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ABSTRACT:

Shadow fraction is essential for improving the estimation of gross primary production, but it is difficult to be observed by satellite
due to the diurnal variations. Therefore, it is necessary to estimate the 3D model with physical parameters by simulating virtual
forest reflectance. In this study, we aim to estimate the optimal combination of canopy shape and Crown Coverage (CC) through
simulating virtual forests reflectance. First, satellite-derived Tree Height (TH) and CC for virtual forests were compared with the
ones obtained by Canopy Hight Model (CHM). Second, virtual forests with different CC and canopy shapes were created, and
the reflectance and shadow fraction were simulated. The canopy shape used were cylinder, ellipsoid, half-ellipsoid, and inverted
half-ellipsoid. Finally, the simulated reflectance and shadow fraction were validated with Sentinel-2 reflectance and shadow fraction
from voxel model. Our results show that the mean TH is 15±2m, and the CC was increased from 10% to 60% in 10% intervals.
TH and CC obtained from the satellite had the Root Mean Square Error (RMSE) of 5m and 40%. Ellipsoid with 20% CC shows the
lowest RMSE and the smallest discrepancy for shadow fractions at the same sun position. However, other combinations were more
accurate in estimating mean daily shadow fraction. This would be caused by only one image adopted in validation, which could be
improved by using multi-season images in the future.

1. INTRODUCTION

Gross Primary Production (GPP) is one of the important com-
ponents of carbon flux (Beer et al., 2010). Satellite remote
sensing is useful for estimating GPP on a global scale, and
the MODerate resolution Imaging Spectroradiometer (MODIS)
GPP product (Running et al., 2004) has been widely used. For
GPP estimation, the theoretical model devised by Monteith
(1972) using absorbed photosynthetically active radiation and
Light Use Efficiency (LUE) to estimate photosynthetic produc-
tion has been used, but large uncertainties still remain in the
global estimation. One of the uncertainties is the complexity of
the tree forest 3D structure. Shadows are created by the geo-
metric relationship between forest structure and sun position.
Since shadow is a major determinant of leaf surface conduct-
ance (Brooks et al., 1997), it has been observed that shaded
leaves are not light saturated (Knohl and Baldoccohi, 2008)
and that diffuse light shows higher LUE (Kanniah et al., 2013).
Therefore, both shade and sun leaves contribute to GPP, but
their ratio is different (Gu et al., 2002). Therefore, incorpor-
ating their proportions in the GPP estimation will improve the
accuracy.

Yan et al. (2017) estimated GPP with higher accuracy than be-
fore by using the clearance index (He et al., 2013) to estimate
the ratio of diffuse to direct radiance, and the clumping index to
take into account the sunlit and shaded leaves. Clumping index,
however, is given a certain value for each tree species (Chen et
al., 1999; He et al., 2013), but the shadow ratio varies with dif-
ferent structural parameters such as tree height and density even
if the tree species is the same. In recent years, in addition to the
clumping index, vegetation indices related to shadow fraction
(Shadow index; Ono et al., 2015, Shadow Eliminated Vegeta-
tion Index; Jiang et al., 2019, Normalized Difference Canopy
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Shadow Index; Xu et al., 2019) have been developed. It is ex-
pected that these indices used to estimate the shadow fraction
independent of the tree species. However, since the ratio of dir-
ect to diffuse radiation is diurnal variation due to the shading
effect of the forest structure (Li et al., 1992), it is still ques-
tionable to estimate GPP using only the sun-shade component
of satellite observation time. Hilker et al. (2008) reported that
adding the mean daily shadow fraction calculated from a 3D
model of the forest to the LUE improved the explanatory power.
However, the method using satellite images can only observe at
a certain time, so the mean daily shadow fraction cannot be cal-
culated. One possible solution to this problem is to estimate
the 3D shape of the forest and use it to estimate the mean daily
shadow fraction.

