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ABSTRACT: 

Forest is one of the most crucial Earth’s resources. Forest above-ground biomass (AGB) mapping has been research endeavors 

for a long time in many applications since it provides valuable information for carbon cycle monitoring, deforestation, and forest 

degradation monitoring. A methodology to rapidly and accurately estimate AGB is essential for forest monitoring purposes. 

Thus, the main objective of this paper was to investigate the performance of decision tree-based models to predict AGB at a site 

in Huntington Wild Forest (HWF) in Essex County, NY using continuous forest inventory (CFI) plots. The results of decision 

tree, random forest, and deep forest regression models were compared using light detection and ranging (LiDAR), Landsat 5 

TM, and a combination of them. The results illustrated the importance of integration of Landsat 5 TM and LiDAR data, which 

benefits from both vertical forest structure and spectral information reflected by canopy cover. In addition, the deep forest model 

with a root mean square error (RMSE) of 51.63 Mg/ha and R-squared (R2) of 0.45 outperformed other regression tree-based 

models, regardless of the dataset.     

1. INTRODUCTION

Forest is considered as one of the most valuable Earth 

resources, which is required to be monitored in a timely 

manner (Bastin et al. 2017). Sustainable forest management 

is of paramount significance for many applications, namely 

forest productivity, monitoring carbon sequestration, and 

investigating deforestation. Importantly, forest above-

ground biomass (AGB) plays a crucial role in carbon 

sequestration, which contributes to global climate change 

issues (M. Li, Im, and Beier 2013). Accurate AGB 

estimation has been an area of interest for many researchers. 

Conventional field measurement techniques provide an 

accurate estimation of AGB while they are labor-intensive, 

costly, time-consuming, and not applicable for large regions 

(M. Li, Im, and Beier 2013). In recent years, remote sensing 

data paved the road for a cost-effective AGB estimation 

over large areas. 

Optical and synthetic aperture radar (SAR) imagery are 

valuable sources for forest monitoring applications. 

However, saturation is the most common issue with these 

datasets (Joshi et al. 2017; Kachamba et al. 2016). It worth 

mentioning that saturation occurs in forests with multilayer 

canopies or high dense biomass when spectral reflectance 

values of pixels are not sensitive to biomass changes, which 

affects the quality of AGB estimation (Zhao et al. 2016). 

Zhao et al. (2016) reported that saturation is more severe 

for AGB values greater than 130 Mg/ha. In addition, 

weather conditions (e.g., rain, snow, shadow, and cloud 

cover) can greatly affect the quality of the optical data. 

Light detection and ranging (LiDAR) is another remote 

sensing data, which directly measures the vertical structure 

of forest canopy (Boudreau et al. 2008). Although LiDAR 

can provide valuable information for AGB estimation, it is 

costly and limited for large-scale applications. 

So far, many studies have been concentrated on leveraging 

remote sensing data for AGB estimation (Issa et al. 2020; 

Dube et al. 2016). These studies have compared different 

remote sensing datasets and reported the achieved results. 

Several studies have been focusing on combining the 

LiDAR, optical, and SAR data to maximize the potential of 

these datasets for AGB estimation (Shao, Zhang, and Wang 

2017; Urbazaev et al. 2018). Zhang et al. (2019) and Cao et 

al. (2018) used the integration of LiDAR and optical 

imagery to improve the estimation of AGB. The 

combination of SAR data with optical and LiDAR data has 

been used by Shao and Zhang (2016) and Hyde et al. 

(2007) which enhanced AGB prediction results. 

Machine learning techniques are one of the commonly used 

models in AGB estimation since it is more compatible with 

the non-linear inherent characteristic of remote sensing data 

(C. Li, Li, and Li 2020). Among machine learning 

algorithms, decision tree-based models have shown better 

performance in AGB prediction (Y. Li et al. 2020). The 
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random forest (RF) regression algorithm has been widely 

used in AGB estimation and has shown promising results 

(Mutanga, Adam, and Cho 2012; Dang et al. 2019; Karlson 

et al. 2015). 

