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ABSTRACT: The deformation of the surface of the earth is triggered by numerous naturally occurring and artificial processes such 

as global isostatic adjustment, aseismic and coseismic movement, varying amounts of groundwater or gas stored underground, and soil 

consolidation due to urbanization. Monitoring these surface deformations is essential to understand the underlying processes and 

provide authorities and the public with hazard assessments. Remote sensing techniques, such as Persistent Scatterer Interferometry 

(PSI), have the capability of mapping these deformations. Besides a spatial analysis of the deformation patterns, PSI also provides 

information on their temporal evolution. Post-processing strategies to analyze the displacement time series have gained interest in 

recent years. This paper presents our PSI post-processing strategy, which incorporates different deformation models and automatically 

chooses the best-fitting one based on statistical tests. 

 

 

1. INTRODUCTION 

The surface of the earth is constantly deforming. The processes 

that trigger the deformation are categorized as large- or small-

scale and naturally occurring or artificial processes. The main 

large-scale naturally occurring processes are global isostatic 

adjustment, aseismic and coseismic movement, i.e., movement 

occurring without seismic activity and movement directly 

associated with earthquakes. The basic concept of these 

processes is that the surface of the earth consists of several plates 

moving relative to one another (Minster et al., 1978). An example 

of aseismic creep alongside plate boundaries is presented in the 

case study of the North Anatolian Fault (NAF) in Turkey by 

Cetin et al. (2014). Persistent Scatterer Interferometry (PSI) was 

used to map the deformation of the NAF between 2003 and 2010. 

The deformation map shows alternating zones of steady-state 

creep and locked zones alongside the fault. Knowing the spatial 

and temporal evolution of these deformations is essential for 

seismic hazard assessments of affected regions. Locked faults 

accumulate strain, which is later released abruptly during 

earthquakes. At the same time, aseismic creep has the effect that 

less strain is accumulated over time, and thus the likelihood of 

significant earthquakes shrinks notably. For example, historical 

data of aseismic creep at Ismetpasa shows that the NAF 

deformation rate decays exponentially since the earthquake in 

1944 (Cakir et al., 2005).  

Human-induced deformations are caused by, for example, 

varying amounts of groundwater or gas storage (Béjar-Pizarro et 

al., 2017; Even et al., 2020; Teatini et al., 2011). For example, 

the aquifer of Madrid caused alternating uplift and subsidence 

between 1992 and 2010 in response to groundwater extraction 

during draughts and recovery periods with excess precipitation 

(Béjar-Pizarro et al., 2017). Underground gas storage causes 

similar ground deformation. Gas is stored in depleted 

hydrocarbon reservoirs in many parts of Europe and North 

America. The gas is injected into the reservoir during summer 

resulting in uplift and extracted in winter leading to subsidence 

(Even et al., 2020; Teatini et al., 2011). Another example of 

human-induced deformation is presented in Solari et al. (2016). 

They mapped the deformation of the urban area of Pisa between 

1978 and 2013. Comparing the subsidence rates of individual 

buildings with their age revealed a direct relationship between the 

age of the building and its subsidence rates. The case study also 

demonstrated that urbanization accelerates ground consolidation. 

Monitoring ongoing surface deformation is essential to 

understand the underlying processes and provide authorities and 

the public with hazard assessments. Surface deformations need 

to be considered for developments of infrastructure and human 

settlements (Raspini et al., 2018). The studies mentioned above 

showed that PSI is capable of mapping long-term and slowly 

developing deformations. Most PSI algorithms provide a map of 

mean deformation velocity and the associated displacement time 

series for each identified persistent scatterer (PS) (Ferretti et al., 

2001; Hooper et al., 2004). Studies such as Navarro et al. (2019) 

use the mean deformation velocity map to identify areas of active 

deformation. The mean deformation velocity is estimated based 

on the assumption that the deformation is dominated by a linear 

trend (Ferretti et al., 2001; Hooper et al., 2018). However, above 

listed studies showed that this assumption is not always correct. 

