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ABSTRACT:

Spatiotemporal variations of pressure, temperature, water vapour content in the atmosphere lead to significant delays in interfero-
metric synthetic aperture radar (InSAR) measurements of deformations in the ground. One of the key challenges in increasing the
accuracy of ground deformation measurements using InSAR is to produce robust estimates of the tropospheric delay. Tropospheric
models like ERA-Interim can be used to estimate the total tropospheric delay in interferograms in remote areas. The problem with
using ERA-Interim model for interferogram correction is that after the tropospheric correction, there are still some residuals left
in the interferograms, which can be mainly attributed to turbulent troposphere. In this study, we propose a Generative Adversarial
Network (GAN) based approach to mitigate the phase delay caused by troposphere. In this method, we implement a noise to
noise model, where the network is trained only with the interferograms corrupted by tropospheric noise. We applied the technique
over 116 large scale 800 km long interfergrams formed from Sentinel-1 acquisitions covering a period from 25th October, 2014
to 2nd November, 2017 from descending track numbered 108 over Iran. Our approach reduces the root mean square of the phase
values of the interferogram 64% compared to those of the original interferogram and by 55% in comparison to the corresponding
ERA-Interim corrected version.

1. INTRODUCTION

Over the years, various satellites like ERS-1, ERS-2 and En-
visat has been in use for the interferometric capability for a wide
range of geophysical (Hooper et al., 2007), (Haghshenas Haghighi
and Motagh, 2016), (Motagh et al., 2017), engineering (Fornaro
et al., 2013) and environmental ((Castel et al., 2000)) applica-
tions. Utilizing these Synthetic Aperture Radar (SAR) acquis-
itions, repeated approximately from the same point in space at
different times, Interferometric SAR (InSAR) gives us the dif-
ferences in path length in the scale of the carrier wavelength,
due to changes in wavelength (Massonnet and Feigl, 1998),
(Bürgmann et al., 2008). While conventional InSAR suffers
from interference from unwanted signals like variations of scat-
tering properties of the earth’s surface or atmospheric condi-
tions through time (Hooper et al., 2012), multi-temporal inter-
ferometric methods (MTI) including Persistent Scatter InSAR
(PSI) (Ferretti et al., 2001), (Hooper et al., 2004) and Small
Baseline Subset (SBAS) ((Berardino et al., 2002)) present a
specific class of processing that exploits multiple SAR images
acquired over an area to separate the displacement signal from
the unwanted noise.

While the idea of displacement monitoring in wide area using
advanced InSAR time series analysis methods has attracted a
great deal of attention in recent years, one of the major limit-
ing factors this suffered from was the non-availability of both
spatially and temporally homogeneous SAR data-set in a na-
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tionwide or continental scale (Haghshenas Haghighi and Mot-
agh, 2017). With the launches of Sentinel-1A and 1B satel-
lites in 2014 and 2016 respectively, the availability of SAR
data from every part of the world has been increased many
folds. With short revisit times of 1-6 days, the Sentinel-1 and
the planned Tandem-L and NISAR missions provide an unpre-
cedented wealth of topography and surface change data using
InSAR technique. With both Sentinel-1A and Sentinel-1B in
orbit, this mission currently provides more than 10 TB (Sen-
tinel Data Access Annual Report 2017 - News - Sentinel On-
line, n.d.) of products every day. Based on its acquisition plans,
SAR images from the same orbit are acquired every 6 days over
Europe as well as some hotspots with very rapid changes like
Greenland (Haghshenas Haghighi and Motagh, 2017). In other
parts of the world, SAR data are acquired every 12 or 24 days.

