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ABSTRACT:

Integrating differential synthetic aperture radar measurements into building information modeling systems requires a mapping of
these measurement points onto structural parts of the building. We use a reverse geocoding approach to project building footprints
into slant-range geometry, which helps to accurately assign PS points to single building identities. By treating the deformation
time series as points in a high dimensional feature space, we can use dimensional reduction and clustering techniques to extract
clusters of points that show a similar movement behavior. We visualize these clusters by mapping them onto ground truth, using
laser scanning point clouds. Our approach segments buildings into plausible parts.

1. INTRODUCTION

In the last twenty years the monitoring of deformation processes
such as slow landslides, mining induced subsidence and post
earthquake tectonic movements has been more and more carried
out by interferometric synthetic aperture radar (InSAR) tech-
niques (Hanssen, 2001). When it comes to monitoring urban
areas, persistent scatterer interferometry (PSI) (Ferretti et al.,
2001) has proven to work reliably and is becoming a stand-
ard technique in the portfolio of monitoring. The availability of
open space-born SAR data made nation wide deformation map-
ping services possible. However, the rather low spatial resolu-
tion of such data limits their applicability for monitoring at finer
scales , for example, motion patterns of individual buildings.
High resolution SAR data such as TerraSAR-X are suitable for
this task, but come with the downside of a limited acquisition
capacity. In the future, upcoming SAR satellite constellations
will provide a greater availability of high resolution SAR data,
better than 1 m × 1 m (Farquharson et al., 2018). This enables
officials the possibility to efficiently monitor smaller objects of
interest, such as critical infrastructure like bridges and dams as
well as single buildings.

The results of such monitoring can be either handled isolated
or set in relation to other information related to the build-
ing. Such building information modeling (BIM) systems use
sensors, meters, network infrastructure and 3D modeling to cre-
ate a digital twin of the structure to inform decisions, such as
predictive maintenance (Khajavi et al., 2019). PSI analysis of
high resolution SAR data often covers buildings with thousands
of derived PSI points in the order of 1 PS per m2 on the façades
(Schunert et al., 2012). In the following, we are exploring a
method to aggregate and cluster these scatteres into groups of
points that show similar movements and therefore are assumed
to be located on the same structural part of the building. These
parts then could be linked to actual structures of the building via
a BIM and allow to augment the information with deformation
histories.
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Tanaka and Hoshuyama (2017) showed that an evaluation index
derived from the correlation of displacement and topography
phase shift can be used to extract rigid structures, using min-
imum spanning trees. A deformation history based clustering
was initially used by Zhu et al. (2018) and Costantini et al.
(2018), who suggest a clustering algorithm to find temporal de-
formation patterns in COSMO-SkyMed DInSAR results. By
comparison to in-situ ground truth measurements (Schneider
et al., 2020) showed that such clusters indeed reflect the ac-
tual movement of building parts, but the restricted clustering
algorithm could only extract a fraction of potential clusters.

The focus of this work is to refine the allocation of PS points to
single buildings and the following clustering algorithm that seg-
ments these into independent parts. By combining the results
with laser scanning data, we can visualize the extracted build-
ing segments and show their plausibility. We also consider this
investigation as a preliminary step towards an integration of In-
SAR based city wide monitoring results into BIM Systems.

In Sec. 2 we describe the SAR and laser scanning database, fol-
lowed by the methods for label transfer and a detailed descrip-
tion of the clustering approach. Finally we present our results
in Sec. 3 along with more examples in the appendix 4.1/4.2. In
Sec.4 we comment our outcome and give an outlook to future
directions and applications.

2. METHODS AND DATABASE

2.1 ALS-Data

We are using airborne laser-scanning (ALS) data to repres-
ent the 3-dimensional structure of buildings. The ALS Data
has a point density of 40 pts/m2 and a positional accuracy of
σXY Z = 0.02 m. We also derived a digital surface model
(DSM) from this point cloud. The DSM served as reference
elevation model for the PSI processing and the Reverse Geo-
coding as described in Sec.2.4, as well as for visualizing the
PS-Clusters on the building in Sec. 2.5.
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2.2 SAR-Data

The SAR data we are using has been acquired by the German
X-Band SAR satellite TerraSAR-X (TSX). The correspond-
ing slant range - azimuth resolution for the ”High Resolution
Spotlight 300Mhz” acquisition mode is 0.6 m × 1.1 m (Air-
bus, 2017). The 132 images were captured during a 4 years
time span (September 2016 to October 2020) with 11 days re-
peat cycle. For the interferogram generation a master image
in November 2018 was chosen (Tab. 1). Thus the maximum
spatial baseline does not exceed 400m (see Fig. 1).

