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ABSTRACT:  

Canopy cover is a key agronomic variable for understanding plant growth and crop development status. Estimation of canopy cover 

rapidly and accurately through a fully automated manner is significant with respect to high throughput plant phenotyping. In this 

work, we propose a simple, robust and fully automated approach, namely a rule-based method, that leverages the unique spectral 

pattern of green vegetation at visible (VIS) and near-infrared red (NIR) spectra regions to distinguish the green vegetation from 

background (i.e., soil, plant residue, non-photosynthetic vegetation leaves etc.), and then derive canopy cover. The proposed method 

was applied to high-resolution hyperspectral and multispectral imagery collected from gantry-based scanner and Unmanned Aerial 

Vehicle (UAV) platforms to estimate canopy cover. Additionally, machine learning methods, i.e., Support Vector Machine (SVM) 

and Random Forest (RF) were also employed as bench mark methods. The results show that: the rule-based method demonstrated 

promising classification accuracies that are comparable to SVM and RF for both hyperspectral and multispectral datasets. Although 

the rule-based method is more sensitive to mixed pixels and shaded canopy region, which potentially resulted in classification 

errors and underestimation of canopy cover in some cases; it showed better performance to detect smaller leaves than SVM and 

RF. Most importantly, the rule-based method substantially outperformed machine learning methods with respect to processing 

speed, indicating its greater potential for high-throughput plant phenotyping applications.  

 

 

1. INTRODUCTION 

 

 

Rapid advancement of genetic engineering in recent years highly 

accelerated the plant breeding process which has put forward a 

growing demand for high-throughput phenotyping systems capable 

of efficiently measuring and quantifying plant traits to select the 

genotypes of interest (Ashapure et al., 2019; Yu et al., 2017). 

Canopy cover, also known as fractional vegetation cover, is often 

expressed as the percentage of plant canopy area within a unit 

ground area. Canopy cover is one of the most important agronomic 

indicators and phenotypical traits that reflect crop growth and 

development status, as well as plant photosynthesis and water use. 

Additionally, canopy cover has also been used to study crop leaf 

nitrogen concentration, leaf area index, biomass and grain yield 

(Maimaitijiang et al., 2020c; Xu et al., 2020). Thus, rapid and 

accurate estimation of canopy cover, particularly in a fully 

automated manner, is imperative for improved high throughput 

plant phenotyping.  

 

High-resolution remote sensing is regarded as a key tool to extract 

canopy cover. RGB digital imagery acquired from low altitude 

aerial or ground platforms such as Unmanned Aerial Vehicle (UAV) 

or manned/unmanned ground systems are often used for canopy 

cover estimation. The most common approaches for canopy cover 

estimation include thresholding and classification/segmentation 

methods. Single or multiple thresholds are set to RGB imagery 
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transformed color space, such as CIE (Commission Internationale  

d’Eclairage) L*a*b* and HSI (hue saturation intensity) color (Liu 

et al., 2012), as well as vegetation indices such as ExG (Excessive 

Green Index) and CIVE (Color Index of Vegetation Extraction) 

(Meyer and Neto, 2008) through manual (Grieder et al., 2015), 

semi-automated (Xu et al., 2020) or fully automated (Coy et al., 

2016; Yu et al., 2017) methods to separate the plant pixels from 

background non-green vegetation pixels such as soil, plant residue, 

and non-photosynthetic plant leaves etc. The thresholding approach 

is simple and widely employed in many applications, but it is less 

effective with images captured at various illumination conditions, 

or from different plant growth stages, or plants with variable water, 

nutrient and health status (Banerjee et al., 2020; Sadeghi-Tehran et 

al., 2017). Machine learning-based unsupervised classification 

methods such as k-means clustering (Aho et al., 2008; Marcial-

Pablo et al., 2019), as well as supervised methods such as Decision 

Tree (DT) (Guo et al., 2013), Support Vector Machine (SVM) 

(Maimaitijiang et al., 2020b) and Random Forest (RF) (Sadeghi-

Tehran et al., 2017) were previously used to estimate canopy cover 

and achieved superior results over thresholding method in many 

cases. However, classification methods require a certain level of 

human intervention preventing automation. Additionally, sample 

selection is often time consuming and model training and 

application may also be computationally intensive (Coy et al., 2016; 
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Xu et al., 2020). In addition to using RGB digital imagery for 

canopy cover estimation, multispectral (Yu et al., 2017) and 

hyperspectral imagery (Banerjee et al., 2020) were utilized for 

canopy cover estimation through thresholding, machine learning- 

based classification, as well as spectral angle mapping method. 

