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ABSTRACT:

Marine litter is a growing problem that has been attracting attention and raising concerns over the last years. Significant quantities
of plastic can be found in the oceans due to the unfiltered discharge of waste into rivers, poor waste management, or lost fishing
nets. The floating elements drift on the surface of water bodies and can be aggregated by processes, such as river plumes, windrows,
oceanic fronts, or currents. In this paper, we focus on detecting big patches of floating objects that can contain plastic as well as other
materials with optical Sentinel 2 data. In contrast to previous work that focuses on pixel-wise spectral responses of some bands,
we employ a deep learning predictor that learns the spatial characteristics of floating objects. Along with this work, we provide a
hand-labeled Sentinel 2 dataset of floating objects on the sea surface and other water bodies such as lakes together with pre-trained
deep learning models. Our experiments demonstrate that harnessing the spatial patterns learned with a CNN is advantageous over
pixel-wise classifications that use hand-crafted features. We further provide an analysis of the categories of floating objects that we
captured while labeling the dataset and analyze the feature importance for the CNN predictions. Finally, we outline the limitations of
trained CNN on several systematic failure cases that we would like to address in future work by increasing the diversity in the dataset
and tackling the domain shift between regions and satellite acquisitions. The dataset introduced in this work is the first to provide
public large-scale data for floating litter detection and we hope it will give more insights into developing techniques for floating
litter detection and classification. Source code and data are available at https://github.com/ESA-PhiLab/floatingobjects.

1. INTRODUCTION

Marine litter consists of all human-created trash discharged in
the ocean, such as cigarettes, bags, beverage bottles. According
to the United Nations Environment Program1, roughly 70% of
marine litter such as glass and metal sinks to the ocean floor. A
portion of the marine litter, which in many cases contain plastic,
floats on the surface and can be detected by its spectral signature
if aggregated into patches (Biermann et al., 2020; Topouzelis et
al., 2019; Themistocleous et al., 2020). Initiatives across the
world such as the UN Sustainable Development Goal 14 and
the EU Marine Strategy Framework Directive’s descriptor 10
encourage improving the ocean’s health. Moreover, with the
rapid scientific advances in the machine learning field, multiple
initiatives aim at automating marine litter detection in the sea.
These goals could be reached with proper monitoring of waste
in the ocean based on scientific evidence on the existence of
floating objects and their quantification. In many cases, mar-
ine litter pollution originates from land-based sources that enter
the oceans and marine environments through rivers. Extreme
weather events also contribute to transporting human waste into
the sea. In fact, during rainy periods floods help carry trash into
rivers that end up into the ocean. Floating debris causes a vari-
ety of harmful effects on marine life, biodiversity, and human
life. In fact, marine organisms can ingest or become entangled
in floating debris (Garaba and Dierssen, 2018; Carpenter et al.,
1972). Moreover, some materials, such as plastic are very resi-
lient to degradation and they might persist in the marine envir-
onment for at least 400 years.

Research on macro-debris detection is recent as managing hu-
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man waste in the ocean is becoming one of the most pressing
environmental challenges nowadays (Eriksen et al., 2014). In
general, there is a lack of understanding of floating debris de-
tection in the open sea due to the limited monitoring capabilit-
ies (Garaba and Dierssen, 2018). Floating objects drift due to
winds and ocean currents. This requires monitoring with data
at high temporal frequency. At large-scale, this data is provided
by sensors, such as Sentinel 2, with a moderate spatial resolu-
tion of 10 meters at which the detection of floating objects is
challenging. High-resolution alternatives, such as UAV acquis-
itions, have been proposed in the literature (Wolf et al., 2020;
Papakonstantinou et al., 2021) but scale poorly when monitor-
ing hundreds of kilometers at frequent intervals. When float-
ing objects agglomerate in the middle of the sea, it becomes
challenging and even impossible to track them with drones or
satellites. Also, between the Great Pacific Garbage Patch with
at most 100 kg/km2 of plastic mass (Lebreton et al., 2018), and
the spatial/temporal variability of phenomena found in coastal
areas, the detection of marine litter at sea is a great challenge.

