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ABSTRACT: 
 
This paper examines algorithms for estimating terrestrial albedo from the products of the Global Change Observation Mission – 
Climate (GCOM-C) / Second-generation Global Imager (SGLI), which was launched in December 2017 by the Japan Aerospace 
Exploration Agency. We selected two algorithms: one based on a bidirectional reflectance distribution function (BRDF) model and 
one based on multi-regression models. The former determines kernel-driven BRDF model parameters from multiple sets of reflectance 
and estimates the land surface albedo from those parameters. The latter estimates the land surface albedo from a single set of reflectance 
with multi-regression models. The multi-regression models are derived for an arbitrary geometry from datasets of simulated albedo 
and multi-angular reflectance. In experiments using in situ multi-temporal data for barren land, deciduous broadleaf forests, and paddy 
fields, the albedos estimated by the BRDF-based and multi-regression-based algorithms achieve reasonable root-mean-square errors. 
However, the latter algorithm requires information about the land cover of the pixel of interest, and the variance of its estimated albedo 
is sensitive to the observation geometry. We therefore conclude that the BRDF-based algorithm is more robust and can be applied to 
SGLI operational albedo products for various applications, including climate-change research. 
 
 

1. INTRODUCTION 

The Japan Aerospace Exploration Agency (JAXA) initiated the 
Global Change Observation Mission (GCOM) to observe data on 
a global scale for analyzing global climate change and water 
circulation mechanisms. Under this project, GCOM – Climate 
(GCOM-C) was launched successfully in December 2017, and 
the Second-generation Global Imager (SGLI) onboard GCOM-C 
is expected to measure reflectance and radiation in the region of 
visible to infrared wavelengths (GCOM-C, 2021a). In December 
1999, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor was launched, and it is still in operation. SGLI 
and MODIS have equivalent spatial resolutions, (i.e., 250 m and 
1 km), but SGLI has more bands than MODIS, including three 
polarimetric bands for a better understanding of atmospheric 
properties. 
 
SGLI is designed to provide operational products regarding land, 
atmosphere, ocean, and cryosphere. Terrestrial albedo is one of 
the most important physical parameters for understanding the 
global circulation of water and heat, and climate-change research 
requires long-term and global datasets of albedo. Albedo is 
defined as the ratio of upwelling and downwelling irradiances, 
where irradiance is derived from the integral of radiance over a 
given hemisphere. Using the SGLI data, we aim to develop an 
algorithm for operational terrestrial albedo products. Therefore, 
in this paper we examine an algorithm for the stable estimation 
of daily SGLI-based albedo from surface reflectance. 
 
 
 
*  Corresponding author 

The MODIS albedo products are generated by using the 
bidirectional reflectance distribution function (BRDF)-driven 
method (Strahler et al., 1999). Kernel-driven BRDF models are 
regarded as robust and semi-empirical and can be applied to any 
type of land cover (Lucht et al., 2000). The kernel is a function 
determined by the viewing and illumination geometries. BRDF-
driven albedo estimation requires a certain number of 
observations. For example, MODIS operational BRDF/albedo 
products use at least seven good-quality reflectance data points 
obtained within 16 days. However, this requirement is 
challenging for tropical and subtropical climate regions where 
optical images suffer from cloud contamination. Simulation 
analysis has shown that the more observations that are 
contaminated by noise, the more unstable the estimated BRDF 
model parameters (Susaki et al., 2004). Consequently, in such 
regions there is often little or no data available for MODIS 
BRDF/albedo products; however, the available products have an 
acceptable accuracy (Susaki et al., 2007). Therefore, to obtain 
stable albedo products, a technique is required for estimating 
albedo from fewer observations. Such an approach would 
increase the temporal resolution of albedo products. 
 
