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ABSTRACT: 

 

Soil salinity, a significant environmental indicator, is considered one of the leading causes of land degradation, especially in arid and 

semi-arid regions. In many cases, this major threat leads to loss of arable land, reduces crop productivity, groundwater resources loss, 

increases economic costs for soil management, and ultimately increases the probability of soil erosion. Monitoring soil salinity 

distribution and degree of salinity and mapping the electrical conductivity (EC) using remote sensing techniques are crucial for land 

use management. Salt-effected soil is a predominant phenomenon in the Eshtehard Salt Lake located in Alborz, Iran. In this study, the 

potential of Sentinel-2 imagery was investigated for mapping and monitoring soil salinity. According to the satellite's pass, different 

salt properties were measured for 197 soil samples in the field data study. Therefore several spectral features, such as satellite band 

reflectance, salinity indices, and vegetation indices, were extracted from Sentinel-2 imagery. To build an optimum machine learning 

regression model for soil salinity estimation, three different regression models, including Gradient Boost Machine (GBM), Extreme 

Gradient Boost (XGBoost), and Random Forest (RF), were used. The XGBoost method outperformed GBM and RF with the coefficient 

of determination (R2) more than 76%, Root Mean Square Error (RMSE) about 0.84 dS m-1, and Normalized Root Mean Square Error 

(NRMSE) about 0.33 dS m-1. The results demonstrated that the integration of remote sensing data, field data, and using an appropriate 

machine learning model could provide high-precision salinity maps to monitor soil salinity as an environmental problem. 

 

1. INTRODUCTION 

Soil salinization due to natural processes and human factors is a 

significant environmental hazard in arid and semi-arid regions 

(Metternicht and Zinck, 2003; Ren et al., 2019). Soil affected by 

salt reduces the productivity of agricultural products, ecosystem 

health, and water quality. It also can lead to soil erosion and land 

degradation (Khan et al., 2005; Wicke et al., 2011). Based on the 

Food and Agriculture Organization of the United Nations (FAO) 

estimates, 397 million hectares of land worldwide have been 

covered by saline soils, and the affected areas are estimated to be 

expanding at a rate of two million hectares per year (Koohafkan 

and Stewart, 2012; Peng et al., 2019). In addition to the main salt 

content in many areas, soil resources are at risk of secondary 

salinization, mainly due to low precipitation and high 

evaporation, shallow groundwater level, and irrational activities 

of farmers (Jiang et al., 2019; Nicolas and Walter, 2006; Zarei et 

al., 2021). Therefore, careful monitoring, evaluation, and 

mapping to detect soil salinity can provide sufficient 

understanding of this threat's temporal and spatial distribution so 

that it becomes possible to make effective soil restoration for land 

management (Bannari et al., 2018; Davis et al., 2019). 

The EC parameter is commonly used to investigate soil salinity 

dynamics due to its high correlation with soil salinity (Richards, 

1954). Traditional methods to analyze EC are very accurate yet 

time-consuming, discontinuous, and costly. In the last two 

decades, remote sensing has been widely used to determine and 

monitor soil salinity characteristics at different scales (Taghadosi 

and Hasanlou, 2021; Dale et al., 1986; Dwivedi, 2001; Lizaga et 

al., 2019; Santra et al., 2015). Multi-spectral data, such as 

QuickBird, IKONOS, SPOT, Landsat, and Sentinel, are useful in 

identifying and monitoring soil salinity and environmental 
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hazards (Farifteh, 2007; Koshal, 2012; Ranjbar et al., 2021; 

Teggi et al., 2012). Also, the Sentinel-2 satellite that was 

launched with a multi-spectral instrument (MSI) in 2015 is an 

essential part of global environmental monitoring, which has 

been continuously used for the past few years due to its high 

spatial and spectral resolution to identify areas affected by 

salinity (Malenovský et al., 2012; Taghadosi et al., 2019; J. Wang 

et al., 2019). 

The spectral reflectance of soil surface salt properties has been 

widely used in several studies as a direct indicator to detect and 

monitor soil salinity. In a case study in Malheur County, Landsat 

TM satellite images were used to map soil salinity, the results of 

which showed that a large amount of salt in barren soils could be 

detected in bands 1 to 4 of the Landsat satellite due to the high 

spectral reflection of salt in this range (Elnaggar and Noller, 

2010). In another study, Sentinel-2 satellite data were used to 

investigate soil salinity with different spectral compositions, the 

results of which presented salinity indices by combining two or 

three spectral bands that achieved the highest correlation with 

ground-truth salinity measurements (J. Wang et al., 2019). In 

addition to the spectral indices obtained from the combination of 

satellite image bands, various transformation-based methods 

were used to extract appropriate properties to assess soil salinity. 