2. REMOTE SENSING FOR MARINE LITTER

Satellites and drones can be used to track floating objects on
water bodies. In this work, we focus on the use of Sentinel
2 data which contains bands with a spatial resolution of up
to 10m. The Sentinel 2 data is provided following two-level
of processing: L1C top-of-atmosphere and L2A bottom-of-
atmosphere. The L1C data has 13 bands including one band
for clouds detection. The L2A data has 12 bands that are atmo-
spherically corrected. We use both data types for better gener-
alization.
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3. RELATED WORK

Important work towards gathering spectral responses of mar-
ine litter has been conducted in the Plastic Litter Project (To-
pouzelis et al., 2019) on the coast of Mytilene in Greece
and a similar initiative in the harbor of Limassol, Cyprus
(Themistocleous et al., 2020). Both projects deployed targets of
floating objects in the sea and acquired imagery by unmanned
aerial vehicles (UAV) at the same time as the overpass of multi-
spectral Sentinel 2 satellite. Similar studies on coastal regions
with aerial imagery (Moy et al., 2018; Garaba and Dierssen,
2018) showed that it was possible to detect and map float-
ing macro debris in the open ocean with optical data (Hu et
al., 2015; Aoyama, 2016; Garaba et al., 2018; Topouzelis et
al., 2019; Maximenko et al., 2019). Recently, Biermann et al.
(2020) introduced a Floating Debris Index (FDI) that measures
the discrepancy between an interpolated near-infrared reflect-
ance with the measured response. This discrepancy highlights
the presence of plastic debris on Sentinel 2 images. Similarly,
Themistocleous et al. (2020) defined a Plastic Index (PI) as the
ratio of near-infrared and red which was effective in detecting
deployed plastic targets off the shore of Cyprus. Using the ratio
of near-infrared and red is conceptually similar to the Normal-
ized Difference Vegetation Index (NDVI) which was also used
as a discriminatory feature by Biermann et al. (2020). Nonethe-
less, visual inspections and the use of statistical data analysis
techniques are still used (Lebreton et al., 2018). In terms of
methods, Wolf et al. (2020) also used a Convolutional Neural
Network (CNN) but focused on high-resolution UAV images
for the detection and quantification of plastic litter. While UAV
imagery provides imagery of high-quality that is well-suited for
a machine learning approach, the availability of UAV imagery
is inherently limited due to the acquisition costs. To address
this, Papakonstantinou et al. (2021) proposed a citizen-science
platform to upload imagery of plastic litter. The marine litter
detection field is developing fast as the collection of trash in the
ocean is becoming urgent. The detection of floating objects on
the sea surface can be expensive when UAV data is acquired
by drones that require a personal presence on the field for ana-
lyses. This makes the UAV data of floating objects difficult to
acquire. In our work, we focus on Sentinel 2 imagery as it is
globally available and free of charge which is essential for a re-
mote sensing technology to guide clean-up operations of plastic
with dedicated ships, as done by Ruiz et al. (2020). Compared
to the UAV-driven approaches for targeted detection of plastic
litter, we aim at detecting the general class of floating objects
on the sea surface using globally available medium-resolution
Sentinel 2 imagery.

In this work, we

• train and evaluate a CNN to learn spatial features for float-
ing object detection,

• compare the neural network models with shallow methods
trained on recently proposed classification features, i.e.,
NDVI + FDI,

• aggregate and publish a large-scale hand-labeled dataset of
floating objects which is, to the best of our knowledge, the
largest and most diverse dataset on floating objects avail-
able.

4. DATASET

Modern data-driven methods require diverse datasets to obtain
robust solutions that work under varying acquisition conditions
on a global scale. In this section, we outline the design de-
cisions we took while building a large-scale annotated dataset
that can be used for the CNN baseline described in the next
section.

