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ABSTRACT:

Explainable machine learning has recently gained attention due to its contribution to understanding how a model works and why
certain decisions are made. A so far less targeted goal, especially in remote sensing, is the derivation of new knowledge and scientific
insights from observational data. In our paper, we propose an explainable machine learning approach to address the challenge that
certain land cover classes such as wilderness are not well-defined in satellite imagery and can only be used with vague labels for
mapping. Our approach consists of a combined U-Net and ResNet-18 that can perform scene classification while providing at the
same time interpretable information with which we can derive new insights about classes. We show that our methodology allows
us to deepen our understanding of what makes nature wild by automatically identifying simple concepts such as wasteland that
semantically describes wilderness. It further quantifies a class’s sensitivity with respect to a concept and uses it as an indicator for

how well a concept describes the class.

1. INTRODUCTION

Machine learning (ML) methods are successfully used in re-
mote sensing for various tasks such as classification, detection,
or parameter prediction. In general, the main goal of these
tasks is high accuracy and high efficiency. However, especially
for scientific applications also other characteristics such as the
comprehensibility and reliability of the results are considered
important in order to ensure the scientific value of the outcome
and to increase trust in the learned models. Besides the actual
solving of the application task and the mere learning of relation-
ships between observed data and the desired output, a recent but
not yet widespread use of ML is the derivation of new scientific
knowledge (Roscher et al., 2020a). In order to get closer to such
goals, explainable ML has been strongly promoted in research
in recent years.

Explainable ML aims at the understanding of the underlying
reasons for the produced decisions and in which way a partic-
ular model works (Samek et al., 2020). Little work has been
done so far in remote sensing, particularly with satellite im-
ages, to understand better what has been learned. (Roscher et
al., 2020b) discuss first works in this direction and show that
explainability is often used to align the models with existing
knowledge, for example, to improve models and to correct obvi-
ous flaws in case of wrong decisions. To this point, explainable
ML has been used less to uncover previously unknown patterns
and to derive novel scientific insights.

One possible application of explainable ML to uncover un-
known patterns is the mapping of only weakly defined phe-
nomena such as wilderness. Although there is a plethora of
scientific work discussing this topic from a philosophical per-
spective (e.g., (Bastmeijer, 2016)), there is no clear physical
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Figure 1. Sample satellite image with two derived concepts that
semantically describe water and man-made structures on the one
hand and forests on the other hand.

definition of what makes nature wild. However, we see a high
relevance for mapping wilderness areas using remote sensing
observations, as this can be an important source of information
for stakeholders in the context of establishing new protected
areas.

Here, we propose an explainable ML approach to derive novel
scientific insights. We analyze and evaluate our approach
for satellite-based classification of wilderness, which is only
vaguely defined from a technical perspective. This uncertain
definition hinders an automatic mapping of wilderness with an
ML approach. For example, the choice of reference data is not
clear, and thus the development of a suitable model cannot be
ensured. As a weak label proxy, we use the structural classific-
ation as a protected wilderness area, which can be derived from
administrative data provided by the International Union for the
Conservation of Nature (IUCN). However, since such data is
not all-encompassing and actual wilderness may also exist out-
side such protected areas, this annotation may be incomplete
and noise-prone.

The contributions of our work are the following:

e Common interpretation methods are tailored to RGB im-
ages and objects characterized by strong image gradi-
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ents compared to the background. In contrast, the scenes
of interest in this work represent natural areas and are
therefore not characterized by distinctive image gradients.
Moreover, they do not represent a typical foreground-
background division of the scene, which is commonly used
for explanatory analysis (Adebayo et al., 2018). Also, the
use of multi-spectral satellite imagery provides us with
more bands, which we use for our analyses.

e Due to the uncertain definition of wilderness, existing la-
bels only vaguely describe the scenes. This is taken into
account when designing the explainable ML method by
addressing wilderness identification through scene classi-
fication rather than semantic segmentation, which removes
the burden of requiring accurate location-specific inform-
ation.

e We generate potential concepts in a human-understandable
space, that are visually interpretable and explainable with
domain knowledge (see Fig. 1). By concept, we mean
something that can be described semantically. In our
case, two concepts cover surface types as water, man-
made structures and forests, which are sensitive towards
the complex land cover phenomenon non-wilderness. Un-
like common methods that gain explainability for novel
concepts by using a relation to existing concepts, we ex-
ploit the high interpretive power of our models’ internal
representation, which can be explained.