For example, the principal component analysis (PCA) and 

spectral indices were used to monitor soil salinity. The results 

showed that the PCA technique and salinity indices are a suitable 

method for predicting salinity from satellite images and offers 

high accuracy (Khan and Abbas, 2007).  

In recent years, a wide range of regression methods have been 

employed to model soil salinity and estimate EC values. These 

methods' performance varies according to the study area, in-situ 

data collected, and applied regression methods (Eldeiry and 
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Garcia, 2010; Farifteh et al., 2007; Gorji et al., 2017).  For 

instance, Wang et al. (2007) used correlation analysis, Ordinary 

Least Square (OLS) method, and spatial regression method to 

study soil salinity's spatial variation in the yellow river delta. This 

study showed that the spatial regression model improved the 

accuracy of soil salinity estimation (Wang et al., 2007).  Qu et al. 

(2008) used the Partial Least Square Regression (PLSR) method 

to assess soil salinity using hyperspectral data. The results 

showed that the calibrated PLSR method could predict soil 

salinity with accurate results (Qu et al., 2008). Recently, soil 

salinity mapping has been performed accurately using machine 

learning regression methods, such as Support Vector Regression 

(SVR) and RF. In 2018, Wu et al. produced the soil salinity map 

using Landsat satellite data and machine learning regression 

methods, such as SVR and RF, as well as Multiple Linear 

Regression (MLR). Comparing different regression methods, the 

results showed that the RF method with less NRMSE 

outperformed other models (Wu et al., 2018). Wang et al. (2019) 

examined different machine learning regression methods for 

modeling soil salinity at various study sites. The results showed 

that the Stochastic Gradient Treeboost (SGT) method is the most 

reliable algorithm for predicting soil salinity in arid regions (F. 

Wang et al., 2019). 

In this study, we investigate soil salinity monitoring and soil EC 

mapping using Sentinel-2 satellite images. The main objectives 

of this study are summarized: (i) to understand the spectral 

reflectance characteristics of saline soil in Eshtehard Salt River, 

(ii) identifying suitable variables for soil salinity prediction over 

the study area, and (iii) evaluating and comparing the three 

machine learning regression algorithms, particularly GBM, 

XGBoost, and RF, in predicting soil salinity using in-situ data 

collected in the study area, and (iv) to produce the soil salinity 

map according to high, moderate and low saline content. 

 

2. CASE STUDY AND DATASET 

2.1. Study area 

Eshtehard is located in the southwest of Alborz County in the Salt 

River basin (Figure 1). This region has a diverse structure in 

terms of hydrology and geohydrology. The study area in this 

research is located in the Eshtehard Salt River with an area of 

about 
2Km10  (latitude= 35 44 30 N  to 35 46 30 N   and 

longitude= 50 21 00 W   to 50 24 00 W  ). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1. (a) Location of Alborz County in Iran, (b) Location of 

Eshtehard Salt River in the district of Alborz County, and (c) 

Eshtehard Salt River district image acquired from Google Earth. 

2.2. Datasets 

2.2.1. In-situ data 

To study the soil in the affected areas, measuring salinity, and 

preparing ground-truth data, in-situ data were collected near the 

Eshtehard Salt River using the TDR-350 device. Soil sampling 

of this area using the design of ground control points with 197 

samples was taken randomly from different parts of the area 

around the Eshtehard Salt River in August and September of 

2020.  For each sample, we conducted five different 

measurements. To do this, a sample is collected in the center of 

the site, and 4 samples are collected from 4 corners of a square 

of 10m × 10m (Figure 2), and then the average of these five points 

represents the salinity in a square of 10m × 10m. These steps hold 

for all samples to optimize the sample values in the pixels of 

satellite images (Wang et al., 2020). Based on the classes 

determined by Durand (Durand, 1983), considered five salinity 

classes (Table 1). Figure 1 shows the in-situ operations and the 

collection and distribution of sample points in the Eshtehard Salt 

River area. Field data were randomly divided into 70% for the 

training set and 30% for the testing set according to the two 

parameters of computational cost and representativeness.  
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Table 1. Classification of soil based on the electrical 

conductivity (EC) classification supplied by Duran 

(1983). 