4.1 Definition of Floating Objects

Let us first clarify the primary objective of the dataset and
define floating objects. In-situ studies (Topouzelis et al., 2019;
Themistocleous et al., 2020) have shown that only aggregations
of floating objects are detectable with the coarse 10m resolu-
tion of Sentinel 2. Hence, methods rely on aggregation pro-
cesses, such as river plumes, ocean currents, or windrows to
accumulate various floating objects, such as plastics, pumice,
algae, seaweed, seawater, and timber. These sub-categories of
objects can be separated by their spectral responses in some
cases. However, these spectra are always mixed and have a per-
manent background water signal which makes the distinction
between water and floating objects difficult. It is common to
use spectral features, such as the NDVI or the FDI, are easier
to apply since they are expressed in closed forms which is not
the case for spatial features. In this work, we shift our focus
from spectral characteristics towards the spatial patterns that
the aggregation processes leave on the water surface. We resort
to Convolutional Neural Networks (CNNs) to learn the spatial
features from annotated data and focus on a binary classific-
ation problem of floating objects versus non-floating objects.
By concentrating on spatial features on this generalized prob-
lem, we can capture the characteristics of objects by aggregat-
ing a diverse dataset of globally distributed examples. A large-
scale data-driven approach can be a step towards constructing a
floating-object detector that automates the process of detecting
shapes on the water surface. This detector could sift through
large quantities of satellite imagery and isolate floating objects
in the open water bodies which would facilitate and accelerate
the task of analyzing the composition of the detected elements.

4.2 Data-Driven Feature Learning for Floating Objects

Classical model-driven machine learning approaches typically
use a two-step process: first problem-specific features are
manually defined. Then a problem-agnostic classification is
performed in this hand-designed feature space. For instance,
(Biermann et al., 2020) discovered the effectiveness of FDI
(alongside NDVI) for floating object detection and used a
problem-agnostic Naı̈ve Bayes classifier for their gathered data-
set. The discovery of problem-specific features, such as the
FDI index, is driven by deep oceanographic domain know-
ledge and usually targets few individual spectral bands. The
manual design of spatial features that use the entire spatio-
spectral information in the data is often more difficult, if not
impossible. Hence, data-driven learning with deep neural net-
works approaches this problem from a different perspective: in-
stead of using expert knowledge to design specific features, we
encode our knowledge in the labeled dataset by visually identi-
fying floating objects to the best of our understanding using our
visual system with the domain knowledge we obtain from lit-
erature and visualization of images with specific features and
color schemes. A deep neural network can then be optimized
on the labeled dataset to approximate and automate the effort
that we put into hand-labeling the images. By using a 2D-CNN
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(a) Regions of visually labelled floating objects

Region Date # lines fold train4 , val � , test©
1 2 3 4 5 6

Bay of Biscay 2018-04-19 824 4 4 4 4 � 4
Da Nang 2018-10-05 51 © 4 4 4 4 �

Kolkata 2020-11-15 15 4 � © � 4 4
Longxuyen 2018-11-02 33 © © 4 4 © 4
Panama 2019-04-25 182 � 4 4 4 © 4
Rio de Janeiro 2018-05-04 114 � 4 4 � 4 ©
San Diego 2018-08-04 15 4 � © © � 4
Toledo 2019-12-21 35 4 4 4 4 4 4
Accra 2018-10-31 99 � © 4 4 4 4
Lagos 2019-01-01 30 © © � 4 4 �

Lagos 2020-05-05 188 4 4 � 4 4 4
Mandaluyong 2018-03-14 13 4 4 � 4 4 ©
Venice 2018-06-30 97 4 4 © � � ©
Venice 2018-09-28 67 4 4 4 © © 4
Vungtau 2018-04-23 79 4 � 4 © 4 �

(b) Summary of the sites used for labelling, their date of
acquisition by Sentinel 2, the number of labels extracted

from each site and specification of the use of the site:
training or testing.

Figure 1. Overview on the Regions of floating objects in this Dataset

(a) Labelled pixels from our dataset (black)
overlayed by class distributions of floating

objects identified by (Biermann et al., 2020) (b) Analysis of our labelled pixels categorized by the dataset labelled by (Biermann et al., 2020)

Figure 2. Sub-categorization of our floating-objects dataset using few hundred labelled pixels selected by Biermann et al. (2020).
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for efficient spatial-pattern learning and appropriate data aug-
mentation techniques we can make sure that the deep learning
model learns spatial features i.e., patterns in the pixel neighbor-
hoods to identify floating objects.

4.3 Data collection method

For the data collection process, we visualized Sentinel 2 im-
agery at coastal areas which are likely to contain floating objects
in Google Earth Engine (GEE). We referred to newspapers, so-
cial media, and articles that reported the existence of floating
material on the sea surface. We followed the same approach
as Biermann et al. (2020); Ruiz et al. (2020) by identifying sev-
eral coastal regions, shown in Fig. 1a, where we found objects
present at one date, but not in another. For each selected area
we manually assessed the likelihood of floating objects by RGB
representation along with the FDI and NDVI indices. Simil-
arly, we focused on hints for ocean processes that can aggregate
objects, such as windrows, ocean currents, river plumes. We
used lines to label the identified objects and stored them with
the image data as Sentinel 2 scenes at L1C top-of-atmosphere
processing and bottom-of-atmosphere L2A level if these were
available in the GEE catalog.