Overall, to make a step in the direction of better land cover
mapping, we propose an explainable ML approach to deepen
our understanding of what makes nature wild and derive novel
insights about this land cover class.

2. RELATED WORK

Among the most notable remote sensing applications is the
automatic mapping of land cover from satellite images (Ma et
al., 2018, Zhang et al., 2016). While in most cases land cover
mapping is addressed generically, i.e., aiming at comprehensive
land cover class schemes, many works target the identification
of specific classes, e.g., water (Isikdogan et al., 2017), crop-
lands (Kussul et al., 2017), or urban areas (Qiu et al., 2020).
However, unlike these commonly used land cover classes or
other well-defined classes (e.g., defined by Copernicus Global
Land Service (Buchhorn et al., 2020)), the land cover class
wilderness is only vaguely defined from a technical perspect-
ive, and there is no clear physical delineation of what is a wil-
derness area. In such cases, accurate mapping is limited, and
more sophisticated ML methods must be applied.

A promising direction to overcome this challenge is explain-
able ML, which can be used to derive novel insights, for ex-
ample, into the characteristics of classes (Tuia et al., 2021).
According to (Roscher et al., 2020a) three properties are be-
neficial to learn an explainable ML model: transparency, inter-
pretability, and explainability. Transparency is the accessibility
to properties such as the model’s structure or the motivation
why specific components were chosen. Interpretability is the
property of representing certain processes in an ML model in
a human-understandable space. At the same time, explainabil-
ity is achieved by combining these interpretations with domain
knowledge in the context of a particular application. These
three properties are found in different approaches with differ-
ent levels. An overview in the context of remote sensing can
be found, for example, in (Roscher et al., 2020b). Although a
model may have been learned using various ML techniques, the

goals of explainable ML are mostly mentioned in the context of
deep neural networks, whose decision-making is often difficult
for humans to comprehend due to their complexity.

There are mainly two groups of approaches used to increase
interpretability and explainability when combined with domain
knowledge: post-hoc interpretation methods and interpretation-
by-design methods. Post-hoc interpretation methods analyze
the outcomes and decisions of an already learned model util-
izing the input. (Samek et al., 2020) discuss several local and
global post-hoc interpretation tools that visualize processes in
a neural network in different ways. Especially in the field of
image analysis, heatmaps are often used to mark regions rel-
evant for the decision-making process (Kierdorf et al., 2020,
Lapuschkin et al., 2019). Among the most common methods
for producing heatmaps are layer-wise relevance propagation
(Montavon et al., 2019) and occlusion sensitivity maps (Zeiler,
Fergus, 2014). In contrast to post-hoc interpretation methods,
interpretation-by-design methods produce interpretations and
explanations by an imposed representation of model compon-
ents or latent variables that we can link to domain knowledge.
Here, one of the most prominent works in the field of neural net-
works is network dissection, where units in neural networks are
linked to human-understandable concepts (Zhou et al., 2018a).
The identification and disentanglement of such concepts has
long been the subject of research (Arendsen et al., 2020, Mar-
cos et al., 2019, Zhou et al., 2018b, Kim et al., 2018, Wigness
et al., 2014). However, the approaches generally use existing
concepts from other annotated image datasets such as Broden
(Bau et al., 2017) or embed the concepts with other databases
into a common space.

3. DATA

In the following, we present the data we use for finding concepts
for wilderness with our presented framework.

Dataset preparation For the investigations in this paper, we
have created a dataset connecting optical multi-spectral im-
agery acquired by the Sentinel-2 satellites with annotations in-
dicating wilderness. For that purpose, we developed an auto-
mated data processing chain based on Google Earth Engine
(Gorelick et al., 2017), which is depicted in Fig. 2.

While the Sentinel-2 data preparation mainly consisted of tem-
poral mosaicking to ensure cloud-free observations, the more
challenging aspect in this context was to annotate wilderness
areas with wilderness being a term that is only vaguely defined
from a technical perspective. To circumvent this problem, we
relied on the definition of IUCN, which provides a classifica-
tion of protected areas. Their Category Ib is called wilderness
area and described as follows: “These areas are a protected
domain in which biodiversity and ecosystem processes (includ-
ing evolution) are allowed to flourish or experience restoration
if previously disturbed by human activity.” To emphasize the
difference to our understanding of wilderness, we denote this
category IUCN wilderness area in the following.