Cui et al. (2009) presented a method that utilizes an empirical 
relation between bidirectional reflectance and albedo by using 
Polarization and Directionality of the Earth’s Reflectances 
(POLDER) data. It provides a direct estimate of land-surface 
broadband albedo from a single bidirectional observation. 
Similar approaches using multi-regression models were adopted 
in (Liang et al., 2013). Qu et al. (2014) also extended this method 
for estimating broadband albedo from MODIS data and multi-
angular POLDER-3 data. They generated regression models with 
the MODIS reflectance as the dependent variable and the multi-
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channels of the POLDER-3 reflectance as the independent 
variables. They implemented landcover classification by using 
reflectance in the blue channel and the normalized difference 
vegetation index (NDVI), and pixels of interest were classified 
into three landcovers, i.e. vegetation, non-vegetation, and 
snow/ice. The multi-regression models for each landcover class 
estimate the broadband albedo from MODIS reflectance data 
observed in a single measurement. The algorithm estimates daily 
albedo with improved temporal resolution. However, that 
technique requires landcover classification for pixels of interest 
in order to select optimal multi-regression models, and such 
classification may hamper accurate albedo estimation. This is 
because (i) the classification may include errors and (ii) 
landcover for multi-regression models is quite ambiguous (i.e., 
vegetation and non-vegetation), and thus the multi-regression 
models do not represent the landcover of interest. Compared to 
this multi-regression-based method, the aforementioned BRDF-
based method has an advantage that no landcover information is 
required. Therefore, in this paper we examine two methods—one 
based on a BRDF model and one based on multi-regression 
models—for the stable estimation of SGLI-based albedo from 
surface reflectance.  
 

2. DATA USED AND STUDY AREA 

2.1 SGLI Data 

Table 1 gives the specifications of the SGLI bands. SGLI was 
designed to measure ocean color, land cover, vegetation, snow, 
ice, clouds, and aerosols  (Shimoda, 2018). The visible and near-
infrared non-polarization channels are observed using a push-
broom scanner, while shortwave and thermal infrared are 
measured using an optical mechanical scanner. Herein, “channels” 
and “bands” refer to the same concept. 
 

Channel Wavelength 
[nm] 

IFOV Channel 
Wavelength 

[nm] 
IFOV 

VN1 375–385 

250 m 

VN9 757–769 

250 m VN2 407–412 VN10 858.5–878.5 

VN3 438–448 VN11 858.5–878.5 

VN4 485–495 SW1 1040–1060 
1 km 

VN5 520–540 SW2 1370–1390 

VN6 555–575 SW3 1530–1730 250 m 

VN7 663.5–683.5 SW4 2185–2235 1 km 

VN8 663.5–683.5    

 
Table 1. Specifications of Second-generation Global Imager 
(SGLI) channels (GCOMa, 2021). 
 
 
2.2 POLDER-3 Data 

POLDER-3 was developed by the Centre National D'études 
Spatiales (CNES) in France and placed on board the Polarization 
& Anisotropy of Reflectances for Atmospheric Sciences coupled 
with Observations from a Lidar (PARASOL) micro-satellite that 
was launched in December 2004; its function was terminated in 
December 2013. POLDER-3 was a push-broom scanner that 
provided samples of the BRDF of every point on Earth for 
viewing angles of up to 60°–70° at a spatial resolution of 
approximately 6 km (Lacaze et al., 2009). 
 
The publicly available BRDF data follow the land-cover types 
proposed by the International Geosphere-Biosphere Programme 

(IGBP). The original IGBP land-cover map contains 17 classes, 
and the monthly and yearly databases of the 16 classes other than 
water bodies are available. The monthly databases contain the 
best-quality BRDFs for each month independently, whereas the 
yearly databases contain the high-quality pixels from a full year 
with the aim of monitoring the annual cycle of surface reflectance 
and the directional signature. The central wavelengths of the 
publicly available channels are 490, 565, 670, 765, 865, and 1020 
nm (Lacaze et al., 2009). 
 
2.3 Field Data 

We measured the broadband albedo and bidirectional reflectance 
factor (BRF) data at two sites in Japan, namely the Tottori Sand 
Dune, which is classified as barren land, and the Yamashiro Test 
Field (Ataka et al., 2014), which is classified as deciduous 
broadleaf forest. The site details are presented in Table 2. 
 
