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ABSTRACT:

Unsupervised deep transfer-learning based change detection (CD) methods require pre-trained feature extractor that can be used to
extract semantic features from the target bi-temporal scene. However, it is difficult to obtain such feature extractors for hyperspectral
images. Moreover, it is not trivial to reuse the models trained with the multispectral images for the hyperspectral images due to the
significant difference in number of spectral bands. While hyperspectral images show large number of spectral bands, they generally
show much less spatial complexity, thus reducing the requirement of large receptive fields of convolution filters. Recent works in
the computer vision have shown that even untrained networks can yield remarkable result in different tasks like super-resolution
and surface reconstruction. Motivated by this, we make a bold proposition that untrained deep model, initialized with some weight
initialization strategy can be used to extract useful semantic features from bi-temporal hyperspectral images. Thus, we couple an
untrained network with Deep Change Vector Analysis (DCVA), a popular method for unsupervised CD, to propose an unsupervised
CD method for hyperspectral images. We conduct experiments on two hyperspectral CD data sets, and the results demonstrate
advantages of the proposed unsupervised method over other competitors.

1. INTRODUCTION

Change detection (CD) is an important application of remote
sensing. It plays a crucial role in several applications including
land-cover mapping, environmental monitoring, disaster man-
agement, precision agriculture, burned area monitoring, and
mining activity monitoring. In the literature, most CD methods
are proposed for multispectral (Saha et al., 2019) and Synthetic
Aperture Radar (SAR) (Saha et al., 2020a) images. In compar-
ison, there are only few works dedicated to the hyperspectral
images that generally show lower spatial resolution, however
very high spectral resolution. Hyperspectral images can provide
rich information in some CD applications, e.g., monitoring of
mining activity (Ehrler et al., 2011). Inspite of this, less interest
in research related to hyperspectral CD is explained by the lack
of labeled hyperspectral images. This scarcity is not limited to
only multi-temporal hyperspectral image analysis, but extends
to the hyperspectral image classification. Due to the lack of
training data, some of the supervised hyperspectral image clas-
sification models are trained and tested on pixels from the same
image (Mou et al., 2021).

CD methods can be formulated in supervised (Zhang et al.,
2018), semi-supervised (Saha et al., 2020c), and unsupervised
way (Saha et al., 2019). However, unsupervised methods are
preferred in the literature (Bruzzone and Prieto, 2000) due to
the difficulty of collecting unlabeled bi-temporal data. Most
popular paradigm for unsupervised change detection, known
as change vector analysis (CVA) (Bruzzone and Prieto, 2000),
applies intuitive difference operation on pre-change and post-
change images. Additionally, there are unsupervised methods
that rely on clustering (Celik, 2009). With the emergence of
deep learning, CVA has been reformulated as deep CVA (DCVA)
(Saha et al., 2019) by exploiting deep transfer learning. DCVA
projects the bi-temporal images in deep feature space by using
∗ Corresponding author

a pre-trained deep feature extractor and subsequently compares
the images in the projected domain. DCVA itself does not use
any training or fine-tuning of the deep model and is agnostic
to how the deep model has been derived. However, DCVA de-
pends on the availability of pre-trained feature extractor that is
generally not available for hyperspectral images. Moreover, it
is not trivial to reuse the networks trained for other sensors on
hyperspectral images due to the huge gap of number of spectral
bands and characteristics. It is even challenging to reuse a net-
work trained on one hyperspectral sensor on images acquired
from another hyperspectral sensor. There are attempts in the
literature to reduce dependence on pre-trained network by ex-
ploiting self-supervised training on the target scene (Saha et al.,
2020b).