4.4 Label Analysis

Let’s now analyze the floating-object labels that we gathered
in the dataset to get a deeper understanding of the under-
lying diversity of the data. Since no labeled data is pub-
licly available, we reconstructed the 195 labelled pixels from
Figure 2 at Biermann et al. (2020) that categorize ”plastic”,
”pumice”, ”seafoam”, ”seawater”, ”seaweed”, ”timber” by their
FDI/NDVI characteristics. We plot the kernel-density distribu-
tions from these data points in Fig. 2a. These data distributions
are well-separable since they were gathered in idealized con-
ditions, i.e., specific atmospheric correction, manual selection
of single pixels based on expert knowledge. In black, we show
10000 (out of 157319) floating-object pixels from our dataset
that were gathered in the wild on realistic acquisition scenarios,
i.e., L1C and L2A data, and under diverse atmospheric condi-
tions in the presence of haze and clouds. We see that none of the
idealized data distributions of seafoam, pumice, plastics, and
even seawater align well with the gathered data in realistic con-
ditions. This demonstrates the difficulty of transferring know-
ledge from a small-scale (in terms of the number of pixels),
labor, and expertise expensive dataset, which obtained near-
perfect accuracy in idealized conditions, to a realistic large-
scale application scenario. Nonetheless, we can still use this
data to obtain a general intuition on the nature of floating ob-
jects in our dataset. Since many floating objects in our dataset
are out of distribution, we decided to use a class-wise Gaussian
kernel density with a small bandwidth of 0.01 to conservatively
add all pixels with a density threshold lower than 5 to the class
”other”. In Fig. 2, we split the resulting classification by region
to obtain a sub-categorization of the diverse nature of floating
objects on the different areas represented in the dataset. These
results based on the categorization by Biermann et al. (2020)
indicate that we captured plastic-like objects in some scenes,
such as Panama, Lagos, and Shengsi, while many floating ob-
jects that we labeled also appear to be natural seafoam. This
analysis, however, is limited by the inherent difficulty of find-
ing accurate labels for a diverse group of floating objects as can
be seen in the false detection of ”pumice” in the Bay of Biscay
which is unrealistic. It also demonstrates the difficulty of apply-
ing data from an idealized scenario on a real-world application

on large-scale global data while still providing some insight into
the inherent nature and diversity of floating objects in the data-
set. Still, some of our manually gathered labels show feature
characteristics of plastics which motivates our problem. After
all, this necessitates the need for a robust large-scale floating-
object detector that can be used as an initial step before further
categorizations can be made.

5. METHODS

We implemented, trained, and evaluated a U-Net (Ronneber-
ger et al., 2015) CNN for the problem of floating object detec-
tion and the data-driven feature learning of spatial characterist-
ics. U-Net-based networks are composed of two sub-networks.
The encoder downsamples the original image to a high-level
representation of the entire scene. The decoder reconstructs
the label on the original resolution from this high-level rep-
resentation combined with intermediate features from the en-
coder via skip connections. This ”what-and-where” strategy
makes U-Net-type networks successful in applications where
the scale of objects does not vary much. U-Nets were ori-
ginally designed for biomedical image segmentation and have
been employed widely in remote sensing. For instance, U-Net-
based networks with different encoder components dominated
the Spacenet 6 (Shermeyer et al., 2020) challenge of building
footprint detection. We chose a U-Net model for this problem
of floating object detection as we consider it to be a suitable
and easy-to-access baseline for future work. We compared it
with several shallow-learning methods on a hand-design feature
space proposed for this problem, such as the Naı̈ve Bayes clas-
sifier used in (Biermann et al., 2020). We also used, for compar-
ison, Random Forest (RF) (Breiman, 2001) and Support Vector
Machine (SVM) (Boser et al., 1992) which are supervised ma-
chine learning algorithms that can be used for classification and
regression tasks.