Multispectral and hyperspectral imagery often provides stable and 

temporally comparable reflectance values, and demonstrates more 

accurate and robust performance compared to RGB imagery under 

various illumination conditions and for different plant  canopy 

densities and background complexities (Ashapure et al., 2019; 

Marcial-Pablo et al., 2019) through differentiation of green 

vegetation pixels from non-green vegetation pixels (i.e., soil, plant 

residue, and non-photosynthetic vegetation leaves etc.). The 

objective of this work is to develop a simple, fast, fully automated 

and scale-invariant method for canopy cover estimation. 

 

2. DATA 

  

As listed in Table 1, high-resolution remote sensing images were 

acquired over multiple experimental fields located across Maricopa 

in Arizona (AZ), Columbia in Missouri (MO) and Urbana in Illinois 

(IL) from 2017 to 2020, using various multispectral and 

hyperspectral sensors mounted on Gantry and UAV platforms (all 

datasets are collection from 10:00 am to 2 pm local time) (Figure 

1). A series of image preprocessing procedures, including lens 

distortion correction, geometric correction, as well as radiometric 

calibration were applied. It is worth noting that radiometric 

calibration is an important step for preprocessing multispectral 

(MSI) and hyperspectral (HSI) images which converts the raw 

image digital values/numbers (DNs) to normalized reflectance 

values that have physical meanings. Additionally, HSI and MSI 

with radiometrically calibrated reflectance values are able to cope 

with changes in illumination and solar geometry and often provide 

a stable and temporally comparable product (Marcial-Pablo et al., 

2019).  

 

 
Figure 1. Platforms and sensors used for collecting high-resolution hyperspectral and multispectral images. Different sensors are 

highlighted using a red rectangle in corresponding images. 
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Table 1 List of remote sensing platforms, sensors and corresponding datasets 

Data

set 
Platform Sensor Band Info. Resolution Crop type Date Location 

HSI Gantry 
Headwall 

Photonics 

939 bands 

(399 – 1000 nm) 
0.3 cm 

Sorghum 

Wheat 

Lettuce 

02/28/2019 

06/20/2019 

02/27/2020 

 

Maricopa, AZ 

HSI UAV 
Headwall  

Nano 

270 bands 

(400 – 1000 nm) 
3 cm Sorghum 6/26/2019 Maricopa, AZ 

MSI UAV 
Micasense 

Altum 

5 bands  

(Blue, Green, Red,  

Red-edge, NIR) 

1 ~ 3 cm 

Soybean 

Corn-1 

Corn-2 

Cron-2 

Corn-3 

 

07/27/2020 

07/27/2020 

06/25/2020 

08/06/2020 

08/26/2020 

 

Columbia, MO 

Columbia, MO 

Urbana, IL 

Urbana, IL 

Urbana, IL 

MSI UAV 
Parrot  

Sequoia 

4 bands  

(Green, Red,  

Red-edge, NIR) 

4 cm Soybean 

 

08/04/2017 

 

Columbia, MO 

HSI: hyperspectral imagery, MSI: multispectral imagery; UAV: Unmanned Aerial Vehicle; Corn-1, Corn-2 and Corn-3 are 

names/codes of three different corn fields. Info. is short for information.  