2.3 Persistent scatterer interferometry

The image stack was processed with L3 SARscape’s Persistent
scatterer interferometry - algorithm (SARMAP, 2020) that is
implemented based on Ferretti et al. (2001). For interferogram
generation and geocoding, we used a precise surface model,
derived from the airborne laser-scanning (ALS) data. As the
coherence threshold for the PS-points we choose 0.7.

Persistent scatterer interferometry (PSI) is an advanced InSAR
technique. The main idea of this algorithm is the detection of
temporally coherent pixels in a stack of co-registered SAR im-
ages. By analyzing the phases of such pixels in each image of
the stack, relative to a master image, the line-of-sight (LOS)
movement history and a 3D position of this scatterer can be es-
timated (Ferretti et al., 2001, 2000). Crosetto et al. (2016) give
a good overview over the history and the capabilities of PSI
algorithms. For more detailed insights we highly recommend
reading that article.

PSI works well for dense urban areas, since man-made struc-
tures especially metal parts located at house façades and roofs
act as a good reflectors (Schunert et al., 2012). The PSI al-
gorithm is able to estimate the scatterer’s lateral positions in the
order of the pixel size while the height component is typically
less accurate (Chang and Hanssen, 2014).

Since PSI is analyzing time series of multiple SAR images,
the displacement history of each scatterer is on of the results.
For every PSn point we obtain its relative deformation dn(tm)
as a time series with a measurement for each SAR acquisition
(m ∈ N | 1 ≥ m ≤ 132) (see Eq.(1)). The accuracy for
each measurement can be better than 2 mm (Maccabiani et al.,
2017).

The deformation time series represent the most advanced PSI
product and is the base for the later clustering approach. As
Gernhardt et al. (2010) and Crosetto et al. (2015) have shown,
PSI time series, derived from high resolution SAR data, are
able to reveal the annual movements of buildings. They con-
firm thermal expansion of buildings up to several millimeters in
amplitude over the year. We exploit this fact for our clustering,
under the assumption, that each segment of a building exhibits
a characteristic movement behavior.

2.4 Label Transformation

To assign PS-points to single buildings we used Open Street
Maps (OSM) building footprints. Since the PS-algorithm is
able to determine a lateral position for each scatterer, a straight
forward way to find PS-points in a buildings polygon would be a
simple ”inpolygon” query for each PS. This approach is shown
in Schneider et al. (2020) by considering a buffer around each

Jan 2017 Jan 2018 Jan 2019 Jan 2020

-200

-100

0

100

200

300

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

1819
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58
59

60
61

62

6364

65

66

67

68

69
70

71

727374

75

76

77
78

79

80

81
82

8384

85

86

87

88

89

9091

92
93
94

95
96
97

98

99

100

101

102
103

104

105
106

107108

109
110111

112

113
114

115
116117

118

119

120121
122
123

124

125126

127

128

129

130

131

132

Figure 1. Temporal and spatial baselines, relative to the master
image from 20th November 2018. The 132 images were

acquired between 8th September 2016 and 24th October 2020,
with a repeat interval of 11 days.

Platform TerraSAR-X
Wavelength 31mm (X-Band)
Acquisition Mode HRSL
Central Point N48◦47′55”E9◦11′33”
Orbit Direction ASCENDING
Resolution: Range × Azimuth 0.6 m× 1.1 m
Number of Images 132
Time interval 08.09.2016 - 24.10.2020
Repeat Time 11 Days
PS-Algorithm L3 SARscape 5.5
Date of Master 20.11.2018
Coherence Threshold 0.7

Table 1. SAR Data acquisition and processing parameters.

building. To overcome the inaccuracy and issues of falsely as-
signed points we implemented a Reverse Geocoding approach
as shown in Fig. 2. The main idea hereby is to utilize an ex-
isting pipeline (SARMAP, 2020) to geocode two lookup tables
(LuTs). The LuTs contain a unique identifier for each range and
azimuth cell. After geocoding with a precise DSM these LuTs
are used to transfer labels respectively building footprints into
the master images range-azimuth geometry. This allows precise
assignment for each PS-point, without the need of the estim-
ated UTM-coordinates. The results as shown in Fig. 3 display a
sharp distinguish between neighboring buildings, which would
be a challenging task with the inpolygon - buffer method. This
approach is also suitable to transform training data into range-
azimuth geometry i.e. for land classification applications.