We measured the BRF data at wavelengths of 300–2500 nm by 
using a portable spectroradiometer (Field Spec 3, Analytical 
Spectral Devices, USA) under clear-sky conditions (ASD, 2021). 
The measurements were conducted at a height of 1.5 m for barren 
land and of 28.5 m for the deciduous broadleaf forest. In the 
measurement of BRF data, we set the relative azimuth angles of 
the solar and viewing directions to 15°, 45°, 90°, 135°, and 180° 
to save on measurement time. We chose 15° instead of 0° to avoid 
contamination from the equipment shadow. The viewing angle 
was set to 0°, 15°, 30°, and 45°. We used a 5° field-of-view lens 
in the measurement. We also measured the broadband albedo for 
wavelengths of 285–3000 nm by using a four-component net 
radiometer (MR-60; EKO Instruments, Japan) (EKO, 2021). The 
instrument mounts two hemisphere pyranometers, one on the 
upper flat side and the other on the lower flat side. 
 

(a) Tottori (barren land) 

Area Latitude, longitude 

Tottori Sand 
Dune, Tottori 
Pref., Japan 

35°32'42.0"N, 134°14'03.0"E 
35°32'44.8"N, 134°14'02.0"E 
35°32'43.4"N, 134°14'04.1"E 

(b) Yamashiro (deciduous broadleaf forest) 

Area Latitude, longitude 

Yamashiro Test Field, Forest 
Research and Management 

Organization, Kyoto Pref., Japan 

34°47'25.0"N,  
135°50'27.3"E 

 
Table 2. Names and geolocations of study areas. 

 
 
 

3. METHODS 

Flowcharts of the two methods chosen for estimating albedo from 
land surface reflectance are shown in Figure 1, namely, the 
BRDF-based method [Figure 1(a)] and the multi-regression-
based method [Figure 1(b)]. Before explaining the two methods, 
we explain the primary modules used therein. 
 
3.1 Kernels 

A kernel used for estimating the BRDF and terrestrial albedo is a 
function of the bidirectional reflectance determined by the 
viewing and illumination geometries (Pinty et al., 1991; Wanner 
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and Strahler, 1995; Hao et al., 2020). In general, we consider two 
types of scattering observed from an object on the terrestrial 
surface, namely volumetric scattering and geometric scattering. 
 
For the volumetric-scattering kernel, Ross (1981) developed a 
kernel for the directional reflectance above a horizontally 
homogeneous plant canopy. Roujean et al. (1992) derived the 
Ross-Thick kernel, which was designed for use in areas with 
large values of leaf area index and does not consider hotspot 
effects. The geometric-scattering kernel calculates the scattering 
from sunlit and shaded objects and backgrounds; for example, 
tree crowns are approximated as spheroids to calculate their 
surface scattering. The semi-empirical kernel-driven BRDF 
model expressed by Equation (1) has been used for the 
operational BRDF and albedo products of MODIS (Roujean et 
al., 1992; Strahler et al., 1999): 
 

𝑅ሺ𝜃 ,𝜃௩,𝜙ሻ ൌ 
𝑓௦  𝑓௩𝐾௩ሺ𝜃 ,𝜃௩,𝜙ሻ𝑓𝐾ሺ𝜃 ,𝜃௩,𝜙ሻ . (1) 

 
Here, i, v and  are solar zenith angle, viewing zenith angle and 
the relative azimuth angle, respectively. fiso, fvol, and fgeo are 
unknown coefficients. Users can select any combination of 
volumetric- and geometric-scattering kernels, the values of 
which are determined once the illumination and viewing 
geometries are given. 

 
The three unknown coefficients in Equation (1) are determined 
by minimizing the least-squares error between the observations 
and the estimated albedos. In operational application, MODIS 
BRDF products are produced as follows. If at least seven cloud-
free observations of the surface are available during a 16-day 
period, then a full model inversion is attempted. First, the 
available data are evaluated to discard any outliers, and additional 
checks are performed to ensure positive kernel weights. If the 
data pass these evaluations, then a full inversion, or a normal 
inversion, is performed to establish the BRDF parameter weights 
that provide the best root-mean-square error (RMSE) fit. 
 