3. METHODS 

 

3.1 Rule-based method 

 

Photosynthetically active green vegetation presents a strong 

reflection pattern in the near infrared (NIR) spectral region (~700 – 

2500 nm) due to the cellular structure of the leaves, specifically the 

spongy mesophyll. In the visible (VIS) spectral region (~400 – 700 

nm), the reflectance is relatively lower because most light in this 

region is absorbed by the leaf pigments. Chlorophyll strongly 

absorbs energy in the blue (B)  and red (R) spectral region, and 

reflects at the green (G) spectral region (Gamon et al., 2019). Thus, 

as displayed in Figure 2, the reflectance values of green vegetation 

are higher in the NIR region than the VIS region, and they are 

greater at the G spectral region than the R and B regions. In crop 

fields, background soil is the major surface type in addition to crop 

canopy, and the reflectance pattern of soil shows a completely 

different trend from vegetation; it gradually increases from VIS to 

NIR region (Figure 2). Additionally, the spectral patterns of crop 

residue and dead leaves are also different from green vegetation. 

Therefore, on the basis of the distinct spectral profile pattern of 

green vegetation at the VIS and NIR spectral regions, a rule-based 

method (denoted as 𝑹𝒖𝒍𝒆𝟏 ) that is able to differentiate green 

vegetation from non-green vegetation areas such as background soil, 

as well as crop residue and dead leaves was proposed as follows: 

𝑹𝒖𝒍𝒆𝟏: 𝐺𝑟𝑒𝑓 > 𝑅𝑟𝑒𝑓 𝑎𝑛𝑑  𝐺𝑟𝑒𝑓 > 𝐵𝑟𝑒𝑓  𝑎𝑛𝑑 𝑁𝐼𝑅𝑟𝑒𝑓 > 𝐺𝑟𝑒𝑓    

where 𝐺𝑟𝑒𝑓 , 𝑅𝑟𝑒𝑓 , 𝐵𝑟𝑒𝑓 , 𝑁𝐼𝑅𝑟𝑒𝑓  are reflectance values at G, R, B 

and NIR spectral regions, respectively. If the spectral profile of a 

pixel meets the 𝑅𝑢𝑙𝑒1 requirement (if 𝑅𝑢𝑙𝑒1 is true), that pixel will 

be classified as photosynthetically active green vegetation, 

otherwise, the pixel will be regarded as non-green vegetation areas 

such as background soil, as well as crop residue and dead leaves. 

Canopy cover is obtained by dividing the number of green 

vegetation pixels by the total pixel numbers within the target area.  

As shown in Figure 2, the reflectance value of soil at the NIR region 

is also higher than that at the R, G and B regions, thus, the restricted 

𝑅𝑢𝑙𝑒1 is relaxed by excluding the 𝑁𝐼𝑅𝑟𝑒𝑓 > 𝐺𝑟𝑒𝑓 condition, and a 

relaxed rule was defined as 𝑅𝑢𝑙𝑒2 , which relies on R, G and B 

bands at the VIS region and expressed as follows: 

𝑹𝒖𝒍𝒆𝟐: 𝐺𝑟𝑒𝑓 >  𝑅𝑟𝑒𝑓  𝑎𝑛𝑑  𝐺𝑟𝑒𝑓 >  𝐵𝑟𝑒𝑓 

 

If 𝑅𝑢𝑙𝑒2 is true, the pixel will be classified as green vegetation. The 

most distinct spectral pattern between green vegetation and 

background soil is that: if 𝐺𝑟𝑒𝑓  is greater or smaller than 𝑅𝑟𝑒𝑓 

(Figure 2), thus, a more relaxed rule, namely 𝑅𝑢𝑙𝑒3, which only 

depends on G and R bands at the VIS spectral region was proposed 

as follows:  

𝑹𝒖𝒍𝒆𝟑: 𝐺𝑟𝑒𝑓 >  𝑅𝑟𝑒𝑓 

If 𝑹𝒖𝒍𝒆𝟑 is true, the pixel will be classified as green vegetation. 

