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ABSTRACT:

Nowadays, it is highly important to keep road maps up-to-date since a great deal of services rely on them. However, to date, these
labours have demanded a great deal of human attention due to their complexity. In the last decade, promising attempts have been
carried out to fully-automatize the extraction of road networks from remote sensing imagery. Nevertheless, the vast majority of
methods rely on aerial imagery (< 1 m), whose costs are not yet affordable for maintaining up-to-date maps. This work proves
that it is also possible to accurately detect roads using high resolution satellite imagery (10 m). Accordingly, we have relied on
Sentinel-2 imagery considering its freely availability and the higher revisit times compared to aerial imagery. It must be taken
into account that the lack of spatial resolution of this sensor drastically increases the difficulty of the road detection task, since the
feasibility to detect a road depends on its width, which can reach sub-pixel size in Sentinel-2 imagery. For that purpose, a new deep
learning architecture which combines semantic segmentation and super-resolution techniques is proposed. As a result, fine-grained
road maps at 2.5 m are generated from Sentinel-2 imagery.

1. INTRODUCTION

In recent years, there has been a growing research interest in
extracting valuable insights from remote sensing imagery. Oc-
casionally assisted by semi-automatic tools, experts carefully
observe aerial and satellite products to extract high-level fea-
tures. Since, those labours demand a great deal of human atten-
tion, many attempts have been carried out to automatize them
(Zhang et al., 2016).

Among the different objects that could be detected in remote
sensing imagery, road networks have gained popularity in the
last decade (Nachmany and Alemohammad, 2019). Ranging
from urban planning and cadastral activities to route optimiza-
tion, there are a plethora of services that rely on up-to-date road
maps to properly work. However, nowadays it is practically im-
possible to keep road maps updated due to the great amount of
resources demanded by those labours.

In recent years, deep learning has received a lot of attention in
both scientific research and practical application. As a result,
a great deal of automation attempts combining remote sensing
imagery with deep learning models have been proposed (Zhu
et al., 2017). Nevertheless, the feasibility to detect complex
objects such as road networks, still largely depend on the spatial
resolution of the imagery used. That is, the higher the spatial
resolution is, the easier it will be to detect tricky objects.

The vast majority of works employ aerial imagery (< 1 m) to
detect roads, whereas there are few who approach the prob-
lem using very high resolution imagery (< 10 m) (Hoeser and
Kuenzer, 2020). However, increasing the spatial resolution res-
ult in higher costs, hindering its application on a daily basis.

In Europe, remote sensing data is becoming more accessible
and affordable thanks to the Copernicus programme coordin-
ated and managed by the European Commission in partnership
∗ Corresponding author

with the European Space Agency (ESA). Moreover, informa-
tion produced in the framework of Copernicus is being made
available free-of-charge to the public. Under the Copernicus
programme ESA is currently developing seven Sentinel mis-
sions to monitor different Earth aspects. In this work we focus
on Sentinel-2 (S2), a multi-spectral sensor that provides high-
resolution optical images composed of thirteen bands, princip-
ally in the visible/near infrared (VNIR) and short-wave infrared
spectral range (SWIR). Among the thirteen bands, only the Red,
Green, Blue and Near Infrared ones are provided at the greatest
resolution of 10 m. It must be noted that, the high revisit times
provided by S2 allows one to monitor an specific zone up to 70
times per year in the equator.

Aiming at showing that using high resolution imagery (10 m)
it is possible to accurately detect road networks, this paper pro-
poses a novel deep learning architecture which fuses semantic
segmentation and super-resolution techniques. As a result, not
only associated costs could be reduced but also, the cartography
update frequency could be increased due to the high revisit
times of high resolution satellites.