 
3.2 Narrowband and Broadband Albedo Estimation 

With the estimated BRDF model parameters, we estimate the 
narrowband albedo, which is an albedo for a relatively narrow 
wavelength range. In most cases, the wavelength range is 
equivalent to the bands designed for satellite sensors. Before 
estimating the narrowband albedo, we start with the narrowband 
black-sky and white-sky albedos. The black-sky albedo is a 
virtual albedo in the absence of a diffuse component, while the 
white-sky albedo is a virtual albedo in the absence of a direct 
component when the diffuse component is isotropic. The actual 
albedo at a given wavelength is expressed as a linear combination 
of the black-sky and white-sky albedos by using the atmospheric 
optical depth (Strahler et al., 1999). 
 
The broadband albedo is defined for wider wavelength ranges, 
such as 0.3–3.0 m or 0.3–5.0 m. However, no sensor measures 
the radiance over such a wide wavelength range; therefore, it is 
impossible to estimate the broadband albedo directly from 
observed sensor data. Instead, the broadband albedo is estimated 
by extrapolation, expressed as a linear regression model of 
several narrowband albedos (Liang, 2000). This conversion is 
known as narrow-to-broadband (NTB) conversion. 
 

 

 

 
(a) 

 

 
(b) 

 
Figure 1. Methods for estimating terrestrial albedo: (a) using 

BRDF model; (b) using multi-regression models. 
 

 
 
3.3 Method Based on BRDF Model 

As shown in Figure 1(a), the BRDF-based method starts with 
multiple sets of SGLI reflectance observed during several 
observations. First, the unknown coefficients used in the kernel-
based BRDF models in Equation (1) are determined by 
minimizing the least-squares error between the observations and 
the estimated albedos. The coefficients are then used to estimate 
the surface narrowband albedos. Finally, the surface broadband 
albedos are determined by applying NTB conversion to the 
narrowband albedos. 
 

Multiple-sets of SGLI
surface reflectance

Kernel-driven BRDF 
model parameters

Surface narrowband albedos

Surface broadband albedos

NTB conversion

SGLI multiple-sets of 
surface reflectance

kernel-driven BRDF 
model parameters

Surface narrowband albedos

Surface broadband albedos

NTB conversion

POLDER-3 BRDF DB

Band conversion

Surface reflectance at 
a specific geometry

Multi-regression model
(Veg/Non-veg/Ice)Actual Surface reflectance

Surface broadband albedo

Landcover   
classification

Surface reflectance
(Veg/Non-veg/Ice)

Actual Surface reflectance
(Veg/Non-veg/Ice)

Landcover   classification
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3.4 Landcover Classification 

The approach of estimating albedo via BRDF model parameters 
has the advantage of requiring no information about land-cover 
type in the area of interest. In contrast, the approach of estimating 
albedo from a set of reflectances requires a priori information 
about land-cover type because the BRDF shape depends strongly 
on land cover; accordingly, the coefficients of the multi-
regression models, which are explained in the following section, 
depend on land-cover type. Therefore, selecting the optimal 
multi-regression models requires having the land-cover 
information. In operational albedo products, it may be possible to 
refer to the IGBP land-cover map, among others. However, using 
such a land-cover map can cause errors due to misclassification 
or the mixed pixel problem in maps containing more than one 
land-cover type. Therefore, we decided to classify land cover into 
three types: vegetation, non-vegetation, and ice/snow. 
 
Figure 2 shows a scattergram of NDVI versus reflectance at the 
wavelength of 443 nm, which is the center wavelength of VN3 
of SGLI. The data were generated as simulated SGLI data from 
POLDER-3 data. Three classes of data were used for the 
scattergram, namely, (i) deciduous broadleaf forest (IGBP-4), (ii) 
snow/ice (IGBP-15), and (iii) barren or sparsely vegetated 
(IGBP-16). Figure 2 shows that the combination of NDVI and 
reflectance at 443 nm can be used to classify pixels into these 
three classes, albeit that some snow/ice points with higher NDVI 
and lower reflectance at 443 nm may be difficult to separate. The 
approach taken in this research is to classify the SGLI datasets 
into three land-cover classes beforehand. 
 

