6 shows exemplary classification re-
sults for three noise levels.

(a) 5% (b) 10% (c) 30%

Figure 6. Exemplary prediction results for the tile in R1 for
three different levels of label noise. Colour code: cf. figure 3.

The results show a high level of robustness to increased noise
levels. The maximum decrease is 4.3% in OA and 7.1% in mean
F1-score compared to the results without simulated noise. Neg-
atively affected classes are forest, with a decrease in F1-score
of up to 15%, sealed area (up to 19%) and grassland (up to
14%). However, there is no clear pattern of decreasing accur-
acy with increasing label noise; for instance, the F1-score of
water increases by up to 12% for most experiments and the one
of grassland by up to 5% for some of the experiments. Classes
that are difficult to classify (indicated by a low F1-score even
without simulated label noise, e.g. grassland or sealed area)
are affected to a slightly larger degree than others. In general,
the results show that the distribution of noise has a larger impact
on the results than the actual amount, which can be deduced
from the fact that the variation of quality indices between exper-
iments with the same amount of simulated label noise is larger
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Exp. Tiles Dates F1-scores on R1 [%] R1 [%] R2 [%]
bld. sld. agr. grl. wat. for.t avg. F1 OA avg. F1 OA

0 913 14 86.7 45.6 96.3 63.9 66.6 91.4 75.1 90.4 65.0 78.5
1 913 4 87.3 38.7 95.4 50.3 74.0 43.9 64.9 81.1 59.1 70.7
2 913 1 87.4 25.2 91.5 43.1 71.2 5.4 54.0 72.6 43.8 55.0
3 159 14 73.3 37.1 95.0 46.3 81.6 69.4 67.1 83.6 47.7 68.5
4 9 14 74.7 53.9 92.1 32.9 76.2 14.2 57.3 75.8 42.3 62.2
5 9 1 68.0 30.4 84.6 13.9 70.5 0.0 44.6 70.8 33.6 53.1

Table 3. Evaluation of land cover classification with different training datasets. Exp.: Experiment number. OA: Overall Accuracy.

Exp. Noise F1-scores [%] avg. F1 OA
[%] bld. sld. agr. grl. wat. for. [%] [%]

0 - 86.7 45.6 96.3 63.9 66.6 91.4 75.1 90.4

6 5 87.2 39.3 95.4 54.1 62.2 83.7 70.3 87.9
88.4 38.7 95.4 58.5 73.0 76.8 71.8 86.1

7 10 79.6 37.6 95.8 52.9 71.1 76.1 68.8 85.7
81.3 41.1 96.0 64.5 73.4 91.4 74.6 89.3

8 20 86.7 43.0 96.3 68.9 70,4 91.2 76.1 90.4
86.0 43.0 96.0 66.0 72.2 88.9 75.4 89.4

9 30 86.9 42.9 95.3 67.0 78.7 87.3 76.3 89.2
77.6 26.6 94.9 49.3 74.4 85.0 68.0 86.7

Table 4. Evaluation of land cover classification different
amounts of simulated noise based on reference R1. The first row
corresponds to experiment 0 in table 3. OA: Overall Accuracy.

than the one between the best results at each noise level. For
example, the OA for the first experiment with 30% additional
noise is only 1% worse than the one achieved without simu-
lated noise, whereas the difference between this result and the
one of the second experiment at that noise level is 2.5%. Our
results indicate that the FCN is robust to noise to a relatively
high degree, especially for classes with enough samples or that
are clear to distinguish (like agriculture or water). The level to
which the result is affected seems to depend more on the distri-
bution of the label noise than on its actual amount. Again, these
numbers have to be taken with care because they are only based
on a relatively small reference dataset.

4.4 Evaluation: Cosine Loss for Feature Similarity

To evaluate the impact of the cosine loss, we conducted a set
of experiments using different variants of the loss function as
described in table 2. Table 5 shows the evaluation results based
on reference R1.

In general, the influence of the cosine similarity layer is relat-
ively low. If the early layer f4 is included, the results are worse
than in the other cases; it would seem that this early interme-
diate representation is not general enough for the network to
be forced to form well-shaped clusters in feature space. If the
cosine loss is applied in the layer having the lowest resolution
(f3), the OA and the mean F1-score are identical to the one
achieved without the cosine loss, but there is another distribu-
tion of class-specific F1-scores. Only the results achieved when
the last convolutional layer (f1) is used as input to the cosine

Variant F1-scores [%] avg. F1 OA
bld. sld. agr. grl. wat. for. [%] [%]

Cr-En 86.7 45.6 96.3 63.9 66.6 91.4 75.1 90.4
CL-f1 89.6 60.7 96.3 66.0 70.2 86.0 78.1 89.5
CL-f13 85.1 34.7 96.0 63.2 79.5 92.4 75.1 90.4
CL-f124 82.3 13.6 93.5 62.4 79.7 91.9 70.6 87.0
CL-f1234 84.4 37.6 96.3 64.1 72.7 88.6 74.0 89.3

Table 5. Results for land cover classification of variants of the
cosine loss on dataset R1. OA: Overall Accuracy. Best scores

are printed in bold font.

similarity loss show the desired effect of improving the results
for the underrepresented classes, with an increase in the mean
F1-score of 3%. The largest increase in F1-score is observed for
sealed area (+15%), the class covering the smallest percentage
of the area, followed by water (+3.6%), building (+2.9%) and
grassland (+2.1%). Only forest decreases by 5.4%, which is
responsible for the small decrease in OA of 0.9%.