The success of deep learning in the unsupervised multi-temporal
analysis can be attributed to its capability to capture spatial con-
text. While, some target scenes (e.g., urban) show high spatial
complexity, this is often not the case in some other target areas
(e.g., agricultural land). Besides, most hyperspectral images
show coarse spatial resolution, thus obliterating the possibility
to capture high spatial complexity. In contrast to multi-spectral
images, hyperspectral images show complexity in the spectral
domain. Motivated by this, there are works in the hyperspectral
image classification that use 1D convolution (Audebert et al.,
2019). While still spatial complexity has an important role to
play for hyperspectral multi-temporal analysis, we argue that
this is not as critical as in high-resolution multispectral im-
ages. This brings forth the possibility whether complexity in
low-spatial and high-spectral resolution multitemporal hyper-
spectral images can be captured by an untrained deep model
merely initialized with a deep model initialization strategy (He
et al., 2015) (Glorot and Bengio, 2010). The likelihood of such
possibility is supported by the fact that untrained models have
recently shown remarkable performance in some computer vis-
ion tasks where the spatial complexity is much more critical
than the hyperspectral images, e.g., deep image prior (Ulyanov
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et al., 2018). One advantage of using untrained network is that
they can be initialized to ingest as many number of image chan-
nels as desired, which may be helpful in hyperspectral image
analysis.

Thus motivated by the possibility that an untrained deep model
can capture spatio-temporal information of multitemporal hy-
perspectral images, we propose a CD method for hyperspec-
tral images that uses DCVA framework along with an untrained
deep model. The rest of this work is organized as follows. We
briefly discuss some relevant works in Section 2. Section 3 dis-
cusses the proposed method. Section 4 presents the datasets and
results. Finally we conclude this paper in Section 5.

2. RELATED WORK

Following the relevance to our work, we briefly discuss in this
section about: i) hyperspectral change detection methods and
ii) deep image prior.

2.1 CD in hyperspectral images

Compared to the multispectral and SAR images, deep learning
based methods on hyperspectral CD are very few. Moreover,
most of them are supervised (Wang et al., 2018). In (Wang
et al., 2018), authors identified three unique challenges for hy-
perspectral CD - high dimension, limited datasets, and mixed
pixel problem. To solve these problems, they proposed a pre-
classification based end-to-end CD framework named GETNET
based on 2-D Convolutional Neural Network (CNN). Song et.
al. (Song et al., 2018) proposed a supervised CD method for hy-
perspectral images, called the recurrent three-dimensional (3D)
fully convolutional network (Re3FCN), which merged a 3D
fully convolutional network (FCN) and a convolutional long
short-term memory (ConvLSTM). Chen and Zhou (Chen and
Zhou, 2019) proposed a supervised CD method consisting of
three steps: spectral dimensionality reduction, joint affinity tensor
construction and binary (changed or unchanged) classification
by CNN. While these works made a remarkable contribution
of introducing deep learning to hyperspectral change detection,
most of them agree that limited datasets is a big challenge in hy-
perspectral CD. Conforming to that, their works use pixels from
same image for training and evaluation. However, using such
large supervised networks when training and test pixels belong
to same scene is not completely realizable. Molinier and Kilpi
(Molinier and Kilpi, 2019) have shown that while training and
test pixels come from the same scene, pixel values correspond-
ing to testing sets are partly seen during the training phase, thus
leading to overoptimistic accuracy assessment. More practical
alternative is to use unsupervised approach, like the ones (Saha
et al., 2019) (Saha et al., 2020a) that have been used for multis-
pectral and SAR images.

2.2 Deep image prior

CNNs are usually trained on large labeled datasets of images.
This makes us to believe that the excellent performance of CNNs
are due to their capability to learn realistic features or data pri-
ors from the data. However, this explanation has been found to
be inaccurate in many instances. In (Zhang et al., 2016), au-
thors showed that an image classification network can overfit
on the training images even when the labels are randomized.
This provides us hints that the success of the deep network is
possibly not always due to large amount of labeled data, rather
sometimes due to the structure of the network. Ulyanov et. al.