For our dataset, we created a spatial buffer around IUCN wil-
derness areas represented as spatial polygons in the World Data-
base on Protected Areas (WDPA)' for Europe. We then raster-
ized the resulting rectangle to a pixel spacing of 10 m (i.e., cor-
responding to the maximum spatial resolution of Sentinel-2),

Thttps://www.protectedplanet.net/en/thematic-areas/
wdpa
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Figure 2. Flowchart of the dataset preparation in Google Earth Engine. A, B, and C refer to training, validation, and test sets,
respectively. The abbreviations are defined as follows: WDPA — World Database of Protected Areas, S2_SR/S2L2A — Sentinel-2 Level
2A imagery, QA60 — 60m resolution quality band of Sentinel-2, ROI — region of interest, CSV — comma-separated value file, UTM —
Universal Transverse Mercator coordinate system.

Figure 3. Three example images from the dataset: (a) positive
example indicating a wilderness area; (b) hard negative example
extracted in the vicinity of a wilderness area; (c) easy negative
extracted from a populated area in Europe.

transforming it to a binary target layer. Since areas in the sur-
roundings of [UCN wilderness areas can be expected to be visu-
ally at least similar to the protected areas, those non-wilderness
areas can be considered hard negatives samples. To ease the
network’s training, especially during the first iterations, we ad-
ded a few simple examples sampled from randomly selected
European cities. Last, the data was split into tiles with a size
of 256 x 256 pixels, which corresponds to an area of about 6.6
km?. Positive, hard negative, and easy negative examples are
shown in Fig. 3.

Since this work uses scene classification as a backbone task
rather than semantic segmentation, we further reduced the
pixel-level binary annotations to scene labels wilderness and
non-wilderness. This was done by keeping only samples
showing less than 20 % or more than 80 % of IUCN wilder-
ness areas for negative and positive examples, respectively (cf.
Fig. 4). In the end, this results in a dataset of 5300 images.

Data Split Most of our collected wilderness data comes
from Sweden, Finland, and Estonia. Non-wilderness samples
mainly come from large European cities as Berlin, Zurich, or
Vienna. We divide our data into three independent and spatial
consistent subsets for training, validation, and testing. To do
so, we spatially cluster all data samples as described in the fol-

89 %

DD

17 %

Figure 4. Conversion of pixel-level binary annotations into
single-label scene annotations. Patches with more than 80% of
wilderness pixels receive label wilderness (left). Patches with
relatively similar shares of wilderness and non-wilderness pixels
are removed (center). Patches with less than 20% of wilderness
pixels received the scene label non-wilderness.

lowing: First, data samples with a distance of more than 5 km
are separated. This leads to a few large clusters so that in a
second step, clusters with more than 100 samples are split into
several clusters using the k-means algorithm. Small clusters
with less than ten samples are added to the training set to en-
courage versatile training. The remaining clusters are assigned
randomly but uniformly in size until the final split fractions of
the datasets are about 60/20/20 %. Thus, we get three disjunct
datasets of 3055 samples for training (1066 of them labeled
as wilderness), 1162 (274) samples for validation, and 1082
(345) for testing.

4. METHODOLOGY

Fig. 5 schematically shows our framework. One part of our
framework, illustrated with a red box, is a deep neural net-
work for scene classification. The input is a (H x W x B)-
dimensional image, and the output is a K-dimensional vector
indicating the estimated class of the scene. In our case, the
output is a two-dimensional confidence score for the classes
non-wilderness and wilderness. The second part of our
framework, illustrated with a blue box, identifies concepts in
a dataset. In the following, we will explain the single compon-
ents in more detail.
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Figure 5. Overview of the jUngle-Net and our methodology. The scene classification pipeline (red box) classifies multi-dimensional
images into the classes wilderness or non-wilderness. The interpretation pipeline (blue box) derives potential concepts by
clustering U-Net activation maps of correctly classified images. Sensitive concepts belonging to the classes are identified by
comparing the confidence scores of the ResNet-18 obtained with non-occluded U-Net activation maps and concept-occluded
activation maps.

jUngle-Net architecture Due to the vague definition of the
target phenomenon wilderness and the use of proxy labels, we
do not aim for a pixel-wise semantic segmentation of the in-
put image data but reduce the problem of scene classification
into a proxy wilderness class. To gain scientific knowledge
about wilderness, we are building an interpretation-by-design
network that will classify it while providing introspection into
the network’s internal representation. The first part of jUngle-
Net is an encoder-decoder-based U-Net (Ronneberger et al.,
2015) that transforms input data of the form (H x W x B) into
a new representation of the form (H x W x L). This intermedi-
ate representation is then passed to the second part, a ResNet-18
(He et al., 2016), which classifies it into K classes. We choose
L = K so that the U-Net’s feature dimension is equal to the
number of classes. Since L < B, the interface between the two
networks is a bottleneck, which enforces a feature reduction
while maintaining the spatial extent.