 

According to the existing papers on forest AGB estimation 

using remote sensing data, there is always room to fully 

explore the potential of models and datasets to improve the 

accuracy of AGB estimation. The main objective of this 

paper is to address the capability of the combination of 

LiDAR and optical data for accurate AGB estimation. In 

order to achieve this goal, three well-known decision tree-

based machine learning algorithms are implemented using 

the integration of Landsat 5 thematic mapper (TM) imagery 

and airborne LiDAR data. Thus, this study presents a 

comprehensive comparison between decision tree (DT), RF, 

and deep forest regression models.     

 

This study focuses on investing the following research 

aims: 1) assessing the potential of integration of Landsat 5 

TM and LiDAR data for AGB estimation, 2) comparing 

decision tree-based algorithms for predicting AGB values, 

3) evaluating whether deep forest model can provide better 

results in comparison to DT and RF.    

 

   

2.  STUDY AREA AND DATA 

2.1 Study Area 

This project was conducted on the Huntington Wildlife 

Forest (HWF) area, which is located in the central 

Adirondack Park in northern New York State (Figure 1). 

HWF, with an approximate area of 6,000 ha (latitude 44E 

00" N, longitude 74E 13" W), was donated to the State 

University of New York, College of Environmental Science 

and Forestry (SUNY-ESF) for research purposes. The 

elevation of the mountainous topography of HWF property 

ranges from 473 m to 908 m above mean sea level. 

Huntington has a mean annual temperature of 4.4 Celsius 

degree and a mean annual precipitation of 1010 mm (S. Li, 

Quackenbush, and Im 2019). Huntington forest contains 

72% of northern hardwoods, 18% of mixed hardwood 

conifer, and 10% of conifer species.  

 

2.2 Field Inventory Data 

In this study, SUNY-ESF continuous forest inventory (CFI) 

plots have been used as reference data. This comprehensive 

dataset was collected during the summer of 2011. The CFI 

dataset of HWF in 2011 contained 288 sample plots with 

approximately 807 m2 circular regions. In each sample plot, 

all trees with a diameter at breast height (DBH) of 11.7 cm 

and greater were measured. For each tree, tree species, 

DBH, and the relative location to the center of the sample 

plot were recorded (S. Li, Quackenbush, and Im 2019). 

Then, AGB at the tree level was calculated using species-

specific DBH allometric equations (Kennedy et al. 2018). 

Finally, plot-level AGB was calculated as the average AGB 

per unit area within each sample plot (S. Li, Quackenbush, 

and Im 2019). In other words, the plot level AGB in 

megagrams per hectare (Mg/ha) was calculated by dividing 

the tree level AGB by the plot area.  

 

 

Figure 1. Location of the study area (Huntington Wildlife 

Forest) in Essex County, NY for forest AGB estimation 

using decision-tree based models. Black circles indicate 

sample plots located in Huntington wildlife forest.   

 

2.3 LiDAR data 

Discrete return LiDAR data collection was acquired over 

HWF in May 2015 using the Leica Airborne Laser Scanner 

(ALS70). First, a k-nearest neighbor imputation algorithm 

(k=5) was used to convert the raw point clouds into height-

normalized point clouds. Then, predictors were computed 

using the height normalized LiDAR data for modeling at 30 

m grid cells. Finally, 29 predictors were computed and fed 

as inputs into the machine learning models (Table 1). Since 

field measurements were collected in 2011, the main 

hypothesis was that HWF did not change from 2011 to 

2015. 

 

2.4 Landsat 5 TM Imagery  

Google Earth Engine (GEE) cloud platform was used to 

process and download the Landsat 5 imagery, and then R 

software was used to train the model and estimate AGB 

values. Spectral bands and some biomass-related vegetation 

indices were used to train the regression models. Table 2 

lists vegetation indices used in this study. Spectral bands 

were extracted using Landsat 5 TM imagery in 2011 for 

HWF. Landsat 5 dataset contains three visible, one near-

infrared (NIR) band, and two short-wave infrared (SWIR) 

bands with 30 m resolution. These images are 

atmospherically ortho-corrected surface reflectance. A 

cloud mask was applied to the imagery to remove the cloud 

effect in the acquired images. 
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Predictor Description Predictor Description 