We also analyse the distribution of the cosine similarities for
some classes depending on the variant of the cosine loss used
in training. Table 6 shows the mean cosine similarity and its
variance for the classes sealed area, agriculture and water at
layers f1 and f3 for three of the variants. In addition, table 7
shows the cosine similarity between the mean features vectors
from f1 for all classes for experiments CL-f1 and CL-f13.

Even without the cosine loss the features of a class have a high
cosine similarity (between 0.79 and 0.98). The mean cosine
similarity and its variance at the last layer (f1) are related to
the class accuracies: agriculture, a class with high mean co-
sine similarity and a low variance has a high F1-score. A class
with a lower mean cosine similarity and a higher variance, such
as sealed area, achieves a low F1-score. As would be expec-
ted, using the cosine loss increases the similarity in the layer to
0.99 - 1.00 with a small variance; the other layers are also af-
fected, but to a lesser degree. This is another indicator that the
cosine loss does lead to well-defined clusters, which can sup-
port the classification if it occurs in the last layer of the network
(f1). The cosine similarity between the mean feature vectors
of the last layer (f1) can be interpreted as an indicator for the
similarity of classes. For instance, table 7 shows a high co-
sine similarity between the mean feature vectors of grassland
and agriculture, two classes that have a similar appearance at
least in some parts of the vegetation cycle. Table 7 also shows
that the cosine similarity between the mean feature vectors of
the classes increases significantly if the cosine similarity loss
is used. It would seem that the cosine similarity does not only
lead to more compact clusters, but also to smaller differences
between the clusters. However, as the variance of the similari-
ties becomes even smaller, the separation of the clusters is still
possible.

sld. agr. wat.
Layer Variant mean var mean var mean var

Cr-En 0.81 0.07 0.82 0.13 0.80 0.03
f3 CL-f1 0.87 0.06 0.88 0.07 0.87 0.02

CL-f13 0.99 5·10-4 0.99 4·10-4 0.99 2·10-4

Cr-En 0.79 0.26 0.98 0.08 0.98 0.02
f1 CL-f1 0.99 3·10-4 1.00 1·10-4 1.00 5·10-5

CL-f13 0.76 0.24 0.98 0.06 0.95 0.06

Table 6. Mean and variance of cosine similarities for three
classes with (CL-f1, CL-f13) and without (Cr-En) cosine loss.

Overall, this analysis indicates that some improvement for the
underrepresented classes can be achieved if the cosine similar-
ity loss is applied to the features just before the final classifica-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-181-2021 | © Author(s) 2021. CC BY 4.0 License.

 
187



bl. sl. ag. gr. wt. fr.
bl. 0.68 0.26 0.48 0.18 0.24
sl. 0.99 0.73 0.82 0.20 0.32
ag. 0.97 0.99 0.90 0.12 0.20
gr. 0.99 1.00 1.00 0.22 0.47
wt. 0.96 0.97 0.96 0.97 0.31
fr. 0.98 0.99 0.97 0.99 0.96

Table 7. Cosine similarities between mean feature vectors of
layer f1 for CL-f1 (blue) and Cr-En (green).

tion layer. Clustering in other layers does not help in that re-
spect. It would seem that the clusters for the individual classes
become more similar, but so do the cluster centres. It remains
to be investigated whether other losses leading to more compact
clusters should be preferred.

5. CONCLUSION

In this paper, we investigated how the generalization perfor-
mance of a FCN can be improved by using large amounts of
data affected by label noise or by an additional constraint for
feature similarity in the loss function. The generalization per-
formance of the model becomes better the more data is used
during training. Both, the size of the area and the used acquis-
ition dates have an equally high impact on the performance. If
tested on a specific date this model achieves comparable res-
ults with a classifier trained on data of that specific date. Ex-
periments with simulated label noise showed that the FCN is
robust to a high degree of label noise. In our experiments the
amount of noise was not correlated with the decrease of the
model performance. We conclude that the noise distribution is
more important, especially for classes that are difficult to clas-
sify anyway. The experiments with the cosine loss showed that,
with the last convolutional layer as input, the results improve
for the under-represented classes, a similar observation as in
(Yang et al., 2020). The question, whether the cosine loss helps
to achieve a better clustering remains open for future research,
because in our experiments the inter-class similarity increased
with the intra-class similarity, too.

Future research should investigate the integration of methods to
cope with label noise coming from maps, e.g. by reducing the
impact of uncertain samples in the loss function (Frenay and
Verleysen, 2014). The goal is to use even larger amounts of
training data to further increase the generalization performance
and decrease the impact of label noise. We also plan to compare
the cosine similarity loss with other constraints in the loss func-
tion which focus on increasing the intra-class similarity and also
decrease the inter-class similarity, e.g. by using the Euclidean
distance as a similarity measure. Such a constraint can further
help to form compact clusters in feature space that, on the one
hand, increases the accuracy for the minority classes and, on
the other hand, allows to compare pixels based on the feature
difference. These differences could be used, for instance, to de-
tect class changes between pixels of the same area observed at
different time steps and thus help to update outdated maps.
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