EC (ds/m) Salinity Classes 

𝐸𝐶 < 0.6 Non-saline soil 

0.6 < 𝐸𝐶 < 1.0 Slightly saline soil 

1.0 < 𝐸𝐶 < 2.0 Moderately saline soil 

2.0 < 𝐸𝐶 < 4.0 Very saline soil 

4 < 𝐸𝐶 Extremely saline soil 

 

 

Sample2 Sample3

Sample4 Sample2

Sample1

 

 

 

Figure 2. In-situ data collection tool and a sample photo 

from the landscape of the study area. 

2.2.2. Sentinel-2 imagery 

Sentinel-2 images were collected for salinity assessment due to 

data availability at the level-1C (top-of-atmosphere reflectance in 

cartographic geometry). These should then be converted into a 

level-2A ortho-image bottom-of-atmosphere corrected 

reflectance product suitable for regression analysis. Pre-

processing of level-1C products was conducted by scene 

classification and atmospheric correction, which gives level-2A 

products (Suhet et al., 2015). It was implemented by Sen2Cor, a 

processor for the production and molding of the Sentinel-2 L2A 

product developed by (Müller-Wilm, 2017). 

 

Table 2. The dates of in-situ measurements and Sentinel-2 

acquisitions. 

Date of in-situ 

measurements 
Date of satellite pass 

06-08-2020 05-08-2020 

24-08-2020 25-08-2020 

30-08-2020 30-08-2020 

04-09-2020 04-09-2020 

 

3. METHOD  

In this study, the total data set (n = 197) was divided into a 

training set (144 soil samples, 70% of the total soil samples) and 

a testing set (53 soil samples, 30% of the total soil samples). In 

the entire data set, according to the sampling order, one sample 

was selected every four samples as a verification sample. As 

discussed, the main objective of this study was to evaluate the 

sustainability of the GBM, XGBoost, and RF algorithms to 

model the relationship between spectral characteristics of the 

Sentinel-2 satellite data and the soil salinity parameter over the 

Eshtehard Salt River. The flowchart of the proposed method is 

illustrated in Figure 3 and is summarized in the following five 

steps. Additionally, the main steps of the proposed method are 

discussed in more detail in the following sections.  

 

In-Situ Data (Soil EC Measurement)

The soil salinity geodatabase

Training set

(70% of soil salinity samples)

 1- Gradient Boost Machine

 2- X  Gradient Boost 

 3- Random Forest 

Accuracy Assessment

(30% of soil salinity samples)

Soil Salinity Mapping

Sentinel-2 L2A 

Copernicus Data Hub

Spectral Bands

Vegetation Indices

Two Band Salinity 

Indices

Transformation 

Based Features

1- PCA    2- ICA

Three Band Salinity 

Indices

Figure 3. Flowchart of the proposed method for estimating 

the soil salinity in the Eshtehard Salt River area based on 

machine learning regression models. 

3.1. Feature extraction  

To identify the affected areas and determine the relationship 

between soil samples' EC values and the corresponding pixel 

values in satellite images, 10 spectral bands in which soil salinity 

is reflected were used (Taghadosi et al., 2019). Since the study 

area is mostly barren and the vegetation is very sparse, it is very 

useful to use salinity indices that highlight salt-affected surfaces' 

reflection. The use of vegetation indices, which are commonly 
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used to identify vegetation areas, can effectively analyze soil 

salinity trends because the negative effects of salinity on plant 

growth indicate changes in salinity in vegetated areas (Moreira et 

al., 2015). However, to evaluate the relationship between EC 

values of soil samples and the corresponding pixel values 

obtained from salinity and vegetation indices, salinity and 

vegetation indices were selected as predictor variables in our 

regression analysis. These indices have shown the best 

performance for salinity detection in previous studies (Allbed and 

Kumar, 2013; Scudiero et al., 2014; J. Wang et al., 2019). In 

image processing and machine learning, feature transformation 

by converting measured datasets is used to generate datasets that 

contain useful, informative, and facilitative information 

(Richards, 2013). This study used PCA and ICA methods as 

transformation-based features (Lee and Batzoglou, 2003; 

Ranchordas et al., 2010). A total number of 46 features were 

extracted from satellite data (Table 3 and 4). 

 

Table 3. Soil salinity features that were extracted from 

Sentinel-2 satellite data. 