pgi 

Percentage of 

ground 

intensity 

z_kurt 
Kurtosis of 

height 

pfi 

Percentage of 

feature 

intensity 

z_skew 
Skewness of 

height 

cv_i 

Coefficient of 

variation of 

intensity 

L3 3rd L-moment 

skew_i 
Skewness of 

intensity 
L_cv 

L-moment 

coefficient of 

variation 

kurt_i 
Kurtosis of 

intensity 
L_kurt 

L-moment 

kurtosis 

piz25 

Percentage of 

intensity 

above the 

25th height 

percentile 

h10 
10th height 

percentile 

piz50 

Percentage of 

intensity 

above the 

50th height 

percentile 

h20 
20th height 

percentile 

piz75 

Percentage of 

intensity 

above the 

75th height 

percentile 

h40 
40th height 

percentile 

piz90 

Percentage of 

intensity 

above the 

90th height 

percentile 

h70 
70th height 

percentile 

piz99 

Percentage of 

intensity 

above the 

99th height 

percentile 

h80 
80th height 

percentile 

cv 

Coefficient of 

variation of 

height 

h90 
90th height 

percentile 

d20 

Percent of 

returns above 

the 2nd height 

bin (of 10 

equal bins) 

h95 
95th height 

percentile 

d40 

Percent of 

returns above 

the 4th height 

bin (of 10 

equal bins) 

h99 
99th height 

percentile 

d60 

Percent of 

returns above 

the 6th height 

bin (of 10 

equal bins) 

d70 

Percent of 

returns above 

the 7th height 

bin (of 10 

equal bins) 

d90 
Percent of returns above the 9th height bin (of 

10 equal bins) 

Table 1. LiDAR predictors used to estimate AGB over 

Huntington Wildlife Forest.  

  Vegetation Indices Formula 

 Normalized Difference 

Vegetation Index (NDVI)  

 Ratio Vegetation Index 

(RVI)  

Difference Vegetation 

Index(DVI)  

NIR-R 

Soil Adjusted Vegetation 

Index (SAVI) 
 , L=0.5 

Normalized Green-Red 

Difference Index (NGRDI)  

Wide Dynamic Range 

Vegetation Index (WDRVI)   

Excess Green Index (ExG)  

Chlorophyll Index-green (CI 

green)  

Visible Atmospherically 

Resistant Index (VARI)  

Chlorophyll Vegetation 

Index (CVI) 
NIR*  

Table 2. Vegetation indices derived from Landsat 5 TM 

imagery for AGB estimation over Huntington Wildlife 

Forest. 

 

3. METHODS 

In this paper, three decision tree-based machine learning 

regression models including DT, RF, and deep forest were 

deployed and compared. Decision tree-based algorithms are 

a subset of ensemble learning which help to decrease the 

variance and increase the stability (Dey 2016). The R 

software and Python 3.7 packages were used to implement 

regression models and predict AGB for LiDAR data, 

Landsat 5 TM imagery, and integration of LiDAR and 

Landsat 5 TM data. Each model was run using a 

training/testing split of 70/30 to calculate the root mean 

square error (RMSE) and R-squared (R2). The following 

subsections describe a brief background and parameters 

regarding each model. Parameters were tuned through a 

grid search approach.   

  

3.1 Decision Tree (DT) 

DT is the most popular machine learning technique which 

builds the foundation of tree-based models (Kotsiantis 

2013). It develops a regression model based on a tree 

structure of the conditional statement. DT uses attributes in 

the dataset to break down the data into smaller subsets by 

making decisions. Nodes can be divided into two 

categories: decision nodes and leaf nodes. The former 

specifies decisions to split the data while the latter defines 

the value of the attributes. DT provides straightforward 

interpretation and manages non-linear data. However, DT is 

prone to over-fitting, and a small noise in the input dataset 

can remarkably influence the predictions (Song and Ying 

2015). Package “rpart” in R was used to implement the DT 
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model. Figure 2 shows the selected parameters after the grid 

search approach for the combination of LiDAR and Landsat 

data. The complexity parameter (cp) is the minimum 

improvement needed at each node. The minsplit defines the 

minimum number of observations in the root node (decision 

node) that could be broken down. The minbucket denotes 

the smallest number of observations in a leaf node. The 

maxdepth prevents the tree growth from a certain depth.  