(Ulyanov et al., 2018) tried to understand this phenomenon in
context of image generation. They showed that a large amount
of the image statistics are captured by the structure of generator
CNNs itself. Instead of choosing the usual paradigm of train-
ing CNNs on large dataset, they fitted CNNs on single image
for image restoration problems. The network weights were ran-
domly initialized. They showed that this simple setup provides
very competitive result for several image restoration problems,
e.g., inpainting, super-resolution, and denoising. This is re-
markable as it demonstrates the power of untrained network.
Following this work, several other works have followed similar
approach demonstrating success of untrained network for dif-
ferent computer vision problems, including photo manipulation
(Bau et al., 2020) and surface reconstruction (Williams et al.,
2019). Another similar line of research is random projection
network (Wójcik, 2018) that is proposed in the context of high-
dimensional data which implies a network architecture with an
input layer that has a huge number of weights, making training
infeasible. Random projection network (Wójcik, 2018) tackles
this challenge by prepending the network with an input layer
whose weights are initialized with a random projection matrix.

3. PROPOSED METHOD

We are interested to detect changes from a pair of co-registered
hyperspectral images X1 and X2 consisting of B0 channels
each and acquired by the same hyperspectral sensor. We first
initialize a deep model with number of input channels and num-
ber of filters of intermediate layers adjusted as per the number
of channels of hyperspectral images. Subsequently this network
is used to extract a set of features from both pre-change and
post-change images and the difference is taken to obtain deep
change hypervector. Following this, deep change hypervector is
further analyzed using magnitude-based analysis to distinguish
the unchanged pixels (ωnc) from the changed ones (Ωc). The
proposed unsupervised hyperspectral binary CD framework is
called Untrained Hyperspectral DCVA (UH-DCVA) and is shown
in Figure 1.

3.1 Feature extraction

We use an untrained model for deep feature extraction. Gener-
ally in computer vision, first layer of deep models ingest input
of 3 channels and project it to larger number of channels, com-
monly 64 (Simonyan and Zisserman, 2014). However, for our
case number of input channel B0 is generally larger than 200.
We design first convolution layer such that it ingests the hyper-
spectral image of B0 channels and projects it to β0 ∗ B0 filters
where β0 > 1. In our experiments, we set β0 = 4. The fol-
lowing convolution layer ingests input dimension β0 ∗ B0 and
projects it to β1 ∗ β0 ∗ B0 dimension. For simplicity, we have
set β1 = 1. In this way, more layers can be added to the net-
work. No activation function is used between two convolution
layers as there is no training process involved. Even though no
non-linearity is achieved by simply stacking convolution layers
one after another, it helps to increase the spatial receptive field
of the convolution network. Moreover, it helps to increase the
number of different filters in exponential order. Though theor-
etically speaking, since no non-linearity is used, multiple-layers
network can be possibly reproduced with just 1-layer, in prac-
tice single-layer network cannot emulate systematic increment
of spatial receptive field as input passes through successive lay-
ers of a multiple-layer network.

Considering the coarse spatial resolution of the hyperspectral
images, we do not need to make the network as deeper as it
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is standard in computer vision. In our experiments, we show
that even a network with couple of untrained convolutional lay-
ers provides us satisfactory results. Though untrained, instead
of using random weights, we use weights initialized with He
initialization method (He et al., 2015). Their weight initial-
ization strategy allows the initialized elements to be mutually
independent and share the same distribution. Though weight
initialization was initially proposed in context of obtaining ef-
ficient starting point for better training, we use it to obtain a
superior feature extractor that can be subsequently used as deep
feature extractor in DCVA framework. The weight initializa-
tion does not involve any training. Once initialized, the deep
model is used to extract a set of features from both X1 and X2

separately, which we detail in next subsection.

3.2 Unsupervised change detection

The untrained network can be used as bi-temporal hyperspectral
deep feature extractor in a DCVA framework (Saha et al., 2019)
to distinguish changed pixels (Ωc) from the unchanged ones
(ωnc). This is based on the assumption that such an untrained
(however initialized (He et al., 2015)) network can be assumed
to be a collection of morphological filters and they extract same
semantic attributes for both pre-change and post-change image.
Hyperspectral imagesX1 andX2 are pre-processed/normalized
to have all spectral bands in range 0-1 and then separately fed
through the untrained network. Deep features can be extrac-
ted from a set of L convolution layers of the network to form
a deep feature hypervector (G) that is obtained as a concaten-
ation of the deep-feature-differences of the considered layers.
However, for simplicity, we assumed that features are extrac-
ted from just one layer in this work. Euclidean norm of deep
change hypervector G is used to obtain the deep magnitude ρ.
Being processed through same set of filters, unchanged pixels
(ωnc) tend to generate similar deep features and thus smaller ρ
in comparison to the changed pixels (Ωc). This is used to se-
gregate Ωc and ωnc by using a thresholding on ρ. While any
suitable thresholding method can be used, in this work we use
Otsu’s thresholding (Otsu, 1979).

