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ABSTRACT: 

 

In the current situation of frequent forest fires, the study of forest burned area mapping is important. However, there is still room for 

improvement in the accuracy of existing forest burning area mapping methods. Therefore, in this paper, an unsupervised method 

based on fire index enhancement and GRNN (General Regression Neural Network) is proposed for automated forest burned area 

mapping from single-date post-fire remote sensing imagery. The proposed method first uses adaptive spatial context information to 

enhance the generated fire index to improve its ability to indicate the burned areas. Then the uncertainty analysis is performed on the 

enhanced fire index to extract reliable burned samples and non-burned samples for subsequent classifier training. Finally, the 

improved GRNN model considering the spatial correlation of pixels is used as a classifier to binarize the enhanced fire index to 

generate the final burned area map. Based on two commonly used fire indexes, NBR (Normalized Burn Ratio) and BAI (Burned 

Area Index), this paper conducts burned area mapping experiments on a post-fire image of a forest area in Inner Mongolia, China to 

test the effectiveness of the proposed method, and two commonly used threshold methods (Otsu and Kmeans clustering) are also 

used to conduct burned area mapping based on threshold segmentation of fire index for comparison experiments. The experimental 

results prove the effectiveness and superiority of the proposed method. The proposed method is unsupervised and automated, so it 

has high application value and potential under the current situation of frequent forest fires.  

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Forests are one of the most important natural resources on the 

earth, and they have irreplaceable value in regulating climate, 

maintaining ecological balance and many other aspects. 

However, in recent years, large-scale forest fires have frequently 

occurred all over the world (Bastarrika et al., 2011). The 

mapping of forest burned areas helps to understand the severity 

of forest fires and their spatial and temporal changes, and then 

helps forest recovery and management after fire events (Roy et 

al., 2019). Therefore, the study of forest burned area mapping is 

very important and necessary.  

 

The spectral fire index calculated from the original spectral 

bands of the image reflects the probability that each pixel in the 

image belongs to the burned area. Considering the accuracy and 

efficiency of the mapping, burned area mapping based on the 

fire index is currently one of the most popular and applicable 

forest burned area mapping methods (Veraverbeke et al., 2011). 

For example, Pulvirenti et al. (2020) constructed an automatic 

processing chain for near real-time mapping of burned forest 

areas using Sentinel-2 data based on the delta Normalized Burn 

Ratio (NBR) index and the Normalized Difference Vegetation 

Index. Engelbrecht et al. (2017) proposed a Normalized 

Difference Alpha-Angle Index for burned area identification by 

using multi-polarisation C-band SAR. Liu et al. (2020) 

proposed a new burned area change detection approach by 

using Landsat-8 OLI data based on the fire index and Otsu 

algorithm. More research on burned area mapping based on fire 

index can be found in (Chuvieco et al., 2002; Roteta et al., 2019; 

Woźniak et al., 2019).  

 

The mapping of the burned areas based on the fire index usually 

involves two main steps: (1) Calculating the fire index from 

remote sensing images (2) Binarizing the fire index to generate 

a burned area map. Generally speaking, in the fire index map, 

the larger (or the smaller in some indexes) the index value of a 

pixel, the higher the probability that the pixel belongs to the 

burned areas. Therefore, after the fire index is generated, most 

of the existing burned area mapping methods usually use 

threshold segmentation or clustering to binarize the fire index to 

generate the final burned area map. In fact, in the fire index map, 

there are many pixels with high uncertainty, and they have 

medium index value. It is difficult to accurately determine 

whether they belong to the burned or non-burned area by simple 

methods such as threshold segmentation or clustering. Such 

methods often cause unnecessary missed or false detections, 

thereby reducing the accuracy and reliability of the burned area 

mapping. In view of the above considerations, this paper 

proposes an unsupervised method based on fire index 

enhancement and GRNN (General Regression Neural Network) 

for automated forest burned area mapping from single-date 

post-fire remote sensing imagery. 
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2. PROPOSED METHOD 

As shown in Figure 1, the method proposed in this paper mainly 

includes four main steps, namely: (1) Fire index calculation 

from post-fire image; (2) Fire index enhancement based on 

adaptive spatial context information; (3) Uncertainty analysis to 

extract burned and non-burned samples; (4) GRNN training and 

prediction to generate a burned area map. 