 Feature 

S
en

tin
el-2

 b
a

n
d

s / 

Im
a

g
e 

tra
n

sfo
rm

a
tio

n
 

Blue NIR 

Green Red Edge 4 

Red SWIR 1 

Red Edge 1 SWIR 2 

Red Edge 2 PC1-PC10 

Red Edge 3 ICA1-ICA10 

 

Table 4. Vegetation and salinity features were extracted 

from Sentinel-2 satellite data. 

Index Formula 

TBI2 ( )

RedEdge3

SWIR2 SWIR2+
 

TBI3 
( )

( )

RedEdge2 SWIR2

RedEdge2 SWIR2

-

+
 

TBI5 
( )SWIR1 SWIR2

Green

+
 

TBI7 ( )SWIR1 2 SWIR2 RedEdge1- ´ +  

SI-1 
( )Red NIR

Green

´
 

SI-2 
( )Red Blue

Green

´
 

SI-3 
( )

( )

Blue Red

Blue Red

-

+
 

SI-4 ( )2 2Green Red+  

SI-5 ( )2 2 2Green Red NIR+ +  

SI-6 ( )Blue Red´  

SI-7 
Blue

Red
 

BI ( )2 2NIR Red+  

RI 
Red

SWIR2
 

NDI 
( )

( )

SWIR2 RedEdge3

SWIR2 RedEdge3

-

+
 

NDSI 
( )

( )

Red NIR

Red NIR

-

+
 

CRSI 
( ) ( )

( ) ( )

Red NIR Blue Green

Red NIR Blue Green

´ - ´

´ + ´
 

In this step, the correlation between the collected in-situ samples' 

electrical conductivity and feature extracted values of satellite 

images is carried out to find the relationship between these 

variables and their efficiency in predicting soil salinity using the 

linear regression. Therefore, to determine the correlation between 

saline soil and each feature and among features, correlation 

matrixes were generated (Figure 4). 

 
Figure 4. Correlation matrixes document the correlation 

between electrical conductivity and multi-spectral features, 

and the correlation between multi-spectral. 

3.2. Regression analysis 

Regression analysis is generally used to predict the relationship 

between a dependent and one or more independent variables. In 

recent years, various regression techniques have been developed 

in a widespread of applications, which can be used for prediction 

and model construction (Fan et al., 2015). In this study, GBM, 

XGBoost, and RF methods were selected for remote sensing 

inversion of soil salinity. 

3.2.1. Gradient Boost Machine 

Gradient boost machine algorithm employs ensemble, which 

simplistically eliminates bias, noise, and variance, which reduce 

the prediction model's effectiveness. The ensemble uses Boosting 

methods, which pre-builds many independent models, which are 

then implemented sequentially to allow the new models to learn 

from the error of the earlier models. GBM algorithm intuitively 

follows the concept of running and testing residual models to 

sustain the new model where the algorithm's cost function was 

optimized. The user-centric parameters that are optimized for this 

algorithm using the grid search method include the following: 1) 

n estimators: the number of sequential trees to be modeled, 

though GBM is fairly robust at a higher number of trees, it can 

still overfit at a point, and 2) max features: the number of features 

to consider while searching for the best split. As a thumb rule, the 

square root of the total number of features works great. 

(Friedman, 2001; Ying and Sayed, 2017).  

3.2.2. XGBoost 

XGBoost is one of the quickest implementations of gradient 

boosted trees. It does this by tackling gradient boosted trees' 

significant incapability: considering the potential loss for all 

possible splits to create a new member. XGBoost address this 

incapability by looking at the distribution of features across all 

data points in a leaf and using this information to decrease the 

search space of possible feature splits. Although XGBoost 

implements several regularization methods, this fast is the 
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numerous useful feature of the method, providing many 

hyperparameter settings to be investigated instantly. The user-

centric parameters that are optimized for this algorithm using the 

grid search method include the following: 1) learning rate: Step 

size reduction used in the update to prevents overfitting, 2) alpha 

and lambda: L1 and L2 regularization term on weights. 

Increasing this value will make the model more conservative, and 

3) column sample by tree: This is a family of parameters for the 

subsampling of columns. (Chen and Guestrin, 2016).  