 

 
Figure 2. Spectral profiles of green vegetation and soil 

extracted from hyperspectral (a) and multispectral imagery (b). 
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3.2 Machine learning methods 

 

Machine learning is one of the most common methods that has been 

employed for canopy cover estimation. Evidenced in previous 

studies, machine learning-based supervised classification 

approaches demonstrated superior performance to thresholding 

methods in many cases (Ashapure et al., 2019; Sadeghi-Tehran et 

al., 2017; Yu et al., 2017). Thus, in this work, we implemented two 

machine learning methods, i.e., Support Vector Machine (SVM) 

and Random Forest (RF) as benchmark methods for canopy cover 

estimation. For each dataset listed in Table 1, about 10,000 pixels 

were carefully selected to train and test the SVM and RF classifiers. 

Specifically, 70% of the 10,000 pixels from each dataset were 

randomly selected for training, and the rest were used for 

classification model testing. The performance of the proposed rule-

based methods, as well as the SVM and RF classifiers were 

assessed by computing the overall accuracy (OA) for each method 

using the 30% testing samples. For SVM and RF, optimal model 

parameters were obtained through a k-fold cross-validation and 

grid-search technique (Maimaitijiang et al., 2020b).  

 

4. RESULTS AND DISCUSSION 

 

4.1 Canopy cover estimation using hyperspectral data 

 

The performance of the proposed rule-based methods, and the 

machine learning methods SVM and RF were evaluated using the 

manually selected testing samples (about 3,000 samples for each 

dataset). As shown in Table 2, the rule-based methods, as well as 

SVM and RF produced very high classification accuracies close to 

100% for both hyperspectral datasets. Notably, the rule-based 

methods, regardless of the most restricted 𝑅𝑢𝑙𝑒1 (uses R, G, B, NIR 

bands) or the relaxed 𝑅𝑢𝑙𝑒2 (uses R, G and B bands) and 𝑅𝑢𝑙𝑒3 

(uses R and G bands), yielded 100% accuracy in the case of the 

gantry hyperspectral data. Additionally, for the UAV hyperspectral 

dataset, the rule-based methods also generated slightly lower, yet 

very close performance to SVM and RF, indicating the robustness 

of the rule-based methods for green vegetation extraction and 

canopy cover estimation when using hyperspectral data. In the case 

of using the UAV hyperspectral dataset, although the performance 

of the rule-based methods slightly attenuated from the most 

restricted 𝑅𝑢𝑙𝑒1 with 99.8%, to the relaxed 𝑅𝑢𝑙𝑒2 with 99.7% and 

𝑅𝑢𝑙𝑒3 with 99.6%, they still maintained comparable high 

accuracies with the machine learning methods. Since background 

soil comprises the majority of non-vegetation classes in crop fields, 

and the most distinct spectral pattern of green vegetation from soil 

is at the G and R spectral regions (Figure 2), specifically, for green 

vegetation, 𝐺𝑟𝑒𝑓 >  𝑅𝑟𝑒𝑓 , and for soil, 𝐺𝑟𝑒𝑓 <  𝑅𝑟𝑒𝑓 ; thus, even 

with a relaxed rule (𝑅𝑢𝑙𝑒3) method which only utilizes G and R two 

bands, it still obtains a high and comparable accuracies with the 

restricted rule method (𝑅𝑢𝑙𝑒1) which uses R, G, B and NIR four 

bands. This also indicates that NIR and B bands play less important 

roles in green vegetation/background soil discrimination. 

 

 

 

 

 

 

 

Table 2. Testing accuracies (%) of classifying HSI datasets using 

different methods 

Dataset 
Rule-based 

Machine Learning 

Methods 

Features  Features SVM RF 

HSI_Gantry R,G,B,NIR 100.0 
939 

bands 
99.9 99.9 HSI_Gantry R,G,B 100.0 

HSI_Gantry R,G 100.0 

HSI_UAV R,G,B,NIR 99.8 
269 

bands 
100.0 99.9 HSI_UAV R,G,B 99.7 

HSI_UAV R,G 99.6 

HSI: hyperspectral image, R: red band, G: green band, B: blue 

band, NIR: near infrared band, SVM: support vector machine, 

RF: random forest. 