In recent years, structural parameters such as Tree Height (TH)
(Simard et al., 2011) and tree density (Crowther et al., 2015)
have become globally available. Yang et al. (2017) developed
a statistical approach to generate forest structure based on TH
and tree density to create a highly accurate essential climate
variables retrieval algorithm using the Monte Carlo-based Ra-
diative Transfer (MCRT) models. The MODIS reflectance sim-
ulated by this approach was high accurate than the theoretical
error of the atmospheric correction product. However, they
used field measurement values, so it is expected that the error
will increase when used only satellite-derived product is used
because the product include errors. Therefore, when creating
a virtual forest using only products, optimization of structural
parameters is necessary. In addition, it is unclear whether the
MCRT model can reproduce actual shadows, since shade and
sun leaves are determined by random. Therefore, it is desirable
to use a geometric optics model (Fan et al., 2015) to separate
sunlit leaves from shaded leaves, but this model requires many
parameters such as leaf shape and leaf density, some of which
are difficult to estimate globally. On the other hand, Fujiwrara
and Takeuchi (2020) developed a simple method for simulating
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reflectance using the shadow and leaf reflectance as paramet-
ers. The accuracy of the reflectance simulated by this method is
highly dependent on that of the input shadow fraction. In other
words, it was expected that the shadow ratio could also be es-
timated by selecting the optimal parameter that has the smallest
error to the reflectance observed by the satellite from the com-
bination of structural parameters obtained from the products.

An important parameter for creating a virtual forest is the can-
opy shape. This parameter needs to be assigned explicitly. In
MCRT, the canopy shape is usually triangular pyramidal for
coniferous forests and ellipsoid for broadleaf forests (Pisek and
Chen, 2009; Ligot et al., 2016). Nelson et al. (1997) used
several canopy geometries to simulate the airborne laser pro-
filing response. The results showed that the different rough-
ness of each canopy shape had a significant effect on the estim-
ates. Since roughness also affects the shadow fraction, errors
in shadow and reflectance due to differences in canopy shape
should be evaluated and the optimal canopy shape should be
selected. In particular, the difference is expected to be larger
in forests where various canopy shapes are assumed, such as
tropical forests.

The objective was to estimate the optimal structural parameters
for shadow fraction estimation by comparing simulated reflect-
ance and satellite-observed one using a virtual forests. In this
study, we tackled the following three tasks: 1) to create several
virtual forests using satellite-derived structural parameters, 2)
to simulate the reflectance and compare with observed reflect-
ance by satellite sensors, and 3) to simulate the shadow fraction
and compare with that calculated from the 3D model. The tar-
get satellite sensor was Sentinel-2, because using a sensor with
lower spatial resolution would increase the spatial heterogen-
eity of the forest. The structural parameters of interest were TH,
Crown Coverage (CC) and crown shape. TH and CC were ob-
tained from Global Forest Canopy Height (GFCH) 2019 (Pota-
pov et al., 2021) and Global 2010 Tree Cover (GTC) (Hansen et
al., 2013), respectively. The spatial resolution of both products
is 30m and GTC stores the CC of trees over 5 meters and GFCH
stores the tree height in 1 meter units. However, creating a vir-
tual forest by changing all combinations of TH, CC, and canopy
shape would increase the computational cost. Therefore, we as-
sumed that the value of TH did not have significant variation
in the target forest. In other words, we created a virtual forest
with different combinations of CC and canopy shape. The tar-
get forest was a tropical forest in Myanmar.

2. METHODOLOGY

2.1 Flow of this study

The flow of this study is shown in Figure 1. First, the TH and
CC inputs to the virtual forest were determined by sampling,
respectively. Those values were compared to the Canopy Hight
Model (CHM) generated by Unmanned Aerial Vehicle (UAV)
-Structure from Motion (SfM). Note that the measured values
are not used to correct TH and CC. The four tree canopy shapes
used are cylinder, ellipsoid, half-ellipsoid, and inverted half-
ellipsoid, as shown in Figure 2. Second, a virtual forest is cre-
ated based on those structural parameters, and reflectance and
shadow are simulated. The canopy shape is not mixed, and
the tree structure is determined based on the allometric equa-
tions. The canopy structure is TH, Canopy Length (CL), Can-
opy Radius (CR) and Diameter at Breast Height (DBH). Third,
the simulated reflectance was evaluated using the Sentinel-2

Bottom of Atmosphere (BOA) reflectance. It was evaluated
by Root Mean Square Error (RMSE) to the average value of
each band. A test of normality was performed for all bands of
sampled Sentinel-2 reflectance, and bands with p-values greater
than 0.05 were used for evaluation. Finally, the simulated
shadow fraction was evaluated by that calculated by the voxel
model. The shadow fraction was evaluated by the difference of
the mean values.