The experimental study to validate the proposed approach con-
sists of a set of 20 cities spread across the Spanish territory.
The data-set has been handcrafted combining S2 imagery with
OpenStreetMap (OSM) annotations. Taking into account that
OSM is generated by volunteers, labeling errors may be present.
However, OSM has been widely used to label remote sensing
data-sets proving that it is possible to achieve a high perform-
ance using OSM noisy labels (Kaiser et al., 2017). Additionally,
labelling errors in roads are fewer compared to other elements
such as buildings. Our approach has been evaluated using the
intersection over union (IoU) and F-score metrics, which are
commonly used in semantic segmentation tasks.

The rest of this work is organized as follows. Firstly, previ-
ous works that uses deep learning techniques to detect roads are
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briefly recalled in Section 2. Thereafter, our proposal for detect-
ing road networks using high resolution imagery is presented in
Section 3. Afterwards, the experiments are carried out and dis-
cussed in Section 4. Finally, Section 5 concludes this work and
present some future research.

2. RELATED WORKS

Nowadays, deep learning-based methods have become the stand-
ard for image processing and computer vision tasks (Goodfel-
low et al., 2016). Accordingly, to deal with images, Convolu-
tional Neural Networks (CNNs) (Lecun et al., 1998) are often
considered. Remote sensing labours, such as generating road
maps, have taken advantage of that breakthrough.

The road network extraction problem can be seen as a semantic
segmentation task, since the aim is to assign a label (road or
no-road) to every pixel in a image, thereby allowing the object
to be extracted from the image.

The use of deep learning techniques to extract road networks
from aerial images dates back to 2010 when Mnih et al. (Mnih
and Hinton, 2010) proposed to utilize restricted Boltzmann ma-
chines (RBMs) to address this problem. Moreover, to refine the
output mappings, they incorporated semantic structures such as
the road connectivity trough the inclusion of a post-processing
network. Shortly thereafter, in 2012, Mnih and Hinton im-
proved their methodology, making use of CNNs (Mnih and Hin-
ton, 2012).

Promising road detection attempts started to emerge as research
in CNNs progressed. Saito et al. (Saito et al., 2016) proposed
a new technique to train CNNs efficiently for extracting roads
and buildings simultaneously. Zhang et al. (Zhang et al., 2018)
relayed on a modified version of the U-Net with residual con-
nections to segment roads. Zhou et al. (Zhou et al., 2018) com-
bined a LinkNet with a pretrained encoder and dilated convolu-
tions to handle this task.

It must be noted that aforementioned works make use of aer-
ial imagery (< 1 m). This is due to the complexity of detect-
ing roads considering that tree occlusions, building shadows,
and atmospheric and ground conditions can drastically increase
its difficulty. However, the high cost and limited availability
of aerial products hinders the possibility of applying proposed
methodologies on a daily basis.

High resolution sensors (10 m) are not a priori the proper ones
for detecting complex elements due to their limited spatial res-
olution (Hoeser and Kuenzer, 2020). For this reason few works
have assessed their capabilities for the road detection task (Oehm-
cke et al., 2019, Radoux et al., 2016).

However, high resolution satellite imagery must be taken into
account given not only their low cost but also their high revisit
times. Since information produced in the framework of Coper-
nicus is available free-of-charge, in this work we make use of
S2 imagery. Moreover, S2 provides an average revisit interval
of 4.5 days at the equator enabling a great deal of monitoring
activities.

3. TOWARDS FINE-GRAINED ROAD MAPS
EXTRACTION USING SENTINEL-2 IMAGERY

Considering the elevated costs of using aerial imagery (< 1 m)
we have opted for using high resolution satellite imagery (10 m)

to detect road networks. A benefit of employing high resolution
imagery is that the revisit times are higher, making it possible to
keep road maps updated on a regular basis. However, the lim-
ited resolution of high resolution imagery drastically increases
the complexity of this task.

Traditional fully convolutional neural networks (FCNs) (Long
et al., 2015) output segmentation masks maintaining the resol-
ution given at the input. That is, if we use a S2 image as input
(10 m) the resulting road segmentation mask will have a spa-
tial resolution of 10 m. However, it must be taken into account
that in a pixel may coexist both (road and no-road) classes since
roads can have sub-pixel width.