 

The rule-based method (𝑅𝑢𝑙𝑒1), as well as the trained SVM and RF 

models were implemented to multiple gantry and UAV-based 

hyperspectral data cubes to map green vegetation area and non-

green vegetation area (i.e., background soil, crop residue and dead 

leaves etc.), and estimate canopy cover. As displayed in Figure 3, 

the first column presents the RGB true color view of each 

hyperspectral data cube, and the rest of the columns are the 

mapping results along with estimated canopy cover values (the 

percentage values at the right-bottom corner of each map) based on 

different methods. For super high-resolution gantry hyperspectral 

datasets, the 𝑅𝑢𝑙𝑒1 method demonstrated better performance in 

detecting smaller leaves (Figure 3(f)), which were “ignored” by 

SVM (Figure 3(g)) and RF (Figure 3(h)). Additionally, as shown in 

(Figure 3(i) and (j)), the 𝑅𝑢𝑙𝑒1 method yielded good performance 

for the gantry hyperspectral image with a complex background. 

SVM also yielded good performance for different gantry 

hyperspectral data cubes. RF was not able to detect some shaded 

(Figure 3(d)) and overexposed (Figure 3(i)) green vegetation pixels, 

which likely led to possible underestimation of canopy cover, 

compared to the 𝑅𝑢𝑙𝑒1  method and SVM. In the case of UAV 

hyperspectral datasets, as shown in Figure 3(m) to Figure 3(t), the 

𝑅𝑢𝑙𝑒1 method exhibited comparable performance to SVM with 

respect to excluding complex non-vegetation areas (Figure 3(q) and 

(r)), while RF produced poorer results with “pepper and salt” 

pattern noise. However, the spatial resolution of the UAV 

hyperspectral data is much lower than that of gantry imagery (Table 

1), which potentially resulted in a higher chance of 

vegetation/background mixed pixels in the UAV hyperspectral data, 

especially the pixels at the outer border of each canopy row (Figure 

3(m) and (q)). Those mixed pixels would possibly be classified as 

non-vegetation area by the rule-based method, which explains the 

relatively lower canopy cover derived by the 𝑅𝑢𝑙𝑒1method for the 

UAV-sorghum scenes (Figure 3(n) and (r)).  It is worth noting that, 

the performance of SVM and RF is more dependent on the quality 

of the samples selected for model training, and the criteria that those 

samples are defined/selected is subjective to user experiences and 

knowledge to some extent, for instance, whether the mixed pixels 

are treated as green vegetation area, or background soil area (Coy 

et al., 2016; Xu et al., 2020). However, the rule-based methods 

provided more objective and consistent results.  
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Figure 3. Visualization of classification results and estimated canopy cover for hyperspectral image scenes; Gan-wheat, Gan-sorghum 

and Gan Lettuce represent gantry-based hyperspectral images collected from wheat, sorghum and lettuce fields. 

4.2 Canopy cover estimation using multispectral data 

 

The testing results of different methods across multispectral 

datasets are shown in Table 3. Overall, both rule-based and machine 

learning methods demonstrated high classification accuracies 

greater than 90% across different scenes. The rule-based methods 

yielded slightly lower, yet comparable accuracies to SVM and RF 

for both the Altum and Parrot multispectral datasets (Table 3). 

Additionally, the accuracy attenuation pattern of the rule-based 

methods due to constraint relaxing, observed in the hyperspectral 

datasets, was also the case in the Altum and Parrot multispectral 

imagery (Table 3). Altum imagery has one more spectral band (blue 

band) than Parrot imagery, however, Altum imagery-based 

classification accuracies are lower than that of the Parrot datasets; 

this is likely due to the complexity of Altum datasets, which include 

images from multiple crops (corn and soybean) with various 

canopy densities, as well as variable illumination conditions (Table 

1), while Parrot multispectral data is more uniform, which is 

collected from one UAV flight over a single soybean field (Table 

1). It is noteworthy that the relaxation with the inclusion of only R, 

G, and B bands are important to robustly generalize the success of 

rule-based methods to regular digital RGB images for segmenting 

canopy cover. However, these remote sensing RGB images may 

require a normalization/calibration scheme to alleviate various 

illumination conditions and other sensing dynamics (Xu et al., 

2020).  