In detail, we use a U-Net structure with four downward steps
and replace the transpose convolution layers of the upward steps
with bi-linear up-sampling operations, as described in (Odena
et al., 2016). This upsampling prevents checkerboard artifacts
in the outputs, which we observed with the standard transposed
convolutions. To account for the larger number of input fea-
ture dimensions compared to RGB images, we modify the first
convolutional layer of the U-Net to put out 128 rather than 64
feature dimensions. We continue this doubling of dimensions
over the rest of the network. The U-Net’s final layer is activ-
ated with the tanh function, to get activation map values in the
range of -1 and 1. We use the a ResNet-18 with sigmoid activa-
tion to output class scores. In contrast to softmax activation,
sigmoid allows outputs in which both classes - wilderness
and non-wilderness - are not forced to sum to one and can
be seen as a more independent class uncertainty estimate. For
the model’s training, we use the binary-cross-entropy loss. We
train both networks end-to-end, and therefore both are optim-

ized together. The representation that emerges during training
at the interface between the two networks is the base for our
subsequent concept identification.

Identifying potential concepts For the identification of spe-
cific concepts, we map all vectors wp ., from each position
in the (H x W x L)-stack of U-Net activation maps to an
L-dimensional space to analyze which combinations of activ-
ations are most common. In doing so, we double the num-
ber of wilderness samples to get a more balanced amount
of wilderness and non-wilderness samples. This way
we assume the following clustering algorithm not to prefer
non-wilderness concepts. Assuming a Gaussian mixture dis-
tribution of the mapped activations, we determine the regions
of maximum density using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). We compute C clusters us-
ing EM, which we consider as potential concepts. Each cluster
is described by a mean value, a covariance matrix, and a mixing
coefficient. This allows an assignment of each activation map
point to one of the clusters by the argument of the maximum of
the likelihood values. Since image and activation map have the
same size, we can assign a concept to each image pixel as well.

Quantifying concept-occlusion sensitivity We quantify the
sensitivity of each potential concept by occluding their areas in
the U-Net activation maps. Our method is based on the idea of
occlusion sensitivity maps (OSMs) developed by (Zeiler, Fer-
gus, 2014). OSMs are heatmaps indicating the sensitivity of a
trained neural network to partial occlusions in the input image.
To produce an OSM, a patch is moved over the image with a
certain stride and occludes pixels by replacing their values with
a fill value. Deviations in the output scores resulting from the
occlusions indicate the influence of the image regions on the
result. Both positive and negative contributions to the output
score can occur.
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Compared to standard OSM, there are mainly three modifica-
tions in our approach: First, instead of occluding parts in the
input image, we occlude parts of the U-Net activation maps be-
fore passing them to the ResNet-18. Second, instead of occlud-
ing with fixed-size patches, we occlude with areas representing
a potential concept, i.e., as indicated by the concept map. Third,
instead of presenting the sensitivity of patch-wise occlusion in
a heatmap, we evaluate the impact of covering single potential
concepts per image. We then evaluate these results for multiple
images in histograms to analyze whether the concepts are sens-
itive and class-specific.

We occlude the U-Net activation maps with zero and pass them
to the ResNet-18, which provides K predicted scores in a
K -dimensional vector y; for each occlusion i. We compare
these values with vector yorig, Which is obtained by the non-
occluded activation maps, and consider the absolute deviations
A; = Yorig — ¥i as a measure for concept-sensitivity.

5. EXPERIMENTS

5.1 Experimental Setup

Our code to train and validate our model is based on pytorch
and pytorch-lightning. We standard-normalize the input data
using band-specific mean and standard deviation values based
on the 95 % quantile of the complete dataset in the training
procedure. To increase data variability during training, we ap-
ply random horizontal and vertical flipping as image augment-
ation. We train the model for 40 epochs with a batch size of 32
samples, which takes about 60 minutes with an NVIDIA Tesla
V100. The SGD optimizer is used with a learning rate of 1073,
amomentum of 0.95, and a weight decay of 103, For warm-up
and annealing of the learning rate and momentum, we employ
the one-cycle scheduler.