This work aims at showing that it is possible to generate se-
mantic segmentation masks with greater spatial resolution than
the input. Moreover, enhancing the output resolution allows one
to detect roads whose width, depending on the sensor, could
reach sub-pixel size. For that purpose, a novel deep learning
architecture has been developed combining semantic segment-
ation and super-resolution techniques.

The most widely used architecture in semantic segmentation
tasks is the U-Net fully convolutional network (Ronneberger et
al., 2015). Despite, the U-net was originally invented and first
used for biomedical image segmentation, it has been adapted
for a wide variety of segmentation problems. The model pro-
posed in this work is based on the U-Net as it can be seen in
Figure 1.

Figure 1. U-Net architecture with ResNet-34 as encoder and a
bicubic interpolation layer prior to the feature extractor.

The model consist of a contracting path to capture context in-
formation, and a symmetric expanding path that enables pre-
cise localization. In classical fully convolutional architectures
coarse segmentation masks are generated due to the loss of loc-
ation information in the encoding path. The lack of fine detail
is alleviating by the U-Net model, whose main contribution is
to add skip connections. That is to combine high resolution fea-
tures of the contracting path with the up-sampled output in the
expanding path, avoiding losing pattern information.

In order to increase the resolution at the output of the network,
deconvolutional layers are often used. However, when append-
ing deconvolutional layers to the U-Net network, they cannot
take advantage of the skip connections. For that reason, in this
work, two main modifications have been made to the vanilla
U-Net architecture:

• An up-scaling layer has been included before the encoder.
As a result, the resolution at the input is quadrupled us-
ing the bicubic classical interpolation algorithm. This new
outlook allows the network to provide an enhanced version
of the input, making the most of the U-Net’s skip con-
nections and thus avoiding the loss of pattern information.
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However, it must be noted that the increase in the input
resolution has a negative effect on the computational cost
since the number of parameters is also quadrupled. In the
experiments we will compare this alternative with the tra-
ditional approach of adding deconvolutional layers at the
output.

• The base encoder has been replaced with a ResNet-34 (He
et al., 2016). Given the increase in the number of para-
meters due to the up-scaling layer, residual connections
are included aiming at reducing the computational cost.
Moreover, features extracted by residuals models are more
precise than the ones extracted by the vanilla U-Net en-
coder, because residual connections exploit all the inform-
ation available along the down-sampling process efficiently.

4. EXPERIMENTAL STUDY

4.1 Data-set

Since open road network extraction data-sets consist of hand-
labeled aerial imagery (Demir et al., 2018, Cheng et al., 2017,
Bastani et al., 2018), we have opted for generating our own
data-set. Considering the free availability of their products as
well as the high revisit times provided, S2 was chosen as high
resolution sensor. Additionally, we have relied on OpenStreet-
Map (OSM) to annotate the imagery on account of the quality
of the road labels.

Overall, the pipeline for a generic area of interest is depicted
in Figure 2. Firstly, S2 products are queried and downloaded
from the Sentinels Scientific Data Hub (SciHub). Despite 13
bands are offered by S2, we will only make use of the Red,
Green, Blue and Near Infrared bands, since they are the only
ones provided at the greatest resolution of 10 m. Additionally,
the Normalized Difference Vegetation Index (NDVI) is com-
puted and concatenated to the other bands.

Figure 2. Data-set generation pipeline for a generic area of
interest.

Regarding OSM, as a great deal of layers are provided it needs
to be reclassified. That is, several road elements outlined in

Table 1 have been aggregated to build up the label road. Since
OSM only provides coordinates of road center-lines, they were
buffered to match S2 spatial resolution (10 m) before raster-
izing (transforming to pixel coordinates). However, other ap-
proaches could have been considered such as determining an
average road width for each category (Kaiser et al., 2017). No-
tice that when rasterizing vector data from OSM one can select
the desired output resolution. In this case, we have both raster-
ized to 10 m and 2.5 m to compare the vanilla U-Net with 1x
output with the modified versions with 4x output.