 

Table 3 Testing accuracies (%) of classifying MSI datasets using 

different methods  

Dataset 
Rule-based Machine Learning Methods 

Features  Features SVM RF 

MSI_Altum R,G,B,NIR 92.3 

5 bands 93.9 96.3 MSI_Altum R,G,B 91.8 

MSI_Altum R,G 91.5 

MSI_Parrot R,G,NIR 98.9 
4 bands 99.6 99.8 

MSI_Parrot R,G 90.6 

MSI: hyperspectral image, R: red band, G: green band, B: blue 

band, NIR: near infrared band, SVM: support vector machine, RF: 

random forest. 

 

Figure 4 illustrated the classification results of the rule-based 𝑅𝑢𝑙𝑒1 

and machine leaning methods across five Altum and two Parrot 

multispectral image scenes. In agreement with the performance for 

hyperspectral datasets, the 𝑅𝑢𝑙𝑒1 method presented more powerful 

capability in detecting smaller leaves (Figure 4(b)), while they were 
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“ignored” by SVM (Figure 4(c)) and RF (Figure 4(d)), which likely 

led to possible underestimation of canopy cover by SVM and RF. 

It is noteworthy that, consistent with the observation for 

hyperspectral datasets, the rule-based method (𝑅𝑢𝑙𝑒1) is sensitive 

to mixed pixels that do not present a distinct green vegetation 

spectral pattern. Additionally, as shown in Figure 4(f), (j), (n) and 

(z), the rule-based method is not able to accurately segment some 

shaded leaves as green vegetation area, which might be attributed 

to a shadow effect. As shown in Figure 5(b), the plant shadows may 

“break” the distinct spectral pattern of green vegetation, 

particularly in the case of multispectral datasets, and result in the 

failure of the rule-based method. Thus, this might lead to the 

possible underestimation of canopy cover by the rule-based method 

for scenes with higher densities that often have higher shaded areas 

(Figure 4(e), (i), (m) and (y)). As observed in Figure 5(a), for 

hyperspectral datasets, the shaded green vegetation still displayed a 

distinct spectral pattern that meets the requirement of 

𝑅𝑢𝑙𝑒1( 𝐺𝑟𝑒𝑓 > 𝑅𝑟𝑒𝑓 𝑎𝑛𝑑  𝐺𝑟𝑒𝑓 > 𝐵𝑟𝑒𝑓  𝑎𝑛𝑑 𝑁𝐼𝑅𝑟𝑒𝑓 > 𝐺𝑟𝑒𝑓 ) to 

some extent. Thus, the rule-based methods are less sensitive to 

shadow effects in the case of hyperspectral data, which was also 

evidenced in Figure 3(b) in which the shaded leaves were 

successfully segmented as green vegetation by the rule-based 

method. However, the impact of shadow to the rule-based methods 

need to be systematically evaluated in future work.  

 

 

 
Figure 4. Visualization of classification results and estimated canopy cover for multispectral image scenes; Alt-Corn-1, Alt-Corn-2 

and Alt-Corn-3 represent UAV-based Altum multispectral images collected from three different cornfields named Corn-1, Corn-2 

and Corn-3; Alt-Soybean represents Altum multispectral image from a soybean field; Par-soybean are Parrot multispectral images 

from a soybean field. 
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Figure 5. Spectral profiles of sunlit and shaded green 

vegetation extracted from hyperspectral (a) and multispectral 

(b) imagery.  

 

4.3 Comparison of processing speed 

 

In addition to the automatable property and estimation accuracy, 

processing speed is also a key factor for canopy cover estimation, 

particularly in the context of high-throughput phenotyping (Yu et 

al., 2017).  The rule-based methods, as well as the trained SVM and 

RF models were implemented to four image cubes, respectively, to 

compare the processing time of each method used to classify those 

four images (Table 4). Overall, the rule-based methods 

substantially outperformed machine learning methods in terms of 

processing speed, particularly the RF method. Additionally, with 

the relaxation of the rules for the rule-based methods (from 𝑅𝑢𝑙𝑒1 

to 𝑅𝑢𝑙𝑒3), the processing time decreased correspondingly, which is 

likely caused by the decreased number of bands/features involved 

in classification. 