The interferometric phase is affected by differences in propaga-
tion delays through troposphere or ionosphere in the time of
SAR image acquisitions. The major atmospheric contribution
in S-1 interferograms in mid-latitudes comes from the tropo-
sphere. This effect is driven by the changes in refractivity of
the troposphere at the time of two SAR acquisitions (Hagh-
shenas Haghighi and Motagh, 2017). Two different categories
of atmospheric corrections are typically applied on SAR inter-
ferograms. In the first category, the atmospheric effect is calcu-
lated and mitigated solely based on the phase information of the
interferograms. For example, assuming the tropospheric effect
behaves randomly in time, it is possible to average several in-
terferograms from the same area to reduce the effect (Zebker et
al., 1997). The other category of atmospheric mitigation meth-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-57-2021 | © Author(s) 2021. CC BY 4.0 License.

 
57



ods is based on external information, in which different sources,
such as global atmospheric models, Global Navigation Satellite
System (GNSS), or ERA-Interim data that provide information
about the atmospheric condition at the time of SAR acquisition,
are used for tropospheric correction of interferograms. (Bekaert
et al., 2015).

One of the main problems while measuring surface deforma-
tion using InSAR is to correct the interferogram from the tropo-
spheric phase delay. To make this correction, the interferomet-
ric phase is compared to the atmospheric delays derived from
the ERA-Interim global meteorological model and the Global
Navigation Satellite System (GNSS).

The ERA-Interim is a global atmospheric model calculated by
the European Center for Medium-Range Weather Forecast (EC-
MWF) based on the assimilation of different input data-sets. It
provides several meteorological parameters, including pressure,
temperature, and relative humidity at 6-hourly intervals at a grid
of 70 km spatial resolution and 37 vertical intervals from sea
level up to 50 km (Dee et al., 2011). Atmospheric parameters
provided by ERA-Interim are interpolated using a vertical and
horizontal spline interpolation and a linear interpolation in time
to find the atmospheric phase delay from differences in water
vapor (wet delay) and atmospheric pressure (hydrostatic delay)
at each pixel of the interferogram (Haghshenas Haghighi and
Motagh, 2017). The estimated phase delay known as the zenith
total delay (ZTD) can then be used to correct the interferogram
(Bekaert et al., 2015). From GNSS stations also, wet delay
maps with a specific spatial resolution and time interval can be
estimated. Tropospheric wet delay data derived from GNSS
can be successfully used to correct InSAR displacement maps
(Li et al., 2005). However, in remote areas or countries with
very less GNSS stations, correction by the ERA-Interim model
becomes the only choice. The problem with using ERA-Interim
model for interferogram correction is that after the tropospheric
correction, there are still some residuals left in the interfero-
grams, which can be mainly attributed to turbulent troposphere.
This is due to the spatial resolution of the atmospheric mod-
els by ERA-Interim, which are coarser than the resolution of
the S-1 interferograms. Therefore, they are not able to com-
pletely remove the turbulent tropospheric effect from the in-
terferograms (Jolivet et al., 2011), (Haghshenas Haghighi and
Motagh, 2017).

1.1 Our Contribution

One method to extract the features from the interferograms cor-
rupted by noise and to remove the turbulence noise from these
interferograms is to implement a convolutional neural network
which can learn and generate the corrected version of the in-
terferogram free from external noise. The papers (Bermudez et
al., 2018), (Enomoto et al., 2017) and (Grohnfeldi et al., 2018)
describe the use of Generative Adverserial Networks (GAN)
for SAR image translation. There exists quite a lot of work
on denoising of images as well as using Gaussian Processes
(GP) based approach for improving tropospheric correction of
large scale interferograms (Shamshiri et al., 2020). However,
we found that deep learning has not been applied in literature
for removing noise from interferograms so far. The existing
methods for noise removal from interferograms mainly involve
stacking of the interferograms and extraction of the average val-
ues, which removes noise to quite some extent.

GANs have been used quite a lot for deblurring and denoising
of images like DeblurGAN (Kupyn et al., 2017) uses condi-
tional GANs to deblur images. But there are no documented

attempts for implementation of GANs for noise reduction in in-
terferograms.