For our investigations, we classify all test data samples with the
trained model and save the confidence scores from ResNet-18
and the U-Net activation maps. We treat the number of Gaus-
sian mixture components C' as a hyperparameter and tune it to
find the best concepts with regard to interpretabilty and sensit-
ivity. We choose the number of potential concepts to be C' = 3.

5.2 Results and Discussion

5.2.1 Scene classification The confusion matrix for the
scene classification results on the test dataset is shown in
Table 1. The resulting accuracies for the two classes
non-wilderness and wilderness are 0.76 and 0.84. The F1-
scores are 0.71 and 0.83, respectively.

Table 1. Confusion matrix of the scene classification results of
classes non-wilderness (nw) and wilderness (w).

target
\ nw w \ Total
cediction ¥ | 358 55 | 613
p W 179 290 | 469
total | 737 345 | 1082

5.2.2 Finding potential concepts To find potential con-
cepts, we use the described procedure in Sec. 4 and cluster
the vectors up,,, in the stack of U-Net activation maps. We
only use correctly predicted test samples, which comprise 558

correctly predicted samples for non-wilderness and 290 cor-
rectly predicted samples for wilderness. The empirical dens-
ities in Fig. 6 show that nearly all activation map values concen-
trate around a few hot spots. It is also apparent that densities
are more distributed across the value range of the first U-Net
activation map than the range of the second U-Net activation
map, which results in a larger spread of the clusters along the
first range. We identify clusters characterized by a high density
of activation values with the EM-algorithm, but also alternat-
ive approaches such as mean-shift can be used. We obtain the
best results with regard to interpretability and sensitivity with
C = 3 clusters. Choosing a higher number of clusters, e.g.
C = 4, leads to concepts being similar in large parts and there-
fore less sensitive. Choosing a lower number, e.g. C' = 2, leads
to a less interpretable mixture of concepts.
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Figure 6. Empirical densities of the two U-Net activation maps

aggregated from all samples. The ellipses represent the 1-sigma

isolines of the three Gaussian mixture distribution components.
The points mark their mean values.

We cluster the U-Net activation maps based on the found cluster
parameters and use them to segment the input images. As an
example, we show the segmentation of two samples in Fig. 7
labeled as non-wildness and wildness that show an urban
and a wild area. Besides the input’s RGB bands, we display
both U-Net activation maps and the segmentation derived using
the three clusters found in the activation maps.

We identify surface types covered by these clusters to associate
each cluster with a concept. Although each concept can be asso-
ciated with several surface types, for simplicity, we name each
concept only by its most frequent one(s). Typical examples for
each of the three clusters are shown in Fig. 8, where we masked
areas gray that are not part of the respective cluster. The first
concept, denoted as water & man-made, mainly represents
water bodies, man-made structures, and rocky and sandy sur-
faces. The second concept, denoted as forest, comprises dif-
ferent forest and other high vegetation types. The last concept
is diverse, but the majority contains wastelands and rough sur-
faces. We refer to it as wasteland.

5.2.3 Concept-occlusion sensitivities In this experiment,
we verify whether the identified concepts are connected to the
non-wilderness or wilderness class by analyzing concept-
occlusion sensitivities. The histograms in Fig. 9 show the con-
fidence score deviations due to occlusions in the U-Net activa-
tion maps: those on the left hand side show the deviations for
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(c) U-Net map 2
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Figure 7. RGB bands, U-Net activation maps, and derived concept segmentations (cyan: water & man-made, magenta: forests,
yellow: wasteland) of two samples (top: wilderness, bottom: non-wilderness).

non-wilderness samples (Fig. 9a) and those on the right hand
side show the deviations for wilderness samples (Fig. 9b).