 

Table 4. Comparison of processing time of different methods 

(processing time unit: minutes). 

Methods 

 

HSI_Gantry HSI_UAV MSI_Altum MSI_Parrot 

#Pixels 9292800 5872140 3012874 15032912 

Rule-1 3.25 1.84 0.081 0.372 

Rule-2 2.52 1.38 0.068 / 

Rule-3 1.73 0.91 0.053 0.281 

SVM 81.26 7.76 6.18 46.89 

RF 1343.78 259.49 126.99 661.74 

#Pixels: number of pixels of each test imagery.  

4.4 Correlation analysis of canopy cover with NDVI and LAI 

 

Correlation analysis between canopy cover estimates and NDVI 

(Normalized Difference Vegetation Index) or field measured LAI 

(Leaf Area Index) is often conducted to evaluate the robustness of 

canopy cover estimation methods (Jimenez-Berni et al., 2018). The 

rule-based method (𝑅𝑢𝑙𝑒1) and trained SVM and RF models were 

implemented to the ortho-mosaicked UAV hyperspectral imagery 

(Table 1) acquired from an experimental sorghum filed established 

for high-throughput phenotyping research at the Maricopa 

Agricultural Center in Arizona on June 26th, 2019, and the canopy 

cover was estimated for about 640 plots (Figure 6). Plot-level mean 

NDVI were extracted for those 640 plots as well. Then, correlation 

analysis was conducted between plot-level mean NDVI and canopy 

cover estimates from the rule-based, SVM and RF methods. As 

shown in Figure 6(a, b, c), strong correlation relationships between 

NDVI values and the estimated canopy cover from all three 

methods were observed, with R2 ranging from 0.95 to 0.98. 

Additionally, synchronously measured plot-level LAI with UAV 

imagery collected from 107 plots over the sorghum filed, were 

plotted against the corresponding canopy cover values estimated 

using the rule-based, SVM and RF methods, respectively (Detailed 

descriptions of the sorghum field and LAI measurement can be 

found in Maimaitijiang et al. (2020a)). As shown in Figure 6(d, d, 

f), decent correlation relationships between LAI and canopy cover 

were observed, with R2 ranging from 0.66 to 0.70. The strong 

correlation relationships of the rule-based canopy cover with NDVI 

and LAI, particularly, the comparable performance of the rule-

based canopy cover estimates to machine learning SVM and RF 

with respect to R2, affirmed the robustness of the rule-based method 

to some extent; this further revealed the great potential of the rule-

based method for high-throughput plant phenotyping.  

 

 

Figure 6. Correlation analysis of canopy cover derived from the 

rule-based method, SVM, and RF, against NDVI (Normalized 

Difference Vegetation Index) (a, b, c) and LAI (Leaf Area 

Index) (d, e, f). Left side image is the RGB true color image of 

the sorghum filed overplayed with 640 plots.  
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5. CONCLUSIONS 

 

This work demonstrated a fully automated, accurate and fast 

method to differentiate green vegetation from non-green vegetation 

area for canopy cover estimation. The proposed method, namely the 

rule-based method, outperformed machine learning methods such 

as SVM and RF for the very high-resolution gantry hyperspectral 

dataset. For UAV-based hyperspectral and multispectral imagery, 

the rule-based method yielded slightly lower but comparable 

accuracies with respect to SVM and RF. Additionally, the rule-

based method showed better performance for detecting smaller 

leaves, and it also illustrated rapid processing speed, compared to 

SVM and RF. It is worth to noting that, the rule-based method is 

less robust in identifying the vegetation/soil mixed pixels, which 

would potentially lead to an underestimation of canopy cover. The 

rule-based method showed a higher sensitivity to shadow effects 

and was not able to accurately segment shaded green vegetation in 

the case of multispectral data to some extent. For future work, it 

will be of interest to further evaluate and improve the proposed 

rule-based method, particularly with respect to its performance over 

mixed pixels, as well as its adaptability to shaded green vegetation.  
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