In this paper, we have applied a variation of the Pix2pix (Isola et
al., 2016) algorithm for removing tropospheric noise from the
interferograms. For our dataset of choice, we have focused on
Iran and used the unwrapped differential phase derived by large
scale interferograms of Sentinel-1 and the differential ZTDs de-
rived from the ERA-Interim model at the respective acquisition
times as the interferograms. We have implemented a Generative
Adverserial Network on the interferometric phase post removal
of ZTDs from the ERA-Interim model to further remove the
residual turbulent noise.

The rest of the paper is organized as follows. Section 2 provides
an overview of the theoretical background. It also introduces
the proposed method by detailing both the used architecture and
the adopted learning strategy. In Section 4, we describe the suite
of experiments, accurately designed to validate our approach,
together with the datasets generation process and the analysis
of the obtained results. In Section 5, we derive our results for
our experiments. Finally, we derive our conclusions and outline
possible future work in Section 7.

2. RELATED WORK

The development of powerful computing devices and increas-
ing availability of large amount of data, have led to the deploy-
ment of machine learning methods, which are able to learn from
the existing data. The performance of these methods in com-
plex tasks like image classification (Redmon and Farhadi, 2016)
and object detection (Simonyan and Zisserman, 2014) are quite
noteworthy. In remote sensing, Deep Learning methods have
been proven to be quite capable because of their ability to auto-
matically learn suitable features from images, without manually
setting the parameters of specific algorithms (Li et al., 2018).
In recent years, the use of Deep Learning has also been in-
vestigated for image denoising tasks. Many previous solutions
(Pathak et al., 2016), (Wang and Gupta, 2016) to problems in
this area have used an encoder-decoder network (Hinton and
Salakhutdinov, 2006). Such networks are neural networks con-
sisting of a neural encoder network that maps high dimensional
samples of an unknown distribution to a lower-dimensional rep-
resentation, and a decoder that reconstructs the input from that
compressed representation. Applications of these networks in-
volve outlier detection, or dimensionality reduction for further
processing. However such networks cannot be applied to gen-
erate realistic samples (Lee and Lee, 2018). One reason for
this is that only a tiny fraction of the encoding space is used
by the encoder-decoder network to encode realistic samples. In
an encoder-decoder network, most of the low-level information
shared between the input and output is shunted because of the
bottle-neck of passing through all the layers. One defining fea-
ture of using a GAN architecture is that they map a high resol-
ution input grid to a high resolution output grid. In this paper,
we applied a GAN architecture which takes an interferogram,
corrupted by tropospheric noise, as input and then train the net-
work to remove the noise to some extent.

Generative Adversarial Networks (GANs) are very popular since
the last years for learning how to sample from complex high
dimensional distributions PX : X 7→ [0, 1] such as images
of faces (Gross, 2005). It is achieved by training a generator
G : ‡ 7→ X to map samples from a prior Pz : ‡ 7→ [0, 1] in
a so-called latent space to images and training a discriminator
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D : X 7→ [0, 1] to distinguish these fakes from real samples.
The GAN follows an adversarial procedure. The discriminator
classifies real samples from generated ones (fakes), while the
generator learns to fool the discriminator. Since the introduc-
tion of the original GAN by Goodfellow et al (Goodfellow et
al., 2014), various architectures and applications have been ex-
plored.

3. METHODOLOGY

Our method for reduction of noise from interferograms involves
the following steps:

1. The interferograms are first corrected for tropospheric delay
using the Zenith Total Delay (ZTD) map derived from the
ERA-Interim database.

2. To reduce computation power, the corrected interferograms
are divided into patches.

3. All the patches from the interferograms are stacked to-
gether.

4. A fraction of total number of patches extracted are then
used to train the GAN model.

5. Once the model has been trained, noise corrected patches
of the remaining interferograms, not used in training, are
then synthesized by the generator unit.

6. The predicted patches are concatenated to form the full
interferograms with the noise removed.

Figure 1. Generator with skip connections (Adaloglou, 2020).
The generator takes the interferogram with the phase value
corrupted by tropospheric noise as input and provides the

predicted interferogram with the noise reduced.By introducing
skip connections in the encoder-decoder architecture of the

generator, fine-grained details can be recovered in the
prediction..