6. EXPERIMENTS

In this section, we emphasize the technical details of the ne-
cessary steps before the experiments. We talk more specifically
about the preparation of the dataset once exported from GEE
and we highlight the way some technical issues are tackled to
improve the training and the predictions.

6.1 Implementation and Training Details

The inspection of regions suspected to contain floating objects
and their labeling was curried out on GEE. Further data pro-
cessing, as well as the model training, were done in PyTorch.
A few data-augmentation techniques were applied such as rota-
tion, flipping, and adding spatial and spectral noise. The deep
learning model was trained with a batch of 80 images of size
128 × 128 for 50 epochs with a learning rate of 0.001. To en-
sure that we obtained a model that generalized on unseen data,

Method Metrics
input spat. acc. f1 κ

SVM-Machine NDVI+FDI 7 58.82 0.67 0.17
Random Forest NDVI+FDI 7 58.83 0.69 0.17

Naı̈ve Bayes NDVI+FDI 7 60.81 0.53 0.21
CNN (U-Net) 12 S2-bands 3 84.28 0.81 0.68

Table 1. Metrics for assessing available methods to classify this
dataset
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RGB NDVI FDI Hand label Prediction scores Classification result

Figure 3. Examples from the dataset. RGB, NDVI, FDI, hand-labels and neural network predictions

we only stored the model if the validation loss decreased. This
can be seen as a form of early stopping even though we always
iterate through the entire 50 epochs.

Dataset implementation. Let’s highlight some implementa-
tion details on the dataset: we stored each region as a Sentinel
2 image with associated floating-object labels in lines. Dur-
ing training and validation, we centered on individual line seg-
ments and crop the Sentinel 2 scene with a given output size
of 128× 128 pixels. We used L2A bottom-of-atmosphere data
50% of the time if it was available and rasterized the labels
given the positions of the pixels of the cropped Sentinel 2 im-
age. If the labels form closed rings, we assigned a floating-
object label to the interior of this polygon. While testing, we
split the original Sentinel 2 scene into 480×480 pixel tiles with
a 64-pixel overlap that we sequentially predicted with a trained
model. We also performed test-time augmentation by predict-
ing the scores multiple times with different flipped and rotated
input images. We merged the overlap between adjacent tiles
smoothly. Given the georeference, we could combine patches
again to retrieve a prediction score for each Sentinel 2 pixel.

Data Augmentation. We artificially increased the diversity of
representations in the training dataset by data augmentation and
flipping the training images vertically and horizontally 50% of
the time. Similarly, we rotated the images in random mul-
tiples of 90 degrees and cropped the images from 256× 256 to
128 × 128 pixels on random locations to avoid floating-object
labels in the central pixel in all training images. We added ran-
dom noise spatially and spectrally with the noise level being
the standard deviation of the Sentinel 2 image used for training.
For the spatial noise, we generated arbitrarily a 2D image with
the spatial dimensions of the spectral bands. Then we multi-
plied this 2D image with the noise level and we added it to
each band of the Sentinel 2 image. For the spectral noise, we

generated a vector with the length being the number of bands,
we multiplied it by the noise level and then we added this vec-
tor to all the pixels belonging to the same spatial coordinates.
When a bottom-of-atmosphere scene was available, we ran-
domly mixed top-of-atmosphere and bottom-of-atmosphere to
further increase the diversity and improve the generalization to
unseen regions.

Train/Test Splits. Since we cropped the Sentinel 2 scenes with
rasterized labels dynamically over individual line segments, we
obtained a significant overlap between images. For this reason,
we resorted to a region-wise split where we assigned some
scenes/regions randomly to the training/validation/test parti-
tions. This, however, may lead to shifts in data representa-
tions which is to some degree expected, as globally distributed
scenes vary due to different types of floating objects, e.g., see
Section 4.4, acquisition conditions, such as variations in atmo-
spheric conditions. We addressed this issue by six-fold cross-
validation but would like to investigate this problem further in
future work by either increasing the dataset diversity through
enlarging the dataset or using other domain adaptation or trans-
fer learning approaches.