The sensitivity of the water & man-made concept in
non-wilderness samples can be reflected in the top his-
togram of Fig. 9a. The deviations of the non-wilderness
score (blue bars) are negative, which means that the occlusions
affected the confidence score towards the wilderness class.
The histogram corresponding to deviations of the wilderness
confidence score (green bars) shows the opposite behavior,
which also means a change towards wilderness. The wide
spread of the histograms shows that large changes to the classi-
fication score and even complete switches of the classification
result occur. Consequently, we assign the concept water &
man-made to be connected to the non-wilderness class.
The corresponding histogram on the right-hand site in Fig. 9b
shows the deviations when occluding the water & man-made
concept in wilderness samples. Here, the shift towards the
wilderness class is significantly less distinct. We assume
that the classifier’s decision is less impacted by that when it
is already confident, that a sample is of class wilderness
and that it can rely on more information than contained
just by that concept. Compared to the water & man-made
concept, we see similar distributions for the forest concept
(middle row in Fig. 9), which therefore is also connected to the
non-wilderness class. For the concept wasteland (bottom
row), we see the opposite behavior. Here, the occlusion leads
to deviations towards the non-wilderness class for samples
classified as wilderness (Fig. 9b). However, it is notable, that
the occlusion of the wasteland concept has a smaller effect
on wilderness samples, than the occlusions of the water &
man-made and forest concepts have on non-wilderness
samples (Fig.9a). We therefore regard the wasteland concept
to be slightly sensitive towards the wilderness class.

5.2.4 Interpret sensitive concepts We found two concepts,
water & man-made and forest, that are clearly connected to
the non-wilderness class, whereas we found one concept that
is slightly sensitive to wilderness. It seems, that it is easier for
the model to find non-wilderness than wilderness indicat-
ors. We assume that this is because 1.) there are easy-detectable
non-wilderness indicators such as cities or streets, but there

are more difficult ones for wilderness, and 2.) IUCN wil-
derness areas do generally not show easy non-wilderness in-
dicators like streets, whereas non-IUCN wilderness areas might
show many indicators for wilderness.

However, we observe, that the wasteland concept is more
sensitive in samples labeled as wilderness, than it is in
samples labeled as non-wilderness. As shown in Fig. 7, the
wasteland concept often contains fields in non-wilderness
samples, whereas it often contains wastelands in wilderness
samples. It appears, that the model uses information from the
wasteland concept more in samples labeled as wilderness
and hard non-wilderness samples.

On a broader view, we consider wilderness to be more char-
acterized by the absence of some concepts rather than others’
existence. This is especially true for the concept water &
man-made, where the latter aspect means that less human im-
pact is observable in a scene.

6. CONCLUSION AND FUTURE DIRECTION

We have presented an interpretation-by-design network for the
derivation of novel scientific insights, in particular, for the re-
finement of the description of ill-defined classes. We investig-
ated jUngle-Net in the context of remote sensing for the vaguely
defined target phenomenon wilderness. JUngle-Net consists of
two parts that are trained end-to-end, namely a ResNet-18 that
is primarily responsible for scene classification and a U-Net
that provides an interpretable representation. The interpretable
representation is visually human-understandable and can be ex-
plained with domain knowledge leading to potential concepts
for wilderness. Our results show that potential concepts can be
found and verified with interpretation tools like occlusion sens-
itivity. Overall, with our work, we see a starting point in using
ML methods that go beyond the classical goal of maximizing
accuracy but lead us to new scientific insights. We believe that
our approach is as well applicable to data in other study areas
to find sensitive concepts that explain the decision of jUngle-
Net. We hope to encourage other researchers to try similar ap-
proaches for their applications.
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Figure 8. Correctly classified samples for each of the potential concepts. Colored areas correspond to given concepts, and gray areas
are part of other concepts. Water & man-made: The first four samples show highly sensitive areas, which means areas that are highly
connected to the non-wilderness class. The last two samples show non-sensitive areas of the same concept. Forest: Again, the first

four areas are highly connected to non-wilderness, while the last two areas are non-sensitive. Wasteland: The first three samples

show areas that are slightly connected to wilderness, whereas the last three areas are slightly connected to non-wilderness.

In this paper, we used protected areas as a weak label proxy for
wilderness, but also other classes can be used as a proxy. One
challenge that needs to be considered in future work is that ac-
tual non-labeled wilderness exists outside of labeled protected
areas causing, for example, false positives during evaluation.
Furthermore, no distilling approaches have been performed so
far or tested whether light-weight models lead to similar res-
ults. Therefore, another promising research direction would
be to reduce parameters and optimize convergence so that the
model could be better applied on small datasets. Moreover, we
consider a more detailed analysis of the likelihood values and
posterior probabilities to make better statements about the as-
signment of a concept. Both likelihood values and posterior
probabilities derived from the Gaussian mixture components
could be used to describe how well a sample can be assigned
to a concept. Another interesting future research question is
whether this approach can be used to select and evaluate train-
ing data for non-well-defined classes.
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