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Abstract 

Wetlands are highly productive ecosystems that offer unique services on regional and global scales including nutrient assimilation, 

carbon reduction, geochemical cycling, and water storage. In recent years, however, they are being lost or exploited as croplands 

due to natural or man-made stressors (1.4 percent in 5 years within the USA). This decline in the extent of wetlands began legislative 

activity at a national scale that mandate the regulate use of wetlands. As such, the need for cost-effective, robust, and semi-

automated techniques for wetland preservation is ever-increasing in the current era. In this study, we developed a workflow for 

wetland inventorying on a state-wide scale using optimal incorporation of dual-polarimetry Sentinel-1, multi-spectral Sentinel-2 

and dual polarimetry ALOS-PALSAR with the Random Forest (RF) classifier in Google Earth Engine (GEE). A total of 45 features 

from a stack of multi-season/multi-year SAR and Optical imagery (included more than 5000 imagery) was extracted over 

Minnesota state, USA. We followed the Cowardin classification scheme for clustering the field data. The classification was 

performed in two levels in 5 different ecozones that cover the Minnesota state. Depending on the availability field data for each 

ecozone overall accuracies changed from 77% to 85%. The variable importance analysis suggests that Sentinel-2 spectral features 

are dominant in terms of their capability for wetland delineation. Sentinel-1 backscattering coefficient was also superior among 

other SAR features. Ultimately, the results of this study shall illustrate the applicability of free of charge earth observation data 

coupled with the advanced machine learning techniques that are available in GEE for better restoration and management of 

wetlands. 

1. INTRODUCTION 

Wetlands offer several significant services on either global 

and regional scales including carbon sequestration, water 

purification and weather regulation. However, the rate of 

wetlands loss is rapidly increasing due to man-made and 

natural stressors.  Dahl et al.(2009) reported that the rate of 

declining wetlands from 2004 to 2009 is 1.4 percent in the 

USA (34,050 ha) [1]. To this end, the consistent monitoring 

of these ecologically important land is essential for their 

preservation and management. As such, an accurate estimate 

of wetland’s location, extent and their changes through the 

time is essential. The availability of fine- resolution Earth 

Observation (EO) on a sub-weekly basis coupled large-scale 

computing capability of Google Earth Engine (GEE) as well 

as advanced machine learning tools can facilitate wetland 

mapping [1], [2]. In particular, the optimal incorporation of 

optical and Synthetic Aperture Radar (SAR) EO data can 

enhance the wetland delineations since they are 

sensitive/responsive to different wetland characteristics [3], 

[4].  The ultimate goal of this study is to propose a fast, cost-

effective, robust, and semi-automated technique for wetland 

classification using cloud computing platforms and multi-

source EO data with Random Forest (RF) classifier. 

. 
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2.  METHOD 

Figure 1. The geographic location of case study and the 

distribution of reference data 

 

This study focuses on Minnesota state. Minnesota is the 12the 

largest state in the USA with an area of 225181.336 square 

kilometres. Minnesota is divided into 5 different ecozones. 

These zones presumably represent similar weather, 

vegetation and, ecological patterns. The distribution of 

reference data for the classification is shown in (Figure 1.). 

We followed the Cowardin classification scheme that also 

NWI is adopting for generating wetlands inventory maps [4]. 
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Based on the updated Cowardin system the considered 

wetland classes for this study are emergent, scrub/shrub, and 

forested wetlands. Figure 2. represents the number of 

acquired data for each ecozones. An optimal fusion of 

Sentinel-1, Sentinel-2 and, ALOS-PALSAR imageries was 

created for each ecozones. We also added slope and aspect 

features that were derived from SRTM 30-Meter DEM. 

Given the cloudy climate of Minnesota, we applied cloud 

masks on optical Imageries. Further, a 3 years summer 

composite from June to August was created to assure wall to 

wall coverage of all the state. Speckle was also removed 

from SAR imageries using a circular Kernel-based filter with 

the radius of 25. Lastly, all the available data was resampled 

to 10 meters using the bilinear resampling technique.   

 

  

 

Once the data was pre-processed, the desired features from 

more than 6000 satellite imagery were extracted. We 

calculated vegetation, water and, soil indices for optical 

imageries. The calculated SAR features include ratio, power, 

span or total power and backscattering coefficients. Further 

by stacking the extracted features into one single vector with 

dimension of 28, we applied the RF classifier in two levels. 

After performing several tests, the optimal number of trees 

for the RF classifier was set to 400. The number of splitting 

nodes was set to square root of the number of features. The 

reference data was separated to 70% for train and 30% for 

test using random resampling. The accuracy assessment and 

variable importance analysis using independent test data 

were implemented once the RF classifier was applied. 

 

Figure 2. Number of acquired imageries and distribution of 

test data for each ecozone. 

 

 

 

 

Figure 3. Box-and-whisker plot of the multi-year/ multi-season composite illustrating the distribution of training data reflectance. 
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Figure 4. Right: the classified map for the entire state; Left: the zoom-in scenes of the red rectangle. 

 

The box-and whisker plots of Red, Green, Blue, Vegetation 

Red Edge, NIR and SWIR bands of Sentinel-2 for three class 

of wetlands are illustrated in Figure 3. The initial reflectance 

separability analysis suggests that emergent and scrub/shrub 

wetland’s separation is maximized in blue band. Moreover, 

the separation of forested wetland from the other two classes 

of wetland is augmented at NIR, SWIR and Vegetation Red 

Edge bands. 

 

 
Figure 5. Variable importance analysis of RF classifier. 

3. RESULTS AND DISCUSSION 

 

Figure 4 shows the classification results over the Minnesota 

state on the left. The zoom-in version of the produced map 

and used satellite imagery is shown in the left. Notably, the 

upland class is excluded from the final classified maps since 

we were keen to examine the wetland’s distribution. 

Following, post analysis accuracy assessment using 

independent test data reveals that the level one classification 

wetland’s producer’s accuracy varies between 80.75% and 

88.23% for Central and Northwest ecozones, respectively. 

The wetland’s user’s accuracy varies from 78.66% to 

87.37% for Northeast and Northwest, respectively. The 

overall wetland-upland accuracy changes from 83.66% to 

90.90% for Northeast and Northwest ecozones. The level 
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two classification overall accuracies that correspond only to 

wetlands classes vary from 63.12% to 71.25% for Central 

and South, respectively. These changes in the accuracies are 

potentially due to the insufficient train data for some 

ecozones. Further, variable importance analysis of 28 

imported feature reveals the superiority of Sentinel-2 

spectral bands and derived indices (Figure 5). The first SAR 

feature that emerged was the backscattering coefficient of 

horizontally transmitted and horizontally received Sentinel-

1 data. This is consistent with other studies as this feature is 

explicitly powerful in delineating herbaceous wetlands 

classes [3]. Overall, the results illustrated in this study shall 

provide some initial insight on the potential ability of EO 

geo-big data with 10-meter resolution using GEE platform 

as well as advance machine-learning technique for wetland 

mapping on a state-wide scale. The produced maps can be 

updated in sub-weekly basis that is an asset for dynamic 

wetland environment. 
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