Class Imbalance. In the collected dataset, there are more pixels
from the water class than pixels belonging to the floating objects
class. To address this class imbalance issue, we use a weighted
Binary Cross Entropy loss

H(y, ŷ;α) = −αy log(ŷ) + (1− y) log(1− ŷ)

with labels y ∈ {0, 1} and predictions ŷ ∈ [0, 1] where α > 1
increases the loss for wrong classifications of the positive class
of floating objects. An additional strategy to address this class
imbalance is to tune the threshold parameter on the prediction
scores ŷ to determine a binary floating-object label. Since wa-
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(a) Classification on Scotland (Biermann et al., 2020).
Topouzelis et al., (2018)

Plastic Bottles

Fishing Nets

Plastic Bags

S2-RGB FDI

CNN Fold 2 CNN Fold 3 CNN Fold 4 CNN Fold 5

(b) Targets of the Plastic Litter Project 2018 (Mytilene,
Greece). (Topouzelis et al., 2019)

Figure 4. U-Net predictions on images from other projects.

ter pixels are significantly more common, we found out that the
model underestimated the prediction scores of floating objects.
A threshold of 0.5 to assign the floating-object label to the con-
tinuous prediction score is too conservative in many cases. To
address this, we could determine a better-suited threshold by
measuring the classification performance on the validation set.

Hard Negative Mining. The training dataset contains solely
images that always contain floating objects in some pixels. Dur-
ing test time, however, we would like to predict entire Sentinel 2
scenes containing other objects, such as land, clear water, ships,
etc. Hence, we enriched the dataset dynamically with hard neg-
ative examples (Hughes et al., 2018; Tang et al., 2017) by ran-
domly choosing patches within the available Sentinel 2 scenes.

6.2 Results

Let us now compare the CNN model to shallow learning mod-
els commonly used for this problem and provide qualitative ex-
amples. For an objective comparison, we compared the CNN
model to the shallow classifiers using three metrics for the eval-
uation process: accuracy, f1-score, and the kappa coefficient.
We also applied the CNN model trained on our dataset on im-
ages from two projects by (Biermann et al., 2020) and (To-
pouzelis et al., 2019). An analysis of the results is provided
below.

6.2.1 Quantitative Comparison to Pixel-Wise Classifiers
In Table 1, we compare the U-Net model with the pixel-wise
machine learning classifiers. The SVM, RF, and Naı̈ve Bayes
classifiers were trained on a balanced dataset from the train-
ing regions while we used regular predictions from the U-Net
model. We compare all models on a balanced dataset by ran-
domly sampling the same number of water and floating object
pixels from the respective images of the test regions. Perform-
ance on the validation regions was used to determine the re-
spective model hyperparameters, i.e., γ = 10−3, C = 30 for
the SVM, and 1000 estimators for the random forest with a

depth of 2. Following Biermann et al. (2020), we optimized
and predicted the shallow learning models on the designed FDI
and NDVI feature space while the U-Net models used the raw
input space of 12 Sentinel 2 bands. From the comparison in the
table, we can see that the U-Net model outperforms the shallow-
learning models in overall accuracy, the f1-score, and the kappa
coefficient. Given that the U-Net model has access to contex-
tual spatial information through the 2D convolutional layers, it
seems reasonable that it outperforms the shallow-learning mod-
els that can only process each pixel separately without inform-
ation of the local neighborhood.

6.2.2 Qualitative Comparison We provide further results
of floating objects detection at different regions in Fig. 3. On
the latter, we present the RGB images along with their FDI
and NDVI representations, the masks based on the geometrical
shapes detected by the FDI index, the prediction scores, and fi-
nally the classification result. Let us start from the top, left to
right: the FDI and NDVI representations of the four RGB im-
ages contain different geometrical shapes. The first RGB image
is mostly composed of a line with some patches at the top. In the
interest of time, we labeled these patterns as continuous lines.
Even though the labels are only roughly accurate, the predic-
tion scores and the classification results follow the geometrical
shapes accurately. The second row shows three main patches in
the FDI and NDVI representations that appear to be influenced
by the current. Even though only the exterior line is labeled as
floating objects, the model can generalize and predict the en-
tire patch accurately. This shows that the deep learning model
could successfully capture the spectral response of the floating
patch. On the fourth row, we can see a circular current that ap-
pears on the FDI and NDVI representations but was not labeled
accurately. Nonetheless, the pattern was captured accurately
by the prediction. From the results of Fig. 3 and the analysis
above, we see that the model could produce reasonable predic-
tions even though the labels do not represent the actual shapes
of the floating objects accurately. We also notice that the model
can generalize on the general shape of floating objects without
over-fitting on artifacts from the inaccurate labeling process.