Code Fclass Description

5111 motorway Motorway/freeway
5112 trunk Important roads, typically divided
5113 primary Primary roads, typically national
5114 secondary Secondary roads, typically regional
5115 tertiary Tertiary roads, typically local
5121 unclassified Smaller local roads
5122 residential Roads in residential areas
5123 living street Streets where pedestrians have priority
5124 pedestrian Pedestrian only streets
5131 motorway link Roads connections (same of lower category)
5132 trunk link Roads connections (same of lower category)
5133 primary link Roads connections (same of lower category)
5134 secondary link Roads connections (same of lower category)

Table 1. OSM classes from the Road layer that have been
aggregated to build up the label road.

For this study, we have selected 20 cities spread across the
Spanish territory, which have been divided in two sets accord-
ing to the machine learning standar guidelines (Ripley, 1996).
That is, each whole city is assigned to either the training set
or test set in order to prevent data leakage, as it is indicated
in Table 2. Figure 3 shows how the data-set is geographically
distributed.

City Dimensions Set
A coruña 704 × 576 Training
Alicante 1216 × 1472 Training
Barakaldo 1088 × 896 Training
Barcelona N. 1152 × 1728 Test
Barcelona S. 896 × 1088 Test
Castellón 1024 × 1024 Training
Córdoba 1088 × 1792 Training
Girona 1536 × 1216 Training
León 1216 × 768 Training
Logroño 768 × 960 Training
Madrid N. 1920 × 2688 Training
Rivas-vacı́a 1088 × 1088 Training
Salamanca 832 × 960 Training
San Sebastián 512 × 768 Test
Santander 1152 × 1216 Training
Sevilla 2176 × 2368 Training
Palma 1024 × 1344 Test
Pamplona 1600 × 1536 Test
Vitoria 576 × 896 Training
Zaragoza 2304 × 2752 Training

Table 2. Summary of the data-set. Overall, training set is
composed by 15 zones (75%) whereas test set consists of 5

zones (25%)

It must be noted that open databases such as OSM usually con-
tains labeling errors. Despite there is an evident lack of pre-
cision in rural areas annotations, OSM has been widely used
to automatically annotate remote sensing data-sets. Moreover,
deep learning-based models have been proved capable of learn-
ing from noisy data (Mnih and Hinton, 2012). Although in the
future we plan to find ways for improving the generated data, in
this work we rely on OSM annotations without performing any
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Figure 3. Geographical distribution of the data-set (green
training set / red test set).

pre-processing step.

4.2 Experimental framework

Keras (Chollet et al., 2015) has been chosen as deep learn-
ing framework to implement the architectures proposed in this
work. All the models have been trained for 100K iterations tak-
ing batches of 24 samples of 128 × 128 S2 pixels. Moreover,
samples have been randomly taken considering only samples
containing at leas 5% of road pixels. Adam (Kingma and Ba,
2015) was chosen as optimizer using a learning rate of 1e-3.

Regarding the loss function, we use a combined loss function
(Equation (1)) of Binary Cross-entropy (Ma Yi-de et al., 2004)
and Dice Loss (Sudre et al., 2017). Briefly, the Dice loss con-
trols the trade-off between false-negatives and false-positives
whereas, the binary cross-entropy is used for curve smoothing.

L(y, ŷ) = 0.5LBCE(y, ŷ) + 0.5LDICE(y, ŷ)

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ))

LDICE(y, ŷ) =
2yŷ + 1

y + ŷ + 1

(1)

The different approaches have been evaluated using both the in-
tersection over union (IoU) and F-score metrics. Closely related
to the Dice coefficient, the IoU quantifies the percent overlap
between the target mask and the predicted output. Both IoU
and F-score (F1) are computed as indicated in Equation (2).