For our work, the generator architecture (Figure 1) follows the
general shape of a “U-Net” (Ronneberger et al., 2015). Similar
to the architecture proposed in (Isola et al., 2016), skip con-
nections are added so that low-level information does not have
to pass through all the layers and thus circumvent a bottle-neck
situation. Specifically, skip connections are added between each
layer i and layer n −i, where n is the total number of layers.

For the discriminator, a patch-based architecture is applied, which
tries to classify if each N×N patch in an image is real or fake.
This discriminator is run convolutionally across the image, av-
eraging all responses to provide the final output of the discrim-
inator (Isola et al., 2016)).

Usually for reduction of noise from images or any other ob-
jects, the aim is to recover a clean image x from the observed

image y, corrupted by noise, such that y=x+noise (Xu et al.,
2019). Usually the noise is the additive white Gaussian noise
(AWGN). But, in real life situations, such as working with inter-
ferograms, corrupted by tropospheric noise, it is very difficult
to simulate the statistical distribution of tropospheric noise, for
supervised learning, as this distribution is very different from
additive white Gaussian noise (AWGN). One more factor is that
it is impossible to acquire fully clean interferograms, devoid of
tropospheric noise, for supervised learning purposes.

The paper (Lehtinen et al., 2018) proposes a method to over-
come this problem, by observing that it is possible to learn to
transform noisy images into clean images by only looking at
noisy images. The results as presented in (Lehtinen et al., 2018)
claims that this model may work even better than supervised
learning with clean and noisy image pairs.

For our work as well, we follow a similar approach. Since, we
only have the interferograms with troposheric noise, and no cor-
responding noise-free version of the interferograms are avail-
able, we train both the generator as well the discriminator on
the same input, which are the interferograms corrupted with tro-
posheric noise. The advantage of this method is that we neither
require an explicit statistical likelihood model of the noise nor
a noise-free prior model of the intefergram, instead learn these
indirectly from the training data.

4. EXPERIMENTAL PROCEDURE

4.1 Datasets

For this study, 52 Single Look Complex (SLC) images were
acquired from the Sentinel-1 in IW mode, covering dates from
25th October, 2014 to 2nd November, 2017 from descending
track numbered 108 over Iran, timed at 02.45.52 hours. 116 in-
terferograms were processed using the Gamma software (Sens-
ing, n.d.). The interferograms were formed with a temporal
baseline of 180 days on average, taking the earlier date as mas-
ter and the later date as slave. After merging consecutive frames
of the Sentinel-1 to produce a large SLC image and apply-
ing precise orbital data, it was possible to generate a large-
scale interferogram covering 800 km. The orbital and topo-
graphic phases were removed by precise orbit data and SRTM
90-meter Digital Elevation Model (DEM) (Farr and Kobrick,
2000), (SRTM 90m Digital Elevation Database v4.1, 2017).
The interferograms were then geo-coded and unwrapped.

Figure 2. Interferograms were formed from Sentinel-1 SAR
acquisitions along the descending track 108 superimposed on the
aerial map from Google Earth (Michelson, 2017), covering dates

from 25 October, 2014 to 2nd November, 2017.
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4.2 Applying atmospheric delay correction by ERA-Interim
model

As mentioned earlier, ERA-Interim provides pressure, temper-
ature, and relative humidity along with other meteorological
data. The ZTD, using these variables, is calculated for each
node at the SAR acquisition time. This data is downloaded for
the corresponding interferogram dates from the Generic Atmo-
spheric Correction Online Service for InSAR (GACOS) (Yu et
al., 2018b), (Yu et al., 2018a), (Yu et al., 2017). GACOS util-
ises the Iterative Tropospheric Decomposition (ITD) model (Yu
et al., 2017) to separate stratified and turbulent signals from
tropospheric total delays, and generate high spatial resolution
zenith total delay (ZTD) maps to be used for correcting InSAR
measurements. The ZTD maps were acquired from the GA-
COS website for the respective dates. The tropospheric phase
delay of the intereferograms were estimated by subtracting the
ZTD maps from the original phase of the interferograms. To
account for residual orbital errors, the original interferograms
were corrected from a linear trend in range.