 

 

Figure 1. The flow chart of the proposed burned area mapping 

method 

 

2.1 Fire Index Calculation from Post-Fire Image 

The first step of the proposed method is to calculate the fire 

index from the post-fire image. In this study, two commonly 

used and effective indices, NBR (Veraverbeke et al., 2011) and 

Burned Area Index (BAI) (Chuvieco et al., 2002) were selected 

and compared for burned area mapping. The calculation 

formulas of NBR and BAI are shown in equations (1) and (2). 

 

( ) / ( )NIR SWIR NIR SWIRNBR                      (1) 

1
2 2( ) ( )R NIRBAI    



                     (2) 

 

where
R ,

NIR , and
SWIR respectively represent the reflectivity of 

the remote sensing image in the red band, near-infrared (NIR) 

band, and short-wave infrared (SWIR) band. By referring to 

related literature (Bastarrika et al., 2011), and  are set to 

0.10 and 0.06, respectively. 

 

NBR uses the law that the spectral reflectance of the burned 

areas increases in the SWIR band and decreases in the NIR 

band to separate the burned areas from other ground objects. 

BAI is constructed based on the distance between the pixel 

value of the ground object and its reference spectral value, 

which can emphasize the charcoal signal in the burned areas. 

NBR and BAI have high sensitivity to fire burning signals, so 

they are frequently used in research related to forest burned area 

mapping. 

 

2.2 Fire Index Enhancement Based on Adaptive Spatial 

Context Information 

Theoretically, in the fire index map, the larger (or the smaller in 

some indexes) the index value of a pixel indicates that the pixel 

is more likely to belong to the burned areas. However, noise or 

mixed pixels inevitably exist in the original spectral band of the 

image. Therefore, the fire index map generated directly from the 

original spectral band of the image cannot accurately reflect the 

probability that each pixel belongs to the burned areas. For this 

reason, considering the spatial continuity of the burned area in 

the image, this paper proposes an index enhancement method 

based on adaptive spatial context information to enhance the 

initial fire index map to improve its ability to indicate the 

burned areas. 

 

Specifically, the proposed enhancement method first uses the 

region growing algorithm to generate a series of adaptive 

regions  1 2, , , Nss s

i i i iR R R R with different scales for each 

pixel ix in the initial fire index map. Moreover, the series of 

adaptive regions  1 2, , , Nss s

i i i iR R R R of each pixel ix are 

generated at a fixed interval s with the pixel ix as the initial 

seed point. ns is the scale parameter, that is, the number of 

pixels contained in an adaptive spatial region, 1,2, ,n N , 

and N represents the number of all generated adaptive regions. 

The interval s  represents the difference between the number 

of pixels contained in two adaptive regions of adjacent scales, 

that is, 
1n ns s s   . In this study, s is set to 5. Obviously, 

in the process of region growth, when the scale parameter ns is 

relatively small, as the scale of the adaptive region increases, 

the number of similar pixels in the region gradually increases, 

so the homogeneity of the region will gradually increase. When 

the scale ns increases to a certain extent, as the scale of the 

adaptive region continues to increase, more heterogeneous 

information (such as noise, heterogeneous pixels, etc.) will be 

continuously introduced into the region, so the homogeneity of 

the adaptive region will gradually decrease. Therefore, in a 

series of adaptive regions  1 2, , , Nss s

i i i iR R R R centered on 

the pixel
ix , there must be an optimal adaptive 

region ns

iR corresponding to the optimal scale
ns , which has the 

highest homogeneity.  

 
In statistics, the Coefficient of Variation (CV) is a commonly 

used statistical indicator to measure the degree of dispersion of 

a set of data. It is defined as the ratio of the standard deviation 

to the mean of this set of data. A large CV indicates that the 

degree of dispersion of the data is also large, and vice versa. In 

this section, CV is used to find the optimal adaptive 

region ns

iR from a series of adaptive 

regions  1 2, , , Nss s

i i i iR R R R . When the generated adaptive 

region contains more heterogeneous components, the difference 

between the pixels contained in the region will be greater, and 

therefore the corresponding CV will be greater. Conversely, the 

stronger the homogeneity of the adaptive region, the smaller the 

corresponding CV. Therefore, we can conclude that the best 

optimal adaptive region with the highest homogeneity has the 
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smallest CV, and vice versa. According to the definition of CV, 

the CV corresponding to an adaptive spatial 

region ns

iR in  1 2, , , Nss s

i i i iR R R R can be calculated by 

formula (3). 