2.5 PS- Point clustering

We treat the deformation histories of each PS point as points in
a M dimensional space, with a dimension for each acquisition
date. Each point dn ∈ RM is defined by the M measurements d
as shown Eq. (1).

dn =
[
dn1 dn2 . . . dnm−1 dnm

]
(1)

The underlying assumption is that points showing a related
movement are close in this deformation space. Schneider et al.
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(X,Y)
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(X,Y)
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GT(X,Y)
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Lookup table:

[X,Y]→ [Ra,Az]

classSR(Ra,Az) = GT(X,Y) 

classSR(Ra,Az)

For each pixel (Ra,Az) in SAR SR
find the corresponding X,Y coordinate 
from the geocoded LuTs

For each pixel in SR assign a label 
(OSM Building ID)GEO 

SAR(X,Y)

LuT Ra Geo
(X,Y)

LuT Ra Geo
(X,Y)

LuT Az Geo
(X,Y)

LuT Az Geo
(X,Y)

Figure 2. Workflow for Reverse Geocoding: Lookup tables
(LuTs) for Range and Azimuth are geocoded, using the master
images’s SAR properties and a precise digital surface model

(DSM). The geocoded LuTs are used to transform the ground
truth (GT) from UTM to slant-range geometry, including SAR

characteristics like foreshortening and layover.

(2020) have shown for similar data, that ”1 minus the sample
correlation ” (Eq. (2)) is a good heuristic metric for a density-
based spatial clustering of applications with noise (DBSCAN)
clustering (Ester et al., 1996) in this space.

dxdy = 1− corr(da, db) (see Appx. 4.3) (2)

Nevertheless these results lead to very sparse clusters with the
results being vulnerable to the choice of DBSCAN’s ε para-
meter. Therefore we use a multi step clustering approach:

I t-distributed stochastic neighborhood embedding (t-SNE)
(van der Maaten and Hinton, 2008) to reduce the M di-
mensions drastically to a two-dimensional space. The met-
ric to determine the distance between two PS deformation
time series da and db for the t-SNE embedding is set to
1 − corr(da, db) (Eq. (2)) (Schneider et al., 2020). The
resulting two-dimensional representation should preserve
the local neighborhoods respectively clusters in the ori-
ginal data.

II Each point in the embedded result is then characterized
by a core distance (CD) density estimator (Ankerst et
al., 1999). The core distance of a point is the smallest
threshold such that the point is still considered a core ob-
ject by the DBSCAN algorithm.

III We then exclude all points where the CD > median(CD).

IV The remaining embedded points are now clustered with
DBSCAN (ε = median(CD) · 1.5; minPts = 5). For each
resulting DBSCAN cluster we calculate the center point
d̄k = mean(dall) in deformation space.

V Now we discard outliers by comparing each cluster point to
the center using again the 1− corr(d̄k, di) distance metric
and a correlation threshold of Ct = 0.3.

Figure 3. Result of Reverse Geocoding: from top to bottom:
Building instances in slant-range geometry (SL); Amplitude

SAR image in SL; 3d view of DSM with PS-points (one color
per building); 3d view of RGB ALS point cloud; Building

footprints from Open Street Map.

VI Finally we merge similar clusters by comparing there cen-
ter points d̄j and d̄k and merge the cluster k with cluster j
if 1− corr(d̄k, d̄j) < Ct.

The result of this consecutive clustering process are grouped
PS-points that show homogeneous movement. In contrast to
Schneider et al. (2020), the resulting clusters are less sparse and
we can assign more than 80% of the PS-points to a cluster. The
workflow, including exemplary interim results for each step, is
shown in Fig. 4. To visualize the clusters on the building we are
assigning each ALS-point to the closest PS-cluster via nearest
neighbor, with a maximum distance of 10 m. The center points
of each cluster in deformation space can be interpreted as the
clusters mean movement over time.
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ℝ 𝟏𝟑𝟐 → ℝ 𝟐

𝑑𝑖(𝑡)

𝑑𝑘(𝑡)=mean(𝑑(𝑡))