Let us now apply the U-Net model to scenes used in related
work. We show the result of our predictor on an image from the
work in Biermann et al. (2020) where the existence of plastic
is suspected. Fig. 4a shows a Sentinel 2 image captured on the
20th of April on the year 2018 in Scotland, its FDI presentation
showing the presence of floating objects and the classification
result after applying the deep learning algorithm. We could see
that the geometrical shape on the classification result is success-
fully detected and quite consistent with the shape highlighted
by the FDI index. We also validated our model by applying
it on the Sentinel 2 image from a scene captured during the
Plastic Litter Project 2018 (Topouzelis et al., 2019). This pro-
ject provides some of the few confirmed labels of plastic litter
publicly available. Even though the targets of plastic bags, fish-
ing nets, and plastic bottles were 10m by 10m in size and vis-
ible in the UAV acquisition, they are only barely visible on the
Sentinel 2 scene. We classified this scene with all six models
trained on different train/test folds. However, only two CNN
models predicted some floating-object scores, while four others
show no classifications, as shown in Fig. 4b. The fact that the
two models trained on coarse floating-object labels produced
prediction scores on these comparatively small target pixels
is encouraging, but also highlights the difficulty of predicting
plastic litter with a coarse spatial resolution of ten meters.
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B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12

(Coastal Aerosol) (Green) (Veg RE1) (Veg RE3) (Veg RE4) (SWIR1)
(NIR)(Blue) (Red) (Veg RE2) (CLD) (SWIR2)

x y

Model 1 
(left)

Model 2 
(right)

(a) Sentinel 2 bands utilized by two CNN models. Bands utilized in the
Floating Debris and NDVI indices are bold-faced for reference.

(b) Perceptive field of two CNN models (Model 1 top, Model 2 bottom)
while predicting the pixels at positions × and ?.

Figure 5. Analysis of the input feature importance on two trained U-Net Models. Figure (a) shows the band-importances by the
input-gradient signal which reveals that a broar range of Sentinel 2 bands is utilized for the prediction. In (b) and (c), we analyze the

local perceptive field of the U-Net models and see that Model 2 uses a larger pixel neighborhood to make a prediction.

6.3 Feature Importance

Let us now focus on the U-Net model itself and analyze the
learned features. Data-driven learning allows the model to ex-
tract features from the raw input data solely based on the labeled
data without making hard a-priori assumptions on the expected
importance of the spectral bands. We can analyze the most im-
portant input features x by exploiting the differentiable charac-
teristics in deep learning models by backpropagating the gradi-
ent signal ∂x

∂y
from the predicted labels ŷ = yfloating to the

input tensors (Zhou et al., 2016). This provides an estimate of
the importance of input bands by asking: ”how should the in-
put x have changed to change the prediction yfloating?”. The
learned features and feature weights can vary between models
with identical settings since each deep neural network is optim-
ized from random initialization. Hence, we report the feature
importances evaluated on two trained neural network models.

Band Importance. In Fig. 5a, we plot the estimated aver-
aged input gradients of two trained U-Net models over averaged
floating label pixels on 200 images from the test set. Since we
labeled the dataset while referencing NDVI and FDI indices, we
would expect the deep learning model to approximate these fea-
tures. If this would be the case, we would see a high influence
on the same bands that were used in the calculation of these
features which we highlighted in boldface. While the models
utilized these bands to some degree, also other bands were con-
sidered. For instance, the blue and coastal aerosol bands (B1,
B2) are not used in the calculation of NDVI and FDI but in-
fluenced the neural network classification. We speculate that
these bands are important to identify pure (blue) water pixels.
The neural networks also utilized all near-infrared bands (B5-
B8) and the second short-wave infrared (B12) while the hand-
designed features use one band from these groups only.

Pixel Importance. In Fig. 5b we further analyze the feature im-
portance of two trained models by calculating the gradients to
the input image with respect to single-pixel predictions at two

points ? and ×. In contrast to the hand-designed features of
NDVI and FDI, CNNs learn the spatial patterns for the classific-
ation of floating and non-floating objects. With this analysis, we
can visualize the perceptive field of the trained CNNs and eval-
uate how much spatial context these models utilized for their
predictions. While Model 2 used a larger spatial neighborhood,
Model 1 drew its features from a smaller perceptive field. This
seems to affect the prediction quality where the estimates of
Model 2 appear more accurate. Both models utilize large-scale
spatial features to a small degree which can be seen in the gen-
eral background structure visible in the gradient images. This is
a sign that these U-Net models also utilize deeper higher-level
features in the inner layers and do not solely rely on the initial
skip connections.