IoU(y, ŷ) =
y ∩ ŷ

y ∪ ŷ
F1(y, ŷ) =

2yŷ

y + ŷ
(2)

Like other works (Mnih and Hinton, 2010, Zhang et al., 2018)
we have performed precision relaxation aiming at reducing the
impact of the low spatial resolution on the metrics. That is,
we have discarded doubtful pixels located on the edges of the
roads.

The experiments have been run on a computing node with an
Intel Xeon E5-2609 v4 @ 1.70 GHz processor with 64 GB of
RAM memory and 4x NVIDIA RTX2080Ti GPUs with 11 GB
of RAM.

4.3 Results and discussion

As we have already mentioned in Section 3, the most widely
used technique to increase the resolution at the output of a fully
convolutional network is to append deconvolutional layers. Ac-
cordingly, the architecture proposed in this work has been com-
pared not only to the vanilla U-Net but also to an evolved ver-
sion with two extra deconvolutional layers.

In Table 3, we show the result in terms of IoU and F-score for all
the models in the road detection task. Despite metrics are com-
puted for each city from the test set individually, the overall per-
formance is also included. Moreover, the best results achieved
are presented in boldface.

In summary, the vanilla U-Net achieves an average IoU of 0.36
and F-score of 0.53. However, when the resolution at the out-
put is enhanced, both metrics increase. Accordingly, the IoU
gets almost doubled (0.61 and 0.68 for the Deconv and Bicubic
models respectively) and the F-score also increases (0.75 and
0.81, respectively). This is mainly due to the coexistence of
multiple classes in a single pixel derived from the limited spa-
tial resolution. Moreover, as it can be observed, the results are
consistent across all the cities in the test set.

Table 3 also reveals that up-scaling the input prior to the feature
extractor results in a better performance compared to perform-
ing the up-scaling at the output trough the use of deconvolu-
tional layers (0.68 vs. 0.61 in terms of IoU and 0.81 vs. 0.75
in terms of F-score). Therefore, increasing the resolution at
the input makes it possible for the U-Net network to learn not
only how to semantically segmentate the images but also how
to super-resolve them internally. Moreover, since our approach
keeps the vanilla U-Net architecture intact, shared connections
between the encoder and the decoder can refine the resulting
segmentation masks. As a result, pattern information is con-
served diminishing the lack of fine detail in the predictions.

Figure 4 visually compares the performance of the proposed
architecture in some samples taken from the test set. Closely
looking at this figure one draws the same conclusions as those
looking at Table 3, with some additional information. Standard
semantic segmentation models such as the U-Net struggle to
detect sub-pixel sized elements. Therefore, when the output
resolution is increased, models have more room for accurately
defining small objects. However, when dealing with complex
scenarios such as rural areas, only adding the deconvolutional
layers produces a behaviour similar to the usage of Conditional
Random Fields, removing noise and better defining the roads.
On the contrary, the bicubic interpolation at the input allows one
not only to remove noise, but also to detect roads with sub-pixel
width.

Finally, to assess the generalization capability of the proposed
architecture to other areas different from the training and testing
ones, road networks have been extracted for the main cities in
the Iberian peninsula. Accordingly, the complete map is avail-
able at our web page. 1

5. CONCLUSIONS AND FUTURE WORK

In this paper a new deep learning architecture to detect road net-
works in S2 imagery has been presented. Moreover, our model
is capable of detecting roads regardless of their width. Results,
demonstrates that increasing the resolution at the input of the
feature extractor using a classical interpolation algorithm such
as bicubic can boost both the IoU and F-score metrics.