Figure 1. Flow chart of this study.

Figure 2. Canopy shapes used for creating the virtual forest. The
canopy structure is Tree Height (TH), Canopy Length (CL),
Canopy Radius (CR) and Diameter at Breast Height (DBH).

2.2 Study forest

The target forest is located on the Yangon Technological Uni-
versity (16.8◦N, 96.1◦E), Myanmar. There were no mountains
or other high elevations around, and the terrain was flat. The
climate zone of the region is tropical monsoon climate. (My-
anmar Information Management Unit, 2021). Several species
were mixed together, and it was difficult to obtain allometric
equations for each species. Therefore, we use the allometric
equations developed by Antin et al. (2013) in their study of
tropical rainforests in western India. The model was recalib-
rated to estimate DBH, CR and CL using TH.

DBH(cm) = exp
log TH − 0.93

0.63
(1)

CR(m) =
exp(−0.12 + 0.63 logDBH)

2
(2)

CL(m) =
3 exp(−0.90 + 1.84 logDBH)

2(−0.53 + 1.27 logDBH)
(3)
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2.3 Creation of validation data for tree height, crown cov-
erage and shadow ratio

The target forest was observed by UAV on 21 September 2018.
The camera zenith angle is 0 degrees and the altitude from the
ground is about 100 meters. The point cloud was generated by
SfM based on this data. The UAV used was Phantom 4 pro, and
the software used for SfM was Pix4D. Geometric corrections
were performed using GPS log data. Digital Surface Model
(DSM) and Digital Terrain Model (DTM) were created respect-
ively, and the CHM was generated by subtracting DTM from
DSM. CHM is used for TH and CC validation. The spatial res-
olution of CHM was 30 m. Since GTC is the percentage of
tree cover above 5 m, data with CHM above 5 m were used to
validate CC. The shadow ratio was calculated by converting the
point cloud into a voxel model. The voxel size was determined
so that each voxel has at least one point.

2.4 Sentinel-2

Sentinel-2 B, level 2A (ID
=S2 SR/20191030T035901 20191030T040546 T46QHD
), acquired on September 30, 2019. Although about one year
has passed since the UAV observation date, the forest condition
is considered to be close because it is the same season. In this
study, the normality of the reflectance of bands 2, 3, 4, 5, 6, 7,
8, 8A, 11, and 12 obtained by the sample was investigated, and
the bands with p-values greater than 0.05 were used.

2.5 Setting of tree height and canopy coverage

40 points were visually sampled for CC and TH, respectively
(0% coverage was excluded). The obtained CC values were
converted to values in 10% increments, assuming that a few
percent difference in CC does not affect reflectance or shading.
The Weibull distribution (Siipilehto 2006) is usually used for
TH, but field measurements are required. Since the purpose
of this study is to use only products, we did not assume that
distribution. A normal distribution was assumed in this study.
If the p-value of the sampled TH is greater than 0.05, the TH
of the forest is determined using the normal distribution. If the
p-value is less than 0.05, a normal distribution with the mean
as the most frequent value and 2m as the standard deviation is
used.

2.6 Create virtual forest

The trees used were represented by voxel models. The size
should match the voxel size of the UAV-SfM. The size of the
forest was assumed to be 30 m square with a flat ground sur-
face. The virtual forest is randomly arranged with trees to meet
the coverage determined by sampling. It was assumed that if
trees were placed completely randomly, the distance between
adjacent trees may become very near in some cases.Therefore,
tree locations were randomly placed to meet a canopy overlap
of less than 10%, same as Yang et al. (2017). 40 forest patterns
were created for the same CC and canopy shape. Even the can-
opy shape was different, the tree positions were the same in the
forests with the same pattern.