3.2.3. Random Forest 

Random forest is a supervised machine learning algorithm 

effectively used to solve regression and classification problems 

and determine nonlinear relationships between target and input 

(Breiman, 2001). This algorithm creates the forest using a set of 

individual decision trees, each tree with a subset of random 

features (Belgiu and Drăguţ, 2016). Each tree accesses a random 

subset of training samples and predicts target values. For 

regression problems, each tree has a vote, and the prediction 

value is the average estimate of all decision trees. This algorithm 

can determine the relative importance of each input feature, 

which is important in understanding each feature's contribution 

in predicting RF output. The user-centric parameters that are 

optimized for this algorithm using the grid  search method 

include the following: 1) n estimator: the number of trees in the 

forest, and 2) max features: the number of features to consider 

when looking for the best split. (Heung et al., 2016). 

3.3. Accuracy assessment 

To assess the performance of the regression models, three criteria 

were chosen: R2, RMSE, and NRMSE. The accuracy of the 

created models was then analyzed based on these criteria 

(Equations (1–3)): 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 (2) 

=
RMSE

NRMSE
y

 (3) 

where 𝑦̂𝑖  is a vector of predicted dependent variables with n data 

points, 𝑦𝑖  is the vector of observed values of the variable being 

predicted and 𝑦̅𝑖  is the mean of the observed dependent variables. 

 

4. RESULT  

4.1. Prediction of soil EC maps 

Considering the location of the ground-truth data at the 

study site, the satellite data's pixel values were extracted 

for analysis. According to Tables 3 and 4, 46 features were 

considered for each soil sample, and a matrix containing 

all in-situ data measurements and satellite features was 

created to be used to train the model. The data matrix was 

then divided into two sections: 70% for training and 30% 

for testing, respectively; we developed prediction models 

using GBM, XGBoost, and RF to estimate soil salinity 

regarding the independent variables. According to the 

regression analysis results, the constructed models were 

used to plot the EC values for each pixel in the satellite 

image. Among these models, the best regression method 

based on R2, RMSE, and NRMSE values for mapping soil 

salinity in the whole image was compared, which will be 

discussed in the next section. Figure 5 shows the predicted 

EC map for each regression method. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Predicted soil EC maps based on the results of regression 

analysis, (a) Gradient Boost Machine, (b) XGBoost, and (c) Random 

Forest. 
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4.2. Evaluation of the Accuracy of Estimations 

The soil salt content estimation models were constructed by 

GBM, XGBoost, and RF methods, respectively (Table 5). After 

parameter optimization on each model's training datasets, we 

found the average estimation to be R2 = 0.72 for the GBM model, 

R2 = 0.76 for the XGBoost model, and R2 = 0.69 for the RF 

model. According to the results in Table 5, the XGBoost model 

shows high precision and accuracy in predicting soil salinity; 

also, the RF model presents the weakest results. Our proposed 

method for all algorithms shows the models with higher accuracy 

compared to the recent study conducted by (Zhang et al., 2020). 

The two main reasons why the XGBoost model outperformed 

other models include the: (1) computing second-order gradients, 

i.e. second partial derivatives of the loss function, which provides 

more information about the direction of gradients and how to get 

to the minimum of our loss function. While regular gradient 

boosting uses our base model's loss function as a substitute for 

minimizing the overall model's error, XGBoost uses the 2nd 

order derivative as an approximation. (2) And advanced 

regularization (L1 and L2), which improves model generalization 

XGBoost, has further benefits: training is very fast and can be 

parallelized across batches. 

 

Table 5. Accuracy assessment of three machine learning 

regression methods. 

ML-

Regression 

Method 

Train 

/ Test 
R2 RMSE NRMSE 

Number 

of 

Feature 

GBM 
Train 0.98 0.001 0.001 

46 
Test 0.72 0.87 0.34 

XGB 
Train 0.98 0.019 0.008 

46 
Test 0.76 0.84 0.33 

RF 
Train 0.94 0.55 0.23 

46 
Test 0.69 0.92 0.37 

 

 

5. CONCLUSION  

In this study, 46 variables, in four main categories (i.e., remote 

sensing data, terrain characteristics, salinity spectral indices, and 

vegetation spectral indices) and three models (i.e., GBM, 

XGBoost, and RF) were selected to estimate soil salinity in the 

Eshtehard Salt River. The main results are as follows: (1) Overall, 

the 46 factors considered were significant and contributed to the 

estimation of soil salinity. (2) The XGBoost model was the best 

model in this study, with better model performance and accuracy 

measures (R2 = 76%, RMSE = 0.84 dS m-1, NRMSE = 0.33 dS 

m-1). (3) According to the EC map obtained from the XGBoost 

model, the north and the west of the study area showed relatively 

low soil salinity. Salted soil was mainly found in the southeast to 

the center of the study area and Salt River. 
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