1 − corr(𝑑𝑘(𝑡), 𝑑𝑖(𝑡)) > 𝐶𝑡

𝑑𝑘(𝑡)=mean(𝑑(𝑡))

1 − corr(𝑑𝑘(𝑡), ഥ𝑑𝑗(𝑡)) < 𝐶𝑡

CD > median(𝐶𝐷)
ℇ = median(CD) ∙ 1.5

Figure 4. Schematic workflow of the clustering process. The M
dimensional PS-points on a single building are embedded into a
2D space via t-SNE. For all points in this embedding the core
distance CD is estimated. Points that have a CD greater than

the overall median are then excluded. DBSCAN is then
performed on the remaining points. For each point in each
cluster the distance to the clusters center of gravity in the

original M dimensional deformation space is then calculated.
Based ob this metric points are excluded from a cluster if their

distance is greater than a correlation threshold (Ct = 0.3 ). In a
final step clusters are merged if their center of gravity is closer

than the Ct.

3. RESULTS

For this study we evaluated several buildings with our method.
In Fig. 5 we show a colored ALS point cloud. Each color rep-
resents a cluster. One can see that the PS-clusters divide the
building into sections. This is especially remarkable since no
spatial information about the PS-points location is considered
in the clustering process. For instance, the tower in Fig. 5 is
clearly divided into two clusters. The corresponding t-SNE plot
is given in Fig.6. Our clustering approach was able to identify
most of the visible clusters while distinguishing the independ-
ent, non-cluster points. The corresponding time-series for each
cluster are presented in Fig. 7, along with the daily average
temperature. The central point of each cluster is colored em-
phasized by color. In appendix 4.1A and 4.2B we included two
more examples of segmented buildings. Both show a reason-
able segmentation into sub parts.

4. CONCLUSION

We apply a reverse geocoding approach to map PS points onto
OSM building footprints to accurately identify all scatteres on a
single building. We used the deformation histories derived from
high resolution SAR PSI analysis to extract clusters, which are
groups of PS points that show a similar displacement behavior
over time. We visualized the results by ALS point clouds of the
buildings. The clusters on the structures show plausible seg-
ments of a the buildings, even though no spatial information

Figure 5. ALS point cloud colored with the resulting clusters on
Building 1. Each color corresponds to a cluster (Fig. 6) and a

time series in Figure 7.

Figure 6. t-SNE embedding of the deformation space with
clusters. The colors correspond to the ALS point cloud (Fig. 5)

and the time series in Figure 7.

has been considered in the clustering process. The here shown
data set consists of quite a high number of images (132) since
the acquisition of such data can be very expensive it is worth to
mention that previous experiments on shorter time series (30+
images) achieve similar results to some extend.

Our future and ongoing work is focusing to map such clusters
onto building components provided by BIMs. Another interest-
ing application of these clusters can be a risk assignment and
stress prediction by comparing the movements of neighboring
clusters.
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Figure 7. Time series for each cluster. The colors correspond to
the ALS point cloud (Fig. 5) and the t-SNE plot (Fig. 6). The

daily temperature is shown in the lower left plot

these points. The temperature data was provided by Amt für
Umweltschutz, Stadt Stuttgart.
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APPENDIX

4.1 A

Figure 8. Top: ALS point cloud with colored clusters on
Building A. Bottom: Corresponding t-SNE embedding. The

related time series are given in Figure 9.

Figure 9. Time series of clusters on building A. The center point
of each cluster is plotted in color. The colors correspond to the

clusters in Figure 8. The bottom plot shows the mean daily
temperature.
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4.2 B

Figure 10. Top: ALS point cloud with colored clusters on
Building B. Bottom: Corresponding t-SNE embedding. The

related time series are given in Figure 11.

Figure 11. Time series of clusters on building B. The center
point of each cluster is plotted in color. The colors correspond to
the clusters in Figure 10. The bottom plot shows the mean daily

temperature. We are not sure about the origin of the ”spikes”
around June 2019. They could be processing artifacts due to

atmospheric influence.

4.3 Distance metric

”1- minus the sample correlation” distance metric for two PS-
points dx and dy in M dimensional deformation space:

dxdy = 1− corr(da, db)

= 1− (dx − dx)(dy − dy)T√
(dx − dx)(dx − dx)T ·

√
(dy − dy)(dy − dy)T

where dx = 1
M

∑M
m dxm

dy = 1
M

∑M
m dym

and dx/y as in Eq. ( 1).
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