Figure 3. Full-length interferograms are plotted for the dates
20141025-20150129 in (a). The corresponding tropospheric

delay was predicted using ERA-Interim model in (b)

4.3 Generation of binary mask to hide deformation areas
during training

Our aim was to train the model, so that it can learn to reduce
the tropospheric noise. To make the model train on only the
residual tropospheric noise, and not on deformation and sub-
sidence data, the deformation areas had to be masked. This
was achieved by stacking and averaging all the interferograms
together and this helped in identifying the deformation or sub-
sidence zones on the interferogram. A binary mask (figure 4)
was generated which converted all the pixels at the deforma-
tion areas to zero. This binary mask was then applied to all the
interferograms to completely hide the deformation areas while
training.

4.4 Generating training and testing datasets

As mentioned in the paper (Yu et al., 2018b), there are several
performance indicators which give an overview regarding the
accuracy of the ZTD maps. One such performance indicator is
the correlation between the original interferometric phase and
the estimated tropospheric delay from ERA-Interim. A high
correlation between phase measurements and the computed at-
mospheric corrections suggests that the model is able to capture

Figure 4. The deformation areas were identified using stacking
from the original interferograms in a). A binary mask generated

from the all the interferograms with the deformation areas
hidden as shown in b). This binary mask was used to hide the
deformation areas in all the interferograms during training the

model.

most of the atmospheric effects, and thus successful InSAR at-
mospheric error correction is expected.

For all 116 interferograms, the correlations between the inter-
ferometric phase and tropospheric delays per pixel were calcu-
lated. For our training set, we selected 91 of the 116 interfero-
grams having correlation of more than 60% as our training set
and the rest for validation and testing.

4.5 Training

The size of each interferogram was 9472 by 5120 pixels. To re-
duce computation power and training time, we decided to train
the model on patches of 256 by 256 pixels, from all the inter-
ferograms of the training set. Thus, all the 91 interferograms
were then divided into patches of 256 by 256 pixels. All the
patches were then stacked together and 6000 of them were ran-
domly selected and used for training the model. As mentioned
in ??, we train the model by using the same input of the in-
terferogram patches, into both the generator as well as the dis-
criminator of the GAN. With every epoch of training, the gen-
erator generates a new version of the input interferogram patch
with reduced noise, and the discriminator tries to distinguish
between the generated patch from the discriminator and the ori-
ginal input.

We use the same training procedure as adopted for the paper
(Isola et al., 2016). We use Tensorflow (Abadi et al., 2015) with
Keras (Chollet et al., 2015), with Google colab (Colaboratory,
n.d.) as the platform. The hyperparameters of the model are lis-
ted in Table 1. Mean square loss is used to train the network as
this loss is more stable. We use Adam optimizer with learning
rate of 0.0002 and momentum of 0.5 for training the GAN. The
network is trained for 500 epochs for noise removal. We use
kernel size of 4 × 4 and zeropadding by 1, with a stride of 2 and
1, for all convolutional and deconvolutional layers of generator
network, respectively. In case of discriminator network, the first
four convolutional and deconvolutional layers were composed
of kernels of size 4×4 with a stride 2 and zero-padding by 1.
However, the last layer in discriminator network uses kernel of
size 4 × 4 with stride of size of 1.
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Table 1. Hyperparameters used while training the model

Hyperparameter Value
Loss Mean Squared

Loss
Optimizer Adam Optimizer

Learning Rate 0.0002
Momentum 0.5
Kernel size 4 x 4

Stride for Generator
convolutional layers

2

Stride for Generator
deconvolutional layers

1

Stride for
Discriminator

convolutional layers

2

Stride for
Discriminator

deconvolutional layers

2

For feeding data to the network, an input data pipeline was de-
signed which loaded the data into the training model in batches
to lower the memory consumption while training. Once the
model was trained, it was used to predict the corresponding
patches on the test set. For generation of the full length in-
terferogram, the test interferograms were split into patches of
256 by 256 pixels. The model was applied on each 256 by 256
patch, and then after all the patches have been predicted, they
were stitched back together to get the entire predicted interfero-
gram.