For example, storage of gas leads to a seasonal horizontal and 

vertical displacement (Teatini et al., 2011), displacement rates of 

aseismic creep or subsidence due to urbanization can change over 

time resulting in either a piecewise linear trend or higher 

polynomial trend (Cetin et al., 2014; Solari et al., 2016). 

Assuming a linear trend might lead to the over- or 

underestimation of the velocity of the deformation or, in the case 

of a purely seasonal deformation pattern to misclassification as a 

non-active area. Berti et al. (2013) presented an algorithm that 

distinguished between linear, quadratic, and piecewise linear 

deformation patterns based on the displacement time series of 

each identified PS. However, they do not consider seasonal 

deformation patterns. The PSI post-processing strategy presented 

by Costantini et al. (2018) considers only PS identified on 

buildings, clusters the PS for each building, and estimates each 

cluster's average displacement time series. The average 

displacement time series are labeled as either piecewise linear or 

a combined seasonal and linear displacement time series. PS not 

included in one of the clusters are considered outliers and 

excluded from the analysis. The algorithm assumes that the area 

of interest (AOI) is an urban area with a dense PS grid. The AOI 

presented in this study includes both rural areas with a sparse PS 

grid and urban areas with a dense PS grid. The deformation 

processes expected in the area include landslides, aseismic creep, 

subsidence in urbanized areas, and large engineering structures, 

such as dams, in rural areas. Therefore, it is not appropriate to 
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only consider PS identified on building structures, exclude every 

PS that does not deform in the same manner as its neighboring 

PS, and only consider a selection of possible deformation models. 

In a previous study, we presented the Matlab-based tool 

Persistent Scatterer Deformation Pattern Analysis Tool 

(PSDefoPAT) (Evers et al., 2021). The goal of PSDefoPAT is to 

describe the behavior of an individual PS over time with a 

mathematical model. The tool decomposes the time series into its 

trend, seasonal, and noise components. The trend component is 

approximated by either a linear, quadratic, cubic, or piecewise 

linear regression model, while the seasonal component is 

assumed to be a sine function. The quality of the models is judged 

based on the statistical measurements. 

The previously presented version of PSDefoPAT relies on user 

input. The tool uses preparatory steps such as outlier or change 

point (CP) detection, which require the user to adjust the settings 

for each time series. The provided options for these methods are 

chosen based on a visual inspection of the individual time series. 

Processing an entire PSI dataset this way would be cumbersome. 

Therefore, an automatized version of PSDefoPAT would be 

preferable. In order to automatize PSDefoPAT, steps that require 

user input need to be adjusted so that the required user input is 

minimized or the user input can be generalized for an entire data 

set. The steps that need to be adjusted to reduce the demand for 

user input and facilitate an automatized post-processing of each 

PS displacement time series within a PSI data set are outlier and 

CP detection. The original version of PSDefoPAT only identified 

extreme outliers in the time series based on statistical 

assumptions selected by the user. Furthermore, it only allowed 

the time series to be divided into two segments. Incorporating 

wavelet transformation based de-noising and a top-down 

segmentation algorithm reduces the noise obscuring the 

underlying signal and lifts the limitation on the number of 

segments used in a piecewise linear representation (PLR) of the 

time series. In this paper, we present our new PSI post-processing 

strategy.  

The paper is structured into five sections. The dataset and study 

area are presented in Section 2. An overview of the previously 

used concept for PSDefoPAT and the alterations implemented for 

the new version are presented in Section 3. In Section 4, the 

performance of the old and new versions of PSDefoPAT are 

compared based on three exemplarily displacement time series. 

Our conclusions are summarized in Section 5. 