2.7 Reflectance simulation model

The method developed by Fujiwara and Takeuchi (2020) was
used to simulate the reflectance. This method calculates the
shielding factor for direct and diffuse radiation, defined as Cast
Shadow (CS) and Self Cast Shadow (SCS), respectively, using

a voxel model and the following equation. In this method, the
leaf inclination is assumed 0 degrees, and multiple reflections
and atmospheric effects are not considered. The Simple Model
of the Atmospheric Radiative Transfer of Sunshine (SMARTS)
code, version 2.9.5, was used to calculate the direct and diffuse
irradiance.

ρ(λ) =
Idir(λ)(1− CS) + Idif (λ)(1− SCS)

Idir(λ) + Idif (λ)
R(λ) (4)

where ρ(λ) is reflectance observed by satellite, λ is the
wavelength, Idir(λ) is direct horizontal irradiance (W/m2/µm),
CS is shielding ratio of Idir(λ), Idif (λ) is diffuse horizontal ir-
radiance (W/m2/µm), SCS is shielding ratio of Idif (λ), R(λ)
is spectral reflectance of the leaves and understory.

2.8 Leaf and understory reflectance

The spectral reflectance data for the simulation was selected
from the ECOSTRESS Spectral Library (version 1.0). Prosopis
articulata, a species also found in tropical South Asia, was used
for leaf reflectance and Avena fatua for understory reflectance.
The wavelength interval is 1 nm.

3. RESULT

3.1 Point cloud generation

The average density of the generated point cloud was 10.38
points/m3. The geometric correction was done by referring to
the GPS log data without using ground control points. There-
fore, geometric accuracy was not calculated. As mentioned in
Section 2.3, there must be at least one point in a voxel, so a
voxel size of 50 cm was used.

3.2 Comparison of TH and CC obtained by product and
measurement

The TH and CC of the 40 sampled points were compared with
those generated from the CHM. Figure 3 shows the compar-
ison results of TH. The TH calculated using CHM ranged from
2.5 m to 13 m, whereas the TH obtained from GFCH ranged
from 7.5 m to 17.5 m. The GFCH is higher than measured TH.
The RMSE was 5.4 m and the maximum error was about 11 m,
which was an overestimation. Figure 4 shows the results of the
CC comparison. Most of the measured CC values ranged from
60% to 100%, but the CC values obtained from GTC ranged
from 20% to 60%. The RMSE was 40.3 % and the maximum
error was about 70%, which was an underestimated.

3.3 Reflectance simulation

Since the p-value of TH obtained by sampling was 0.02<0.05,
the mean value of TH used for the virtual forest was the most
frequent value of 15 m, as described in Section 2.5. The min-
imum and maximum CC values were 10% and 60%, respect-
ively. 24 patterns of virtual forests were therefore created, with
6 different CC (10%, 20%, 30%, 40%, 50%, 60%) and 4 dif-
ferent canopy shapes (cylinder, ellipsoid, half-ellipsoid, and in-
verted half-ellipsoid). For each pattern, 40 virtual forests were
created to simulate the reflectance.
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Figure 3. Comparison of measured TH and that obtained from
GFCH. GFCH was overestimated compared to the measured

TH. The RMSE was 5.4 m.

Figure 4. Comparison of measured CC and that obtained from
GTC. GTC was underestimated compared to the measured CC.

The RMSE was 40.3%.

Figure 5 shows the virtual forests created using a cylinder and
a half-ellipsoid for a crown shape when CC is 60%. Green in-
dicates the canopy, brown indicates the trunk, and black indic-
ates the forest floor. The height and position of the trees are
the same. Shadow images under the same sun position are also
shown. It can be seen that the half-ellipsoid shape cause more
shadows than the cylinder. Figure 6 shows the difference in
the simulated reflectance when the CC is fixed at 60% and the
tree canopy shape is changed. In the simulation method used
(eq. 4), the reflectance is inversely related to the percentage of
shadow. This means that for the same CC, the inverted half-
ellipsoid has the lowest shadow fraction, followed by the cyl-
inder, ellipsoid and half-ellipsoid. Comparing the reflectance
between inverted half-ellipsoid and the half-ellipsoid, the dif-
ference was about 1.3 times.