4. RESULTS

We validate the proposed method on two bi-temporal scenes
(López-Fandiño et al., 2018) (López-Fandiño et al., 2019) 1:

1. The Santa Barbara bi-temporal scene is acquired on 2013
(Figure 2(a)) and 2014 (Figure 2(b)) with the AVIRIS sensor
(224 spectral bands) over the Santa Barbara region in Cali-
fornia, United States. The spatial dimension of the images
are 984 × 740 pixels. Reference information is known
for only 132552 pixels, out of which 80418 pixels are un-
changed and 52134 pixels are changed (Figure 2(c)).

2. The Hermiston scene is acquired on the years 2004 and
2007 with the Hyperion sensor (242 spectral bands) over
the Hermiston City area in Oregon, United States. Bands
B001-B007, B058-B076, and B225-242 are not calibrated,
hence we exclude them from our processing. The spatial
dimension of the images are 390 × 200 pixels. 68014
pixels are labeled as unchanged. Remaining pixels are
changed.

1 Datasets: https://citius.usc.es/investigacion/datasets/hyperspectral-
change-detection-dataset

Hyperspectral image at
t1 (X1)

Hyperspectral image at
t2 (X2)

Pre-processing Pre-processing

Deep feature extraction
with untrained model

Deep feature extraction
with untrained model

Deep feature comparison & analysis

Binary CD

CD Map

G

ωnc,Ωc

Figure 1. Proposed Untrained Hyperspectral Deep CVA
(UH-DCVA) technique

We compared the proposed method to three unsupervised meth-
ods:

• Change vector analysis (CVA), the comparison to which is
necessary to understand if the proposed method provides
any additional benefit to the existing mechanism of pixel
difference.

• Parcel change vector analysis (PCVA) that captures the
spatial information as superpixel, the comparison to which
is critical to understand if the benefits brought by proposed
method can be merely replaced by a superpixel based ana-
lysis.

• Deep change vector analysis (DCVAPretrained) with fea-
ture extractor pre-trained on largescale computer vision
dataset with VGG16/VGG19 architecture (Simonyan and
Zisserman, 2014), the comparison to which is critical to
understand if benefits brought by proposed method can be
merely substituted by transfer learning approaches. We
modulate the first layer of the network by replicating the
weights as number of channels of hyperspectral images.
While modulating the first layer of network is not an ideal
choice, this shows the limitation of the existing methods
for adapting to hyperspectral input. In absence of any suit-
able adaptation technique, brute force modulation of first
layer is used to adapt DCVAPretrained for hyperspectral
input.

For DCVAPretrained, we have tested three different con-
figurations: by using 1st convolutional layer of VGG16
(DCVAPretrained-1), 2nd convolutional layer of VGG16
(DCVAPretrained-2), and 1st convolutional layer of VGG19
(DCVAPretrained-3). Different combinations with both
VGG16 and VGG19 are compared to ensure that the pro-
posed method can outperform different architectures.
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Method Sensitivity Specificity
CVA 76.92 96.69

PCVA 58.18 84.74
DCVAPretrained-1 51.24 85.88
DCVAPretrained-2 46.53 78.57
DCVAPretrained-3 50.63 86.03
Proposed (1 layer) 84.87 98.80
Proposed (2 layers) 86.32 98.81
Proposed (3 layers) 88.94 98.08

Table 1. CD results for the Santa Barbara scene

Comparison is performed in terms of sensitivity (accuracy com-
puted over changed pixels) and specificity (accuracy computed
over unchanged pixels).