 

Figure 2. Scattergram of reflectance versus normalized 
difference vegetation index (NDVI) at the wavelength of 443 
nm. 

 
 

4. EXPERIMENTS 

In this research, we define the broadband albedo as that measured 
in the wavelength range of 0.285–3.0 m because the albedo 
meter used in the field measurements covered those wavelengths. 
 
4.1 Conversion from POLDER-3 to SGLI bands 

The measured digital numbers of the samples were converted into 
reflectances of the bands defined for SGLI by using the SGLI 
relative spectral response (RSR) and the digital numbers of a 
reference. The reflectances of the bands for POLDER-3 were also 

calculated by the same procedure except using the POLDER-3 
RSR. 
 
As for the in situ data measured by Field Spec 3, the reflectances 
of SGLI and POLDER-3 channels were calculated. With the set 
of reflectances, a multi-regression model was generated that used 
six channels of POLDER-3 reflectances as the independent 
variables and a specific channel of SGLI reflectance as the 
dependent variable. 
 
4.2 NTB Conversion 

For the kernel-driven BRDF model in Equation (1), we used the 
Ross-Thick kernel for volumetric scattering and the Li-Sparse 
kernel for geometric scattering (Strahler et al., 1999). We 
collected in situ BRF data and albedo data for several types of 
land cover and used them to determine the coefficients of NTB 
conversion. We constrained the coefficients to be non-negative 
and determined them by minimizing Akaike’s information 
criterion (AIC) (Akaike, 1974). For a given model, AIC assesses 
its performance by evaluating both the number of variables used 
in the model and the sum of the errors. Note that VN6 was 
excluded from the calculation because its radiance may be 
saturated in land cover with high reflectance. The obtained model 
of NTB conversion is 

𝛼ୗ ൌ 0.2233𝛼ே଼  0.4005𝛼ேଵଵ  0.1463𝛼ௌௐଷ , (2) 

where 𝛼 is the narrowband albedo of band i. 

 
 
 

 
 

Figure 3. Scattergram of actual albedo versus that estimated 
by narrow-to-broadband (NTB) conversion for SGLI. 
“Calibration” denotes the calibration data used to determine 
Equation (2), and “Validation” denotes the validation data 
(Susaki et al., 2020). 
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For calibration, we used the reflectances of barren land (11 
points), deciduous broadleaf forest (three points), and paddy 
fields (one point), and the RMSE for the 15 points was 0.010. To 
validate Equation (2), we used barren land (nine points), 
deciduous broadleaf forest (three points), and grassland (two 
points); the RMSE was 0.023, which is acceptable. As reported 
by Susaki et al. (2020), Figure 3 shows a scattergram of actual 
albedo versus that estimated by NTB conversion. 
 
4.3 Multi-regression Model Estimation for Albedo 
Estimation 

We determined the coefficients of multi-regression models for 
the dataset including surface reflectance and albedo for a specific 
geometry. We set the interval for the solar and sensor zenith 
angles as 5° and that for the relative azimuth angle as 15°. The 
latter is larger because the relative azimuth angle is less sensitive 
to the coefficients compared with the two zenith angles. 
 
We generated multi-regression models of three types: vegetation, 
non-vegetation, and snow/ice. From the scattergram in Figure 2, 
we set the following class thresholds to determine the models: 

 vegetation: NDVI ≥ 0.5 and 443 ≤ 0.2; 
 non-vegetation: 0 ≤ NDVI < 0.4 and 443 ≤ 0.2; 
 snow/ice: NDVI ≤ 0 and 443 ≥ 0.6. 