On the other hand, the Figure 7 shows the difference in the sim-

ulated reflectance when the crown shape is fixed to an ellipsoid
and the CC is changed from 0% to 60%. The reflectance de-
creased as CC increased from 10% to 40%, but the change from
40% to 60% was small. The reflectance at 10% CC differs from
that at 50% by about 1.3 times. It can be seen that the variation
value of reflectance becomes smaller as CC increases.

Figure 5. An example of a virtual forest using a cylinder and a
half-ellipsoid as crown shapes. The height and position of the
trees are the same in both forests, but the shadow ratio differs

due to the difference in crown shape.

Figure 6. Reflectance difference due to canopy shape when CC
is 60%. The difference beteween an inverted half-ellipsoid and a

half-ellipsoid is about 1.3 times.

3.4 Evaluation of simulated reflectance

As described in Section 2.1, the reflectance of the normality
band is used to evaluate the result of reflectance simulation.
The p-values of the sampled Sentinel-2 pixels and the simu-
lated reflectance at each band were examined, and both were
greater than the 0.05 significance level in band 6, 7, 8, 8A, and
11. The sample size is 40. Table 1 shows the RMSE of the
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Figure 7. Reflectance changes with different CC in case of
canopy shape is ellipsoid. The reflectance decreased from 10%

to 40%, but there was no significant change in reflectance
between 40% and 60%.

simulated reflectance to the Sentinel-2 BOA reflectance, calcu-
lated using those bands. The lowest RMSE was 0.025 when the
crown shape was ellipsoid and the CC was 20%. For all crown
shapes, the RMSE was the lowest when CC was 20% and there
was almost no difference. The RMSE decreased when CC in-
creased from 10% to 20% and RMSE increased when CC in-
creased from 20% to 60%. The highest RMSE was 0.157 and
the parameters of the virtual forest were half-ellipsoid canopy
shape and 60% CC.

CC C E HE IHE
10% 0.074 0.083 0.080 0.088
20% 0.028 0.025 0.026 0.026
30% 0.070 0.063 0.073 0.048
40% 0.106 0.104 0.117 0.083
50% 0.125 0.130 0.144 0.106
60% 0.126 0.139 0.157 0.111

Table 1. RMSE for Sentinel-2 BOA reflectance versus
reflectance simulated using a virtual forest created based on each

canopy shape and CC. (C:Cylinder, E:Ellipsoid, HE:
Half-Ellipsoid and IHE: Inverted Half-Ellipsoid)

3.5 Evaluation of simulated shadow ratio

Table 2 shows the difference between the shadow fraction cal-
culated using the voxel model and that calculated from the vir-
tual forest at the same sun position. The solar azimuth angle
is 136 degrees and the zenith angle is 26 degrees. The average
shadow fraction, calculated using the voxel model, is 0.27. The
results showed that 0.017 was the smallest difference, the crown
shape was half-ellipsoid and the CC was 20%. This combina-
tion was consistent with the second lowest RMSE combination
in Table 1. The difference estimated from a virtual forest with a
half-ellipsoid canopy shape and 60% CC, however, is 0.021, a
difference of only 0.004. Furthermore, when cylinders or inver-
ted half-ellipsoids are used for the crown shape, the difference is
almost always smaller than 0.1 regardless of CC. For all crown
shapes, the difference was the largest when CC is 50%.