5. RESULTS

The model was trained for 500 epochs after which both the gen-
erator and discriminator losses did not decrease further. The ac-
curacy of the generated data as evaluated by the discriminator
also increased with epoch. Figure 5 shows the predicted inte-
ferogram patches of the test data by the trained model. Most of
the tropospheric noise was removed in the predicted patches.

[a]

[b]

Figure 5. Figures a) and b) showing random patches from test
data and corresponding patches after removal of noise using the

GAN method

As mentioned in Section (4.5), the model was then used to pre-

dict the full length of the interferograms in the test set, as shown
in figure 6. In this case also, the tropospheric noise was re-
moved to some extent in the predicted interferograms.

Figure 6. For reducing noise from full-length interferograms, the
interferograms were first split into patches of 256 by 256 pixels
each, each patch was sent into the trained model as input and
resultant patches were then stitched back together to get the

full-length interferogram with reduces noise.

5.1 Comparison of Root Mean Square (RMS) of the phase
values

To evaluate the performance of the model, the root-mean-squared
of the phase values (RMS) of the original unwrapped interfero-
grams, the interferograms after correction by the ERA-Interim
model and the predicted interfreograms were then calculated
and plotted. As shown in figure 7, the RMS values are reduced
by 64% compared to those of the original interferogram and by
55% in comparison to the corresponding ERA-Interim correc-
ted version. Figure 8 shows the range of the RMS values for the
original phase, the corresponding estimated phase delay by the
ERA-Interim model, and the predicted phase of the interfero-
gram as generated by our method after noise reduction. It can
been seen from the figure that the range of the predicted phase
of the interferogram as generated by our method is much lower
than the original phase and the ERA-interim estimation.

Figure 7. The RMS (Root Mean Square) values were plotted for
the original unwrapped phase vs the phase after correction by

ERA-Interim (GACOS) in vs the corresponding predicted phase
of the interferogram as generated by our method . The RMS

values of the predicted phase of the interferogram as generated
by our method is much lower compared to the original phase and

the ERA-interim estimation.

6. DISCUSSION

Our study with Sentinel-1 data showed that ERA-Interim is
not able to completely reduce the tropospheric phase delay in
large-scale interferometric measurement. Our proposed method
based on generative adversarial networks, exploiting 800 km
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Figure 8. Box-plot denoting the range of the RMS (Root Mean
Square) values of the original unwrapped phase vs the phase

after correction by ERA-Interim (GACOS) vs the corresponding
predicted interferogram. The range of the predicted phase of the

interferogram as generated by our method is much lower
between 0.5 and 1, than the original phase and the ERA-interim

estimation.

long intefreograms, improves tropospheric corrections by 55%
compared to the corrections by ERA-Interimmodel. This method
is robust and adaptive as it can be also trained on new data and
thus capture any changes in the dataset and this will be reflected
in the model as well. Also, it has been shown that it is possible
to train the model on a fraction of the full dimensions of the in-
terferogram and still facilitate atmosphpheric correction on the
entire length and width of the interferogram data, thus proving
that this method is also scalable. To further evaluate our pro-
posed method, few additional checks were performed.

6.1 Comparison of Root Mean Squared (RMS) of the phase
values over individual patches across the full length of
the interferogram

For a good correction, the RMS values also need to be reduced
uniformly over the whole length of the interferogram. To eval-
uate our model, we divided the entire inteferogram into 700
random patches and calculated the RMS of each patch. The
RMS of each patch was plotted along with the resultant RMS
of the corrresponding patch from the original interferogram and
the ERA-Interim corrected version. As shown in figure 9, the
values in the RMS curve for each of the zones of the predicted
interferogram are much lower than the RMS values of the cor-
responding patches of the other two.