(12) 

 
4.4 Accuracy Assessment 

First, we assessed the multi-regression models by using in situ 
data measured in barren land and deciduous broadleaf forest. We 
examined the possible combinations of SGLI bands as 
independent variables of the regression model and found VN5, 
VN8, VN11, and SW1 to be the best combination in terms of AIC. 
The RMSE was calculated by using the residual between the 
simulated and estimated albedo. Table 3 gives the RMSE for each 
geometry, and Figure 4 shows a contour map of the RMSE of the 
estimated albedo when compared with the actual in situ albedo. 
Figure 4 was generated by applying the kriging technique to the 
results of Table 3. The final RMSEs for all geometries are 0.020 
for barren land and 0.044 for deciduous broadleaf forest. Note 
that some results for specific geometries are excluded from Table 
3(b) because strong reflectances were observed that may have 
been due to scattering by the tower. 
 
We then examined the validity of both the BRDF-based and 
multi-regression-based methods for estimating surface albedo by 
applying SGLI data. Because the spatial resolution of SW3 (i.e., 
250 m) is finer than that of the other shortwave bands (i.e., 1 km), 
we again examined the possible combinations of SGLI bands as 
independent variables of the regression model under the 
condition that SW3 is included in the independent variables. We 
found VN8, VN11, and SW3 to be the best combination in terms 
of AIC. Table 4 gives the RMSEs of the temporal albedo 
estimated by the two different approaches. One approach is to use 
multi-regression models generated from the data of vegetated 
areas. The other approach is to use the BRDF model parameters 
provided in SGLI atmospheric-corrected land surface reflectance 
(RSRF) products (GCOM-C, 2021b). The BRDF model 
parameters are generated as a by-product of RSRF, and the 
processing uses the kernels reported by Maignan et al., (2004). 
Note that we did not include the assessment results for Tottori 
because valid SGLI data were available only for October 28, 
2019. 

 
(a)  

 

(b) 
 

Figure 4. Contour maps of root-mean-square error (RMSE) of 
multi-regression model for IGBP LC16, barren or sparsely 
vegetated. The RMSE was calculated by using the residual 
between the simulated and estimated albedo. The solar zenith 
angle was set to 0° and 30° for (a) and (b), respectively. 

 

 
 

5. DISCUSSION 

5.1 Multi-regression Model Estimation for Albedo 
Estimation 

In this research, we examined a method for estimating albedo 
from a single set of surface reflectances by using multi-regression  
models. The models were generated from multi-angular 
simulated SGLI surface reflectance. To improve the accuracy of 
the albedo estimation, we examined the performance of multi-
regression models having a number of independent variables 
among the following 10 channels: VN1, VN2, VN3, VN5, VN6, 
VN8, VN11, SW1, SW3, and SW4. We found that the models 
with more independent variables do not always generate better 
accuracy. For example, the validation results show that some 
models with six or seven independent variables have an RMSE 
of approximately 0.06 for barren land, which is much worse than 
that in Table 3. Also, cases were observed in which the absolute 
values of the coefficients were far too sensitive to changes in the 
sensor zenith angle, as were the signs of the coefficients (i.e., 
positive or negative). These observations may be the result of 
POLDER-3 data having relatively low spatial resolution, 
(approximately 6 km); the model estimation uses the albedo 
simulated based on POLDER-3 data. 
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(a)  

(b) 
 

Figure 5. Contour map of RMSE of estimated albedo. (a) Barren 
or sparsely vegetated (IGBP LC16). (b) Deciduous broadleaf 
forest (IGBP LC4). 
 

 
 

Figure 6. Temporal albedo of Yamashiro, Japan estimated from 
SGLI data. “Regression” denotes the results applying multi-
regression models for vegetation class to SGLI surface 
reflectance, and “BRDF” denotes the results using the BRDF 
model parameters provided in SGLI surface reflectance 
products. 