  

3.2 Random Forest 

Random forest is an ensemble non-parametric method, 

which combines many decision trees in parallel 

(Mahdianpari et al. 2017). It uses a combination of bagging, 

which randomly selects variables, but with replacement, as 

training for growing the tree. If there are M input 

predictors, then m ≤ M predictors are selected randomly out 

of M, and the best split on m is used to split the node. Each 

tree is grown to the largest possible extent without pruning 

(Ali et al. 2012). RF uses a bagging technique to make sure 

variety in trees, thus reduces the over-fitting. Moreover, it 

can handle noisy datasets. An R package named 

“randomForest” was used for RF model training. The list of 

selected parameters is shown in Figure 2. The ntree is the 

number of trees in a forest. The mtry defines the number of 

random variables at each split. The nodesize is the 

minimum number of samples within the leaf nodes.  

  

3.3 Deep Forest 

Deep forest is a novel decision tree ensemble approach, 

which can be considered as an alternative for deep neural 

networks (DNNs) with fewer hyper-parameters and 

complexity (Zhou and Feng 2017). In contrast to DNNs, 

deep forest runs faster, and it is much easier to train. While 

DNNs require large-scale training data, deep forest can 

perform well with small-scale training data (Zhou and Feng 

2017). This approach is also known as multi-grained 

cascade forest (gcForest). A cascade structure enables deep 

forest to do representation learning, while in DNNs, 

representation learning is done by the layer-by-layer 

processing of features. In deep forest, each level of cascade 

gets the feature information processed by its preceding level 

and gives its processing output to the next level (Zhou and 

Feng 2017). The number of cascade levels can be 

adaptively determined to perform well even with small-

scale data (Zhou and Feng 2017). It is worth mentioning 

that each level is an ensemble of random forests (e.g. an 

ensemble of ensembles). This method contains different 

types of forests to increase the diversity which is required 

for ensemble constructions. In order to implement the deep 

forest model, a combination of gcForest and sklearn 

packages in R and Python was utilized. Figure 2 shows the 

selected parameters for deep forest implementation. The 

n_cascadeRF defines the number of random forests in a 

cascade layer, while n_cascadeRFtree specifies the number 

of trees in a single random forest of a cascade layer. The 

n_mgsRFtree defines the number of trees in an RF during 

multi grain scanning.  

 

 

Figure 2. Packages and selected parameters used for the 

implementation of decision tree-based models for AGB 

estimation (Huntington Wildlife Forest) in Essex, NY using 

the combination of LiDAR and Landsat data.  

  

 

4. RESULTS AND DISCUSSION 

This section represents the results of implemented decision 

tree-based models on LiDAR, Landsat 5 TM, and a 

combination of LiDAR and Landsat 5 TM data. Table 3 

summarizes the RMSE and R2 of DT, RF, and deep forest 

models. In addition, AGB maps produced by each 

regression model are demonstrated in Figure 3.     

 

Model  

 

LiDAR 

 

 

Landsat 5 

 

LiDAR + 

Landsat 5  

Decision 

Tree 

RMSE 

(Mg/ha) 
58.37 70.94 59.23 

R2 0.33 0.21 0.32 

Random 

Forest 

RMSE 

(Mg/ha) 
53.51 67.11 52.67 

R2 0.40 0.22 0.44 

Deep 

Forest 

RMSE 

(Mg/ha) 
52.01 67.27 52.63 

R2 0.43 0.23 0.45 

Table 3. Results of HWF AGB estimation using decision 

tree, random forest, and deep forest models and integration 

of LiDAR and Landsat 5 TM imagery.  

As shown in Table 3, LiDAR data provides a smaller 

RMSE than Landsat data, which indicates the importance of 

vertical structure captured by LiDAR data. Although tree 

diameters are more related to AGB, height characteristics 

derived by LiDAR data can be efficiently used for AGB 

estimation (Zhao et al. 2016). The most probable issue with 

the low performance of Landsat imagery might be due to 

the saturation problem. The AGB of HWF varies from 0 to 

433.2 Mg/ha (Table 4). Landsat 5 TM suffers from 

saturation that greatly influences the RMSE and R2. Thus, 

in this study area, using Landsat-only imagery is not the 

best option for accurate AGB estimation. By combining 

LiDAR and Landsat 5 TM imagery, RMSE decreases, 

which is a great sign of improvement in AGB estimation. 