The proposed method using one-layer network obtains sensitiv-
ity of 84.87% and specificity of 98.80% for the Santa Barbara
scene. Using two layer network, the proposed method obtains
sensitivity of 86.32% and specificity of 98.81%. While using
three layer network, the proposed obtains sensitivity of 88.94%
and specificity of 98.08% (shown in Figure 2(f)). Thus we ob-
serve a gradual but slow improvement in performance as the
number of layers are increased (as tabulated in Table 2). The
improvement is because adding more convolution layers im-
prove the spatial receptive field of the filters and increase the
complexity of the filters. However, considering the coarse res-
olution of the hyperspectral images, this performance saturates
soon, as we observe by adding third layer specificity drops a
little. We show the result obtained by CVA in Figure 2(d). The
proposed method clearly outperforms CVA and PCVA. Inter-
estingly, PCVA obtains inferior result compared to CVA (Table
2). This might be due to less effectiveness of superpixel-based
representation in coarse resolution hyperspectral images. All
combinations of DCVAPretrained (Figure 2(e)) obtains inferior
result compared to the proposed method. Here we recall that
generally first layer of deep models ingest input of 3 chan-
nels and project it to larger number of channels, commonly
64 (Simonyan and Zisserman, 2014). However, in this case
DCVAPretrained ingests large number of channels (224) and
projects it to 64 channels. This is reverse of what is being gen-
erally done in computer vision. This is where proposed method
is particularly useful as untrained models provide us the free-
dom of choosing number of input and output features as we
desire.

Similar result is obtained in case of Hermiston scene. The pro-
posed method obtains superior sensitivity and specificity score
in comparison to the state-of-the-art unsupervised methods. The
performance of the proposed method improves as more layers
are added, however specificity drops a little. Quantitative res-
ult for Hermiston scene is shown in Table 2 and visual result is
omitted for sake of brevity.

Though we showed the quantitative result using a fixed threshold
determination scheme, aligned with the usual practice in un-
supervised change detection literature (Saha et al., 2019), in
most cases the proposed method outperforms compared meth-
ods both in terms of sensitivity and specificity. This shows that
slight variation in threshold would not impact the superiority of
the proposed method.

5. CONCLUSION

In this work, we presented an unsupervised change detection for
hyperspectral images. The proposed method uses an untrained

Method Sensitivity Specificity
CVA 92.22 97.45

PCVA 60.14 94.19
DCVAPretrained-1 61.25 76.78
DCVAPretrained-2 74.41 80.53
DCVAPretrained-3 52.31 76.92
Proposed (1 layer) 94.93 99.33
Proposed (2 layers) 96.92 98.99
Proposed (3 layers) 97.67 98.61

Table 2. CD results for the Hermiston scene

model for feature extraction from bi-temporal hyperspectral im-
ages. As the feature extractor model is untrained, it can be
initialized with as many number of input channels as desired.
This is particularly convenient considering the large number of
spectral bands in different hyperspectral images. Moreover, the
number of filters in the subsequent layers can also be decided
arbitrarily, as there is no training involved. Our experiments
show that the proposed method can produce better result than
the unsupervised CD methods. While the idea seems bold at
first sight, similar idea has been verified before in the com-
puter vision and machine learning literature. Our work is based
on the assumption that hyperspectral images show significantly
less spatial complexity. Thus the method is not applicable to
very high spatial resolution hyperspectral sensor, though they
are rare in practice, due to the cost of generating higher res-
olution in both spatial and spectral domain. The remote sens-
ing community has observed significant rise in papers related to
deep learning in the last few years. However, there have been
almost no effort to identify what matters most, deep or learning
or both. Our work is a first step towards that direction. In future,
we will investigate whether introducing non-linearity between
layers can further improve the result of the proposed method.
We will also extend the proposed hyperspectral CD method by
analyzing changed pixels (Ωc) using direction-based analysis to
obtain different kinds of change ωc1, ωc2, ..., ωcK .
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Figure 2. Santa Barbara scene, False color composition (R: band 50, G: band 20, B: band 10) images: (a) pre-change and (b)
post-change, (c) reference image (white - unchanged, black - changed, gray - unknown), and CD maps: (d) CVA, (e)
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