7. LIMITATIONS

Training a neural network on a globally distributed dataset is
a challenging task that requires a large dataset that is diverse
enough to generalize on new unseen areas. We train and eval-
uate on different regions to obtain an estimate of the gener-
alization performance of our model. Still, the number of the
scenes in this dataset is limited and regions vary significantly.
We see this variability during training where models improve
steadily on the train regions but start to overfit early with ac-
curacy stagnating on the unseen validation and test regions.
Fig. 6 shows several examples of systematic failure cases we
observed in the model predictions. The RGB representation
and FDI/NDVI indices provide some context for interpretation
and visual comparison to the state-of-the-art (Biermann et al.,
2020). In Fig. 6a, we observe that waves and coastlines were
predicted incorrectly as floating objects. Also, the FDI index
shows large values in these cases. However, the CNN could
suppress the signal from the land pixels in contrast to FDI and
NDVI that show high responses. Man-made objects like ships
are also confused with floating objects, as shown in Fig. 6b.
These objects also cause some responses in NDVI and FDI. In-
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RGB FDI NDVI CNN

(a) coastline waves detected as floating objects (Accra, Ghana)
RGB FDI NDVI CNN

(b) some ships detected as floating objects (Accra, Ghana)
RGB FDI NDVI CNN

(c) some clouds detected as floating objects (Da Nang, Vietnam)

Figure 6. Failure cases we observed in the predictions

terestingly, the U-Net CNN predictions are not wrong for all
ships in this scene, even though all ships appear to have a sim-
ilar spectral response. One ship (green circle) does not cause
a response in the floating-object prediction score. This indic-
ates that the CNN utilizes some spatial features that cause dif-
ferent responses for the ships in this scene. Clouds similarly
can cause false activations in the prediction scores, as shown in
Fig. 6b. Similar to the previous example, the CNN has correctly
identified one large cloud as a not-floating object while missing
the fringes of smaller clouds. In contrast, the spectral FDI and
NDVI must, by design, produce similar responses on all clouds
since the geometric shapes of the objects do not influence these
indices. This indicates that the CNN learned spatial features on
the geometry of clouds.

8. OUTLOOK CHALLENGES

In light of the limitations mentioned above, we identify several
research directions to improve the model’s performance. In-
creasing the diversity of regions by adding additional sites to
the dataset will likely help deep learning models to general-
ize to unseen sites. A more targeted negative example strategy
that includes ships and clouds may be helpful to encourage the
model to learn these patterns and suppress the prediction scores
whenever ships or clouds are present. Additionally, refining
the label quality will have a positive impact on model perform-
ance. Beyond simply increasing the quality and quantity of the
available labels, further techniques to tackle the domain shift
between regions via, for instance, targeted data augmentation
could be investigated. Also, suitable model initializations could
be found for better generalization.

9. CONCLUSION

In this work, we provided a hand-labeled Sentinel 2 dataset for
floating objects detection on the sea surface as one step towards
identifying and eventually collecting marine litter. We evalu-
ated a baseline U-Net model that learned spatial characteristics
of floating objects. The qualitative results showed that the deep-
learning-based model was able to predict correctly the geomet-
rical shapes even if the labels were inaccurate or absent. The
feature importance analysis on band level showed that more
Sentinel 2 bands can be utilized for floating object detection

than the ones that are employed by current hand-designed fea-
tures. The analysis of the perceptive field of the CNNs and the
good performance compared to pixel-wise classifiers showed
that spatial features are useful for detecting floating objects on
the sea surface. However, the high number of false positives,
some of which we show in the Limitations section, makes this
CNN not suitable for a stand-alone detection of floating ob-
jects, yet. We aim to improve the data diversity and label qual-
ity towards this issue in future work. Nonetheless, we believe
that providing the first large-scale open dataset for this problem
along with pre-trained models is a step towards a large-scale
and accurate detection of floating objects on a near real-time
basis that can utilize the publicly available Sentinel 2 imagery
to its full potential.
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