Nevertheless, there are still several research lines on this topic
that should be addressed in the future. The data-set could be
1 https://tracasa.es/sin-categoria-en/tracasa-succeeds-in-identifying-

roads-and-highways-using-images-from-sentinel-satellites-super-
resolved-with-artificial-intelligence/
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U-Net x1 U-Net + Deconv x4 U-Net + Bicubic x4 (ours)

City IoU F-score IoU F-score IoU F-score

Barcelona N. 0.2957 0.4564 0.6250 0.7692 0.7066 0.8280
Barcelona S. 0.3409 0.5085 0.5231 0.6869 0.6812 0.8103
San Sebastián 0.4044 0.5759 0.6199 0.7654 0.6966 0.8212
Palma 0.3956 0.5670 0.6430 0.7827 0.6677 0.8007
Pamplona 0.3921 0.5633 0.6400 0.7804 0.6950 0.8200

Overall 0.3657 0.5345 0.6102 0.7569 0.6894 0.8161

Table 3. Results obtained in test set with metric relaxation.

S2 RGB Ground Truth U-Net x1 (0.4654 / 0.5066) Deconv x4 (0.7353 / 0.8039) Bicubic x4 (0.8297 / 0.9105)

S2 RGB Ground Truth U-Net x1 (0.4299 / 0.4809) Deconv x4 (0.6360 / 0.6970) Bicubic x4 (0.7153 / 0.7884)

S2 RGB Ground Truth U-Net x1 (0.5776 / 0.7323) Deconv x4 (0.5992 / 0.7494) Bicubic x4 (0.7258 / 0.8411)

S2 RGB Ground Truth U-Net x1 (0.4794 / 0.6481) Deconv x4 (0.5416 / 0.7027) Bicubic x4 (0.8108 / 0.8955)

Figure 4. Visual comparison between the vanilla U-Net (col. 3), a modified version with two deconvolutional layers (col. 4), and the
proposed architecture which applies a bicubic interpolation prior to the feature extractor (col. 5). The relaxed IoU and F-score metrics

have been also included (IoU / F-Score).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

 
13



improved including more images for training and testing. Ad-
ditionally, the location of these images should cover different
parts of the world to make the network more robust. Moreover,
different images could be considered for a single zone taking
advantage of the higher revisit times of S2.

With respect to the deep learning architecture, we would like
to compare the proposed model with other state-of-the-art ap-
proaches such as HRNet. Likewise, it would be interesting to
try out other feature extractors different from ResNet-34.
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Radoux, J., Chomé, G., Jacques, D. C., Waldner, F., Bellemans,
N., Matton, N., Lamarche, C., D’Andrimont, R., Defourny, P.,
2016. Sentinel-2’s Potential for Sub-Pixel Landscape Feature
Detection. Remote Sensing, 8(6).

Ripley, B. D., 1996. Pattern Recognition and Neural Networks.
Cambridge University Press.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convo-
lutional networks for biomedical image segmentation. Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics).

Saito, S., Yamashita, Y., Aoki, Y., 2016. Multiple Object Ex-
traction from Aerial Imagery with Convolutional Neural Net-
works. Journal of Imaging Science and Technology, 60, 10402–
1/10402.

Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., Jorge Car-
doso, M., 2017. Generalised dice overlap as a deep learning loss
function for highly unbalanced segmentations. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics).

Zhang, L., Zhang, L., Du, B., 2016. Deep Learning for Re-
mote Sensing Data: A Technical Tutorial on the State of the
Art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22-
40.

Zhang, Z., Liu, Q., Wang, Y., 2018. Road Extraction by Deep
Residual U-Net. IEEE Geoscience and Remote Sensing Letters,
15(5), 749–753.

Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with
pretrained encoder and dilated convolution for high resolution
satellite imagery road extraction. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CV-
PRW), 192–1924.

Zhu, X. X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., Fraun-
dorfer, F., 2017. Deep Learning in Remote Sensing: A Compre-
hensive Review and List of Resources. IEEE Geoscience and
Remote Sensing Magazine.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

 
14