The reason behind this improvement is that using an 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-235-2021 | © Author(s) 2021. CC BY 4.0 License.

 
238



 

integration of LiDAR and Landsat will benefit from both 

vertical and spectral information. Thus, the AGB estimation 

will improve. The trend of performance increasing by using 

both LiDAR and Landsat data can be seen in all three 

regression models. 

 

Min 

(Mg/ha) 

1st 

quartile 

(Mg/ha) 

Median 

(Mg/ha) 

3rd quartile 

(Mg/ha) 

Max 

(Mg/ha) 

0 139.5 183.2 183.4 433.2 

Table 4. Statistical characteristics of AGB of CFI plots in 

HWF used for AGB estimation using decision tree-based 

models and remote sensing data.    

The DT model provided the highest RMSE and the lowest 

R2 for all datasets except the combination of LiDAR and 

Landsat. DT model tends to over-fit which greatly affects 

its performance. Over-fitting occurs when the model fits 

very well to the training data, while for the testing data, it 

cannot predict the correct values since the model knows 

details about training data, including noise. The second-best 

model was RF, which provided better results in terms of 

RMSE and R2 for all datasets in comparison to DT model. 

The RF uses an ensemble of trees, which reduces the over-

fitting issues (Mahdianpari et al. 2017). In addition, it can 

overcome the noise in the dataset. Deep forest provided 

slightly better results for Landsat and a combination of 

LiDAR and Landsat datasets. The best improvement of 

deep forest can be seen in LiDAR dataset. Recently, deep 

forests are considered the best alternative for DNNs; still, 

their potentials need to be investigated. In this study area, 

deep forest with its own unique characteristics, such as 

layer-by-layer processing, sufficient model complexity, and 

faster training than DNNs (Zhou and Feng 2017), could 

more accurately estimate the AGB in comparison to DT and 

RF.  

Figure 3 shows the AGB maps produced using the 

combination of Landsat 5 TM and LiDAR data, which 

provided the best results in terms of RMSE and R2 for all 

regression tree models. The maximum range of AGB is 

limited to 350 Mg/ha since there is no estimated AGB 

above this range due to the saturation issue with high 

biomass. As seen in Figure 3, both deep forest and RF were 

capable of predicting AGB within a wider range than DT. 

DT did a poor job in estimating biomass with low and high 

values. Furthermore, the histograms of the three AGB maps 

are plotted to provide more information about the raster 

(Figure 4). All three maps suffer from saturation issues, and 

they cannot estimate AGB values for more than 340 Mg/ha. 

As shown in Figure 4, deep forest estimated the AGB 

values from 0 to 340 Mg/ha, and according to the AGB 

map, it nicely shows the regions with high and low 

biomass. The RF model predicted AGB values from 50 to 

300 Mg/ha, which shows the area with low and high 

biomass better than the DT model. However, RF did not 

perform well in areas with high biomass, which are nicely 

recognized in deep forest. The range of AGB estimation for 

DT varies from 110 to 230 Mg/ha. The DT did a poor job at 

predicting AGB for both low and high biomass regions.           

 

 

Figure 3. Above-ground biomass maps of HWF generated 

using decision tree-based regression models and remote 

sensing data. The maps are produced based on the 

combination of LiDAR and Landsat 5 TM data. 

 

Figure 4. Histograms of AGB maps for three tree-based 

regression models: deep forest, RF, and DT in HWF. The 

AGB maps were produced using decision tree-based models 

and the combination of LiDAR and Landsat 5 TM imagery.    

  

5. CONCLUSION 

The main objective of this study was to investigate the 

capabilities of remote sensing data and machine learning 

algorithms for accurate AGB estimation. The combination 

of LiDAR and Landsat 5 TM data using the deep forest 

regression model provided the most accurate AGB 

estimation. Vertical characteristics captured by LiDAR and 

spectral information derived by Landsat imagery could 

improve the AGB prediction. Deep forest, a highly 

competitive alternative for DNNs, outperformed RF and DT 

models. Thanks to the unique characteristics of deep forest, 

biomass can be predicted more accurately. It is 

recommended to use other optical and radar imagery such 

as Sentinel-2 and Sentinel-1 with 10 m spatial resolution 
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and Bayesian optimization hyperparameter tuning for 

further studies.  
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