 

 

2. DATASET AND DATA PROCESSING 

2.1 Dataset 

In order to compare the time series used in this study with the 

ones presented in Evers et al. (2021), we decided to examine the 

same area of interest (AOI) and use the same data set. The AOI 

is located on the Peloponnese Peninsula in Greece. The largest 

city in the area is Patras. The Gulf of Patras encloses the city in 

the North, the Hellenic subduction zone in the West, the 

Erymanthos and Panachaiko mountains in the East and the South. 

Vertical and horizontal displacements are expected to be 

observed due to numerous landslides and active faults in the area 

(Sakkas et al., 2018; Chalkias et al., 2014).  

In order to observe the deformation occurring between January 

2019 and January 2021 in the area, 122 Sentinel-1 images were 

acquired. The images were recorded with descending acquisition 

geometry and the acquisition mode Interferometric Wide Swath.  

 

2.2 Persistent Scatterer Interferometry Processing 

PSI was developed to reduce the effect of decorrelation and 

atmospheric phase delay on the displacement rates derived from 

interferograms (Ferretti et al., 2001; Hooper et al., 2004). PSI 

algorithms, such as the Standford Method for Persistent 

Scatterers (StaMPS) use a time series of interferograms to 

identify pixels with a low noise level. These pixels are referred 

to as Persistent Scatterers (PS). Only the PS pixels are used to 

determine the displacement rates for the observation period 

(Hooper et al., 2004).  

Figure 1 illustrates the mean velocities in LOS for Patras and the 

surrounding region. The range of the mean velocities extends 

from -12 mm/a (blue) to +10 mm/a (red). The sign marks the 

direction of the movement. A negative velocity indicates 

movement away from the sensor, while a positive velocity 

represents a movement towards the sensor. Even though Figure 

1 shows many areas of surface deformation, we will concentrate 

on the three areas marked with red rectangles in Figure 1. Area 

A covers the center and southern part of Patras, while Areas B 

and C consist of more rural regions. Area B covers the 

mountainous area to the South-East of Patras, and Area C 

contains a dam and freshwater reservoir.  

 

 

3. METHODS FOR PS DISPLACEMENT ANALYSIS 

Generally speaking, a time series is a sequence of observations 

of a particular variable in chronological order. The aim of time 

series analysis is to characterize the time series and decompose it 

into its trend, seasonal, and noise component. Then, a 

mathematical model that describes the behavior of the variable 

over time can be built based on this information (Neusser, 2016; 

Montgomery et al., 2015). The variable observed in this study is 

the displacement of individual PS generated with the PSI 

algorithm StaMPS. 

This chapter is divided into three parts. The first part summarizes 

the original version of the Matlab-based tool PSDefoPAT (Evers 

et al., 2021) and explains the adaptations made to facilitate its 

automatic application. The second- and third-part focus on de-

noising time series based on its wavelet transformation and time 

series segmentation algorithms. Both aspects are newly 

incorporated in our approach of time series analysis.

Figure 1. Mean veolocity map of Patars and the surroundig 

region for the time between January 2019 and January 2021. 

A
B

C
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3.1 PSDefoPAT 

PSDefoPAT aims to characterize a given time series and provide 

a mathematical model that describes the temporal behavior of the 

displacement rates of each identified PS. The initially 

implemented version of PSDefoPAT was used manually and 

relied on user-specified input. Figure 2 presents the user interface 

of the original version of PSDefoPAT. The interface is structured 

into three areas. The map of estimated mean velocities is shown 

in Area I. General functions such as selecting a specific PS to be 

analyzed or exporting the results are provided in Area II. The 

examination of the displacement time series is divided into five 

steps: 

 

1. Exploratory Data Analysis 

2. Prepare Data  

3. Trend Estimation  

4. Examine Seasonality 

5. Decomposed Displacement Time Series 

 

Each step can be found in a separate tab in Area III. The second 

step, prepare data, gives the user the option to smooth the time 

series or detect and replace the outliers. Five different methods 

were included in PSDefoPAT: 

 

• Moving Average 

• Moving Median 

• Gaussian Filter 

• Local Linear Regression (LLR) 