 

 
  

(a) 
vz (deg) az (deg) RMSE # of samples 

15 15 0.026  36 
15 45 0.019  37 
15 90 0.021  38 
15 135 0.022  37 
15 180 0.026  37 
30 15 0.018  37 
30 45 0.016  37 
30 90 0.016  37 
30 135 0.025  38 
30 180 0.023  37 
45 15 0.014  37 
45 45 0.014  37 
45 90 0.016  39 
45 135 0.018  37 
45 180 0.020  39 

 Total 0.020  560 
 

(b) 
vz (deg) az (deg) RMSE # of samples 

15 15 0.058  8 
15 45 0.055  8 
15 135 0.046  8 
15 180 0.040  8 
30 15 0.037  8 
30 45 0.031  8 
30 135 0.058  8 
30 180 0.060  8 
45 15 0.020  8 
45 45 0.042  8 
45 135 0.030  8 
45 180 0.025  8 

 Total 0.044 96 
  
Table 3. Root-mean-square error of estimated albedo. (a) 
Barren or sparsely vegetated (IGBP LC16). (b) Deciduous 
broadleaf forest (IGBP LC4). “vz” and “az” are sensor zenith 
angle and relative azimuth angle, respectively. 
 

 
 

 
Area Landcover Regression BRDF 

Yamashiro Deciduous 
broadleaf forests 

0.011 0.014 

 
Table 4. Root-mean-square errors of estimated temporal 
albedo for Yamashiro, Japan, shown in Figure 6. “Regression” 
denotes the results applying multi-regression models for 
vegetation class to SGLI surface reflectance, and “BRDF” 
denotes the results using the BRDF model parameters 
provided in SGLI surface reflectance products.  
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The POLDER-3 data measured in 2008 were aggregated monthly, 
and it is possible to derive monthly-based multi-regression 
models. We examined the performance of such monthly-based 
models and found the estimated albedos to be less accurate. In 
reality, it can be reasonable to apply monthly-based multi-
regression models because some vegetation (e.g., deciduous 
forests) has seasonally changing BRDF. However, when we 
derived monthly models, fewer samples were used than those 
used to derive yearly multi-regression models, thereby leading to 
unstable model estimation. Table 4 shows that the yearly multi-
regression models generate acceptable albedo accuracy; 
therefore, it is reasonable to use yearly multi-regression models 
to generate operational albedo products. 
 
5.2 Sensitivity Analysis 

Next, we discuss the sensitivity of the multi-regression models. 
The dark areas in Figure 4(a) and (b) represent the geometry for 
which worse RMSE was generated for barren land. We set the 
solar zenith angle to 0° and 30° for Figure 4(a) and (b), 
respectively. The dark areas correspond to the hot spot of the 
measurement. This feature is also common to that of deciduous 
broadleaf forests and indicates that the simulated SGLI surface 
reflectance near the hot-spot geometry may have larger variance 
than the reflectance for other geometries. 
 
This interpretation is supported by Figure 5(a) and (b), which 
show that the errors of the estimated albedo obtained using the in 
situ data of those solar zenith angles were not identical. However, 
because most of the measurements were conducted between 9:00 
and 11:00 in the morning, similar solar zenith angles were 
observed. There are dark areas around the viewing zenith angle 
of approximately 15° in the principal plane in Figure 5(a) and 
around that of approximately 10° in the principal plane in Figure 
5(b). Consequently, it should be noted that the albedo near a hot-
spot geometry estimated by the multi-regression models may be 
less accurate than those near other geometries. 
 

6. CONCLUSIONS 

In this paper, we examined two algorithms for generating 
GCOM-C/SGLI surface albedo products, namely, one based on 
a BRDF model using several sets of reflectance and one based on 
multi-regression models using a single set of reflectances. 
Regarding the latter algorithm, we simulated the multi-angular 
SGLI surface reflectance from the POLDER-3 surface 
reflectance, and we generated datasets of simulated albedo and 
multi-angular reflectance via a kernel-driven BRDF model. We 
derived multi-regression models at an arbitrary geometry of solar 
zenith, sensor zenith, and relative azimuth angles for three land-
cover classes, namely, vegetation, non-vegetation, and snow/ice. 
The experimental results show that the former algorithm 
generates an albedo with an acceptable RMSE of 4.7×10−2, 
whereas the albedos estimated by the multi-regression-based 
algorithm have an acceptable RMSE of 3.9×10−2. The latter 
algorithm requires landcover classification and, more 
importantly, may be affected by larger variance when the surface 
reflectance near a hot-spot geometry is used. Therefore, we 
conclude that the BRDF-based algorithm can be applied to SGLI 
operational albedo products. 
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