 

    
( )

( )
( )

n

n

n

s
s i
i s

i

R
CV R

R




                     (3) 

 

where ( )ns

iCV R represents the CV of the adaptive spatial 

region ns

iR . ( )ns

iR and ( )ns

iR respectively represent the standard 

deviation and mean value of the fire index values of all pixels in 

the adaptive region ns

iR . 

 

After obtaining the CVs corresponding to all the adaptive 

regions in  1 2, , , Nss s

i i i iR R R R , according to the principle 

that the optimal adaptive region has the smallest CV, we can 

select the optimal adaptive region ns

iR corresponding to pixel
ix . 

 

After that, we spatially enhance the fire index of each pixel 

based on its optimal adaptive region. Specifically, the enhanced 

fire index value of each pixel can be calculated according to 

equation (4). 

 

1
( ) ( )

sn
j i

i j

n x R

EI x I x
s 

                        (4) 

 

where ( )iEI x represents the enhanced fire index value of 

pixel ix , and ( )jI x represents the initial fire index value of any 

pixel jx in the optimal adaptive region ns

iR of pixel ix before 

enhancement. ns  represents the scale parameter corresponding 

to ns

iR , that is, the total number of pixels contained in ns

iR . 

 

After this step, an enhanced fire index map can be generated, 

which can more accurately reflect the probability of each pixel 

belonging to the burned areas. 

 

2.3 Uncertainty Analysis to Extract Burned and Non-

Burned Samples 

 

Figure 2. Uncertainty analysis of enhanced fire index. 

 

In the generated enhanced fire index map, the larger (or smaller 

in some cases) the index value of a pixel, the greater the 

probability that the pixel belongs to the burned areas. As shown 

in Figure 2, in the fire index map, there are many pixels with 

high uncertainty, and they have medium index values. It is 

difficult to accurately determine whether these uncertain pixels 

belong to the burned or non-burned areas, so they are one of the 

main sources of error in burned area mapping. In this sub-

section, our goal is to identify uncertain pixels and certain 

pixels (including certain burned pixels and certain non-burned 

pixels) from the generated enhanced fire index map through 

uncertainty analysis. Here, the uncertainty analysis based on 

Fuzzy C-means (FCM) clustering was performed on the 

enhanced fire index to achieve this goal. FCM clustering is one 

of the most popular fuzzy clustering algorithms. Unlike 

traditional hard clustering, which strictly divides each element 

into a class, FCM clustering regards each cluster as a fuzzy set, 

and determines the clustering relationship through the 

membership of the elements. In FCM clustering, each element 

can belong to different clusters to different degrees at the same 

time. This fuzzy characteristic of FCM clustering makes it very 

suitable for uncertainty analysis of the fire index. FCM 

clustering divides the generated enhanced fire index into three 

fuzzy clusters by continuously iteratively updating the cluster 

centers and membership matrix, namely non-burned pixels, 

uncertain pixels and burned pixels. More details about FCM 

clustering can be found in (Havens et al., 2012 and Kouhi et al., 

2020).  

 

After completing the fuzzy clustering, we can get the 

membership matrix of the fire index map, which reflects the 

degree to which each pixel belongs to each class. Then, in 

accordance with the principle of maximum membership, we can 

assign each pixel to a specific class, that is, certain non-burned 

pixels, uncertain pixels or certain burned pixels. 

 

After that, the certain burned pixels and the certain non-burned 

pixels generated by the uncertainty analysis based on FCM 

clustering are selected as samples and input into the subsequent 

classification process because their class information has high 

reliability. 

 

2.4 GRNN Training and Prediction to Generate a Burned 

Area Map 

In some existing burned area mapping methods, the spatial 

correlation information between adjacent pixels in the image is 

often not well utilized. In fact, the burned areas in the image has 

spatial continuity. Therefore, when a pixel is a burned pixel, its 

adjacent pixels are also likely to be burned pixels. Considering 

the spatial correlation information of the pixels in the image 

will help improve the accuracy and reliability of the burned area 

mapping. To this end, this paper constructs a GRNN 

considering the spatial correlation information between pixels 

to binarize the previously generated enhanced fire index to 

generate the final burned area map. 

 

As shown in Figure 3, the main architecture of the GRNN 

model used in this paper is consistent with the general GRNN 

model. It consists of four layers, respectively: input layer, 

pattern layer, summation layer and output layer. However, in 

order to make it suitable for burned area mapping and to 

consider the spatial correlation between pixels in the image, we 

need to properly modify the input and output of the standard 

GRNN model. Specifically, for the input of the GRNN model 

used in this study, we first take each pixel in the enhanced fire 

index map as the center pixel and extract its 5*5 spatial 

neighborhood. Then, all pixels in the neighborhood are sorted 
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from left to right and top to bottom as shown in Figure 3. 

Finally, the fire index values of all the sorted pixels are input 

into the GRNN model as input features. Correspondingly, the 

number of neurons in the input layer of the GRNN model in this 

study is 25. For the output of the GRNN model, what we need 

is a binarized burned area map, that is, GRNN is required to 

output the class label of each pixel, which implies whether each 

pixel is a burned or non-burned pixel. In this study, the class of 

burned pixels is labeled as 1 while the class of non-burned 

pixels is labeled as 0. When the standard GRNN model is used 

for burned area mapping, its output Y is a non-binarized value 

between 0 and 1. Therefore, Y needs to be adjusted 

appropriately. After adjustment, the output Y' of GRNN (that is, 

the final classification label of each pixel) can be generated 

according to formula (5): 

 

     1

2
Y Y

 
   

 

                  (5) 

 

where    represents the operation of rounding down. That is, 

when the output result Y of the original GRNN is greater than 

or equal to 0.5, the corresponding pixel belongs to the burned 

areas, and Y'=1, otherwise Y'=0. More details about the internal 

architecture of GRNN can be found in the literature (Li et al., 

2011 and Li et al., 2016). 

 

In this step, the modified GRNN model is trained by five-fold 

cross-validation, and the optimal model is selected for 

prediction to generate the final burned area map. 

 

 

Figure 3. Architecture of the GRNN model used in this study 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Experimental Data and Settings 

To verify the effectiveness of the proposed method, we selected 

a forest area in Inner Mongolia, China, where a large-scale fire 

event occurred as the experimental area to conduct burned area 

mapping experiments. The entire experimental area covers 

approximately 410 square kilometers. The experimental data is 

the Landsat image of the forest area after the fire event with a 

spatial resolution of 30 meters, as shown in Figure 4(a). Figure 

4(b) shows the corresponding ground reference map, which was 

obtained through manual visual interpretation from Landsat 

images before and after the fire. At the same time, two common 

burned area mapping methods based on fire index segmentation 

were also used to map the burned areas for comparison 

experiments, respectively: Otsu-based threshold segmentation 

method (Otsu) and Kmeans clustering-based mapping method 

(Kmeans). In addition, as mentioned earlier, the two commonly 

used fire indices, NBR and BAI, were used for burned area 

mapping experiments, and their mapping capabilities were 

compared. In order to quantitatively compare the mapping 

performance of different methods, the four commonly used 

quantitative evaluation indicators: overall accuracy (OA), 

Kappa coefficient (KC), false alarm rate (FA) and missed alarm 

rate (MA), are used for mapping accuracy evaluation. 

 

 

Figure 4. Landsat image after fire and its ground truth map: (a) 

post-fire image; (b) ground truth map. 

 

3.2 Accuracy Analysis of Burned Area Mapping 

Figure 5 shows the mapping results of the burned areas 

produced by different methods. It can be seen from Figure 5 

that compared with the reference map shown in Figure 4(b), all 

methods can identify the main burned areas. However, there are 

obvious false detections in the burned area maps produced by 

different methods based on the NBR (Figure 5(a)~(c)), such as 

the area marked by the ellipse in Figure 5, while there are 

obvious missed detections in the burned area maps produced 

from the BAI (Figure 5(d)~(f)), such as the area marked by the 

rectangle in Figure 5. 

 

Table 1 is the result of quantitative accuracy evaluation of 

burned area maps produced by different methods using OA, KC, 

FA, and MA. It can be seen from Table 1 that regardless of 

whether NBR or BAI is used for burned area mapping, the OA 

and KC of the proposed method are higher than other methods 

to varying degrees. This shows that the overall mapping 

performance of the proposed method is better than other 

methods, and the burned area map generated by the proposed 

method has the highest spatial consistency with the real 

reference map. At the same time, Table 1 also shows that 

whether using NBR or BAI for burned area mapping, the MA of 

the proposed method is significantly lower than that of other 

methods. Unfortunately, compared with other methods, the FA 

of the proposed method is higher. In addition, it is not difficult 

to find from Table 1 that no matter which method is used for 

burned area mapping, the accuracy of NBR-based burned area 

mapping is better than BAI, and the reason for the poor 

mapping accuracy of BAI is that the MA of the BAI-based 

burned area mapping results is too high. 
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NBR 

   

 (a)NBR_Otsu (b) NBR_Kmeans (c) NBR_Proposed 

 

 

 

 

BAI 

   

 (d)BAI_Otsu (e) BAI_Kmeans (f) BAI_Proposed 

Figure 5. Burned area mapping results of different methods: (a)~(c): NBR-based burned area mapping results by Otsu, Kmeans and 

Proposed method; (d)~(f): BAI-based burned area mapping results by Otsu, Kmeans and Proposed method. 

 

 NBR BAI 

Indexes NBR_Otsu NBR_Kmeans NBR_Proposed BAI_Otsu BAI_Kmeans BAI_Proposed 

OA 98.81% 98.80% 99.02% 96.90% 96.90% 97.19% 

KC 93.48% 93.64% 94.82% 81.00% 81.00% 82.94% 

FA 3.83% 3.81% 6.73% 0.98% 0.98% 1.00% 

MA 7.80% 7.85% 2.44% 29.08% 29.08% 26.37% 

Table 1. Quantitative evaluation results of mapping accuracy of different methods 

 

 

3.3 Mapping Performance Analysis of Different Methods 

on Uncertain Pixels 

As mentioned earlier, in the fire index map, those uncertain 

pixels with medium index values are often the most difficult to 

be correctly classified. These uncertain pixels are a major 

source of error in the mapping of the burned areas. The ability 

to correctly classify these uncertain pixels directly reflects the 

mapping performance of different methods. To this end, this 

subsection compares and analyzes the classification capabilities 

of different methods on uncertain pixels. Table 2 shows the OA 

of different methods on certain or uncertain pixels. It can be 

seen from Table 2 that regardless of NBR or BAI, the mapping 

accuracy of different methods on the certain pixels is 

significantly better than that on the uncertain pixels. Moreover, 

the mapping accuracy of the proposed method is significantly 

better than other methods on uncertain pixels, especially when 

the BAI is used to map the burned areas. For certain pixels, 

although the proposed method has the highest mapping 

accuracy, the difference in mapping accuracy of different 

methods is very small. This result shows that the proposed 

method is effective and has certain advantages in accurately 

distinguishing the classes of uncertain pixels. And from Table 2, 

it can be found that the different methods have relatively small  

differences in the mapping accuracy on the certain pixels of 

NBR and BAI, but the differences in the mapping accuracy on 

their uncertain pixels are very obvious. This shows that the 

reason why NBR's burned area mapping ability is better than 

BAI is mainly due to the distinguishability of uncertain pixels. 

 

 NBR BAI 

Certain 

Pixels 

Uncertain 

Pixels 

Certain 

Pixels 

Uncertain 

Pixels 

Otsu 99.632% 94.811% 98.144% 66.179% 

Kmeans 99.631% 94.798% 98.144% 66.174% 

Proposed 99.680% 95.795% 98.205% 71.846% 

Table 2. OA of different methods on certain or uncertain pixels 

 

4. CONCLUSIONS 

The Considering that there is still room for improvement in the 

accuracy of current burned area mapping based on single-date 

remote sensing image, this paper proposes an unsupervised 

forest burned area mapping method based on fire index 

enhancement and GRNN model. The proposed method firstly 

integrates spatial context information in an adaptive manner to 

enhance the existing fire index to improve its ability to indicate 

the burned areas, and then uses the modified GRNN model that 

considers the spatial correlation between pixels in the image to 
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binarize the enhanced fire index to generate the final burned 

area map. The experimental results of burning zone mapping in 

a forest area in Inner Mongolia, China demonstrate the 

effectiveness and superiority of the proposed method. In 

particular, the proposed method has certain advantages in 

correctly classifying uncertain pixels. In addition, the proposed 

method uses certain pixels generated by uncertainty analysis as 

training samples for GRNN model training instead of a large 

number of artificially labeled samples. Therefore, the proposed 

method is unsupervised, which will enhance its practical 

application value. 
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