6.2 Calculating Error-Distance bias as a metric for evalu-
ation of noise reduction

One of the important aspects of tropospheric noise correction of
interferograms is to remove any bias of the phase values with
distance between the two points at which the phase values are
measured. This bias of error with distance should not exist in
an ideal interferogram without any noise.

To evaluate if any such bias exists with our proposed method
of noise correction, we iteratively calculate the differences in

Figure 9. The RMS (Root Mean Square) value changes over the
separate patches were calculated and plotted for the original

phase vs phase after the correction by ERA-Interim (GACOS) vs
the Predicted phase. The values in the RMS curve for each of

the patches of the predicted interferogram are much lower than
the RMS values of the corresponding patches of the other two.

phase value between random points in the interferogram at spe-
cific distances. We calculate the difference in values of the
phase in the predicted interfergram, the original interferogram
and corresponding ERA-Interim corrected version, at specific
distances of 10, 20, 30 upto 500 km.

For each distance measured, we randomly sample 1000 pairs
of points, calculate the difference in phase value at those points
and finally, find the mean and the standard deviation for each
distance measured. The mean of the differences were plotted
against the distance for the three types of the interferograms.
As shown in figure 10, our method reduces the error-distance
bias by 53% in comparison to the original interferogram phase
and corresponding ERA-Interim corrected version.

Figure 10. Mean Error vs Distance were calculated and plotted
for the original phase vs phase after the correction by

ERA-Interim (GACOS) vs the Predicted phase using the GAN
method for Interferogram dated 20141025-20150129. Our

method reduces the error-distance bias considerably in
comparison to the original interferogram phase and

corresponding ERA-Interim corrected version.

7. CONCLUSION

In this paper, we presented an adaptation of the Pix2pix GAN
model, originally conceived for image to image translation, for
the problem of tropospheric noise removal in interferograms.
We built an architecture for training the model to generate inter-
ferograms with the tropospheric noise reduced by a certain frac-
tion on a large scale interferogram spanning over 800 Km, and
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we extensively ran experiments to validate the performance of
the proposed approach. Through the experiments, we showed
how our model outperforms the tropospheric noise correction
method by the ERA-Interim model, as testified by the metrics.
Compared to the ERA-Interim method, our approach showed
that we are able to reduce most of the tropospheric noise as well
as reduce the error-distance bias in the interferograms compared
to the ERA-Interim method. We demonstrated how the learned
model is effective in filtering out the noise from large scale
interferograms by training it only on a certain fraction of the
whole interferogram, which saves considerable computational
power as well as overhead.

One of the demerits of this method is the considerable train-
ing time required to train the model as well as large amount of
memory required for the overhead. We processed 116 interfero-
grams and trained the model on 91 of them which lead to con-
siderable overhead during processing and training. Processing
the model on the GPU in Google Colab helped to reduce the
training time by a substantial amount. But, side by side, and
training the entire data-set in Google Drive leads to memory
constraint. Having more access to GPUs would have reduced
the training time more as well as the problem of memory con-
straint may also be reduced by training the model in the server.
However, we designed an input data pipeline which enabled us
to train the model on batches, which reduced the memory over-
head to some extent.

7.1 Future work

One of the improvements on using a Conditional GAN for re-
moval of noise of interferograms is using a CycleGAN. A Cycl-
eGAN has two pairs of generators and discriminators. One pair
focuses on converting source domain to target domain while the
other pair focuses on the reverse. This bi-directional conver-
sion process allows for a cyclic consistency loss for CycleGAN
which ensures the effective conversion from source to target and
then back to source again. The transitivity property of cyclic-
consistency loss allows CycleGAN to perform well on unpaired
translation. CycleGANs are also known to perform very well
for background noise reduction in blurry images (Sharma et al.,
2019) and so, it may be of interest to see whether the Cycl-
eGAN can perform better than the Conditional GAN for noise
removal in inteferograms.
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