Table 3 shows the difference of the mean daily shadow frac-
tion calculated using the voxel model and virtual forest. The
mean daily shadow fraction is the average of the shadows cal-
culated from the sun position at 8:00, 10:00, 12:00, 14:00, and

16:00, and the result calculated using the voxel model is 0.34.
The smallest difference was 0.003, the canopy shape was half-
ellipsoid, and the CC was 50%. There was no tendency for the
difference to change with respect to CC. Regardless of the can-
opy shape, the difference was about 0.2 in the virtual forest with
10% CC. In virtual forests where the crown shape is ellipsoid
or half-ellipsoid and the CC is larger than 30%, the difference
is smaller than 0.1.

CC C E HE IHE
10% 0.073 0.079 0.067 0.103
20% 0.031 0.033 0.058 0.017
30% 0.081 0.095 0.131 0.030
40% 0.102 0.135 0.181 0.053
50% 0.104 0.156 0.208 0.062
60% 0.054 0.128 0.190 0.021

Table 2. The difference between the shadow fraction estimated
from the voxel model and virtual forest at the same sun position.
The average shadow fraction, calculated using the voxel model,

is 0.27.

CC C E HE IHE
10% 0.225 0.224 0.208 0.245
20% 0.158 0.149 0.121 0.186
30% 0.117 0.096 0.060 0.147
40% 0.103 0.069 0.026 0.132
50% 0.091 0.044 0.003 0.114
60% 0.104 0.040 0.010 0.120

Table 3. The difference between the mean daily shadow fraction
estimated from the voxel model and that estimated from the
virtual forest. The average mean shadow fraction, calculated

using the voxel model, is 0.34.

4. DISCUSSION

Potapov et al. (2021) compared the accuracy of GFCH with
the tree heights estimated by The Global Ecosystem Dynam-
ics Investigation (GEDI) lidar and airborne laser scanner. The
results showed that the overall RMSRs were 6.6 m and 9.07
m, respectively. They also investigated the accuracy at each 1
m strata, and reported an underestimation of about 2 m for the
present tree canopy coverage. Although we did not conduct
a survey using the same method as theirs, the RMSE for the
TH calculated by CHM was 5.4 m (Figure 3), which was bet-
ter than their result. However, it is an overestimation not the
underestimation. This is probably due to the training data used
to generate the GFCH was limited in the tropical forest due to
cloud cover (Potapov et al., 2021). We used the most frequent
value of 15 m for the average TH of the virtual forest, but it
turned out to be higher than the actual forest. In the future, it
will be necessary to determine the tree height by referring to the
location of the training data used for the GFCH and the error in
each strata.

The CC estimated using GTC is about 40% (Figure 4) lower
than that calculated from CHM. GTC provides CC for trees
taller than 5 m, and the height was calculated using the LiDAR
(footprint size is 70 m) of NASA’s GLAS (Geoscience Laser
Altimetry System) instrument aboard the IceSat-1 satellite
(Hansen et al., 2013). This product has been used to estim-
ate CC using Landsat or high spatial resolution images such as
Quickbird as training data, but it has been reported that there is
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high uncertainty in the estimates. The CC used for the virtual
forest used a value between the minimum and maximum values,
but in the future, a higher CC value should be used.

It can be seen from Figure 5 and Figure 6 that a shape with
a rounded top of the tree canopy produces fewer shadows and
higher reflectance than a flat shape. This indicates that a round
top has larger area to block sunlight. The fact that the reflect-
ance is different even when the upper part of the canopy is the
same, as in the case of an ellipsoid and a half-ellipse, or an in-
verted half-ellipse and a cylinder, indicates that the lower part
of the canopy also affects the shadow ratio. From Figure 7, it
can be seen that the reflectance decreases as the CC increases
from 10% to 40%. This is due to the increase in the area where
sunlight is shielded by the increase in the number of trees. On
the other hand, from 40% to 60%, the reflectance is almost con-
stant, indicating that there is little change in the percentage of
area that blocks sunlight. In this study, we assumed that the TH
of the virtual forest follows a normal distribution with a mean
value of 15 m and a standard deviation of 2 m. As the standard
deviation becomes larger, the roughness is expected to become
even larger and the percentage of shadows larger. On the con-
trary, as the standard deviation becomes smaller, the roughness
is expected to become smaller and the percentage of shadow
becomes smaller.

Table 1 shows that the virtual forest with an ellipsoid canopy
shape and CC is 20% has the smallest RMSE, but the difference
with other canopy shapes when CC is 20% was small. There-
fore, changing the reflectance of the leaves and understory used
may change the optimal canopy shape. On the other hand, as
CC increased, the difference in RMSE due to differences in can-
opy shape became larger. Nelson et al. (1997) suggested using
ellipsoids when the tree canopy shape could not be identified,
but when CC was high, it was expected that the error would
be more significant if an appropriate tree canopy shape was not
used. As shown in Table 2, the smallest difference between
the shadow fraction estimated from the virtual forest and voxel
model at the same sun position was 0.017. In that case, the
suitable canopy shape was half-ellipsoid and the CC was 20%,
but there were several virtual forests where the difference was
less than 0.05. Even when the virtual forest with the lowest
RMSE in Table 1 ( canopy shape is ellipsoid and CC is 20%)
was used, the difference was 0.033 in Table 2. This indicates
that the optimal CC and canopy shape derived from the reflect-
ance simulation can be used to estimate the shadows fraction of
the forest. However, in Figure 4, CC derived from CHM ranges
from 60% to 100%, indicating a large difference from the sim-
ulation results. As shown in Figure 7, in our simulations, the
reflectance decreased with higher CC because of the increase
in shadows. However, it was assumed that even at high CC, if
TH variation is small, roughness would be smaller and shadows
would be less. In this study, the standard deviation of TH in the
virtual forest was fixed at 2 m, so the forest in such a case was
not considered. As shown in Table 3, the virtual forest with the
smallest difference in daily shadow fraction had a half-ellipsoid
crown shape and a CC was 50%. The virtual forest with the
lowest RMSE in Table 1 had a difference of 0.149, which was
larger than the difference in Table 2. The reason seems to be that
the sun position was limited because only one scene Sentinel-
2 image was used for the validation. Therefore, we expect to
improve the accuracy by adding images from different seasons
and other satellite images such as Landsat and Aster to the val-
idation.

5. CONCLUSION

The objective of this study was to estimate the optimal CC and
canopy shapes for shadow fraction estimation through reflect-
ance simulation. CHM generated from UAV-SfM, Sentinel-2
BOA reflectance and voxel models were used to validate TH
and CC, reflectance simulation, and shadow fraction, respect-
ively. RMSE of TH and CC obtained from each product was 5m
and 40% to those value calculated from CHM, respectively. TH
tended to overestimate and CC tended to underestimate. The
average TH of the virtual forest was 15 m with a standard de-
viation of 2 m. The CC was increased from 10% to 60% in
10% intervals. A total of 24 patterns of virtual forests were
created, with 40 forests per pattern. When the CC was fixed
and only the crown shape was changed, the highest reflectance
was obtained for the inverted half-ellipsoid and the lowest for
the half-ellipsoid. When the crown shape was fixed and the
CC was changed, the reflectance decreased from 10% to 40%.
The combination of canopy shape and CC that resulted in the
lowest RMSE for Sentinel-2 BOA reflectance was inverted half-
ellipsoid and 20%. This combination was also 0.03 difference
to the shadow fraction calculated from the voxel model. How-
ever, CC calculated from the CHM ranged from 60% to 100%,
so the difference with CC estimated was large. The reason for
this is that even when CC is high, a small variation in TH may
result in a less shadow, which has not been taken into account
in this study. In estimating mean daily shadow fraction, other
combinations were more suitable than the best combination to
Sentinel-2 reflectance. This is due to the reflectance simula-
tion, where only one scene Sentinel-2 image was used for val-
idation. In this target forest, by optimizing CC and canopy
shape through reflectance simulation, it was possible to estim-
ate the shadow fraction at the time of observation by the satellite
sensor, but CC was different from real one, and it was found that
the variation of TH also needed to be optimized. In addition, the
use of multiple time period images and other satellite images is
expected to improve the estimation accuracy of the mean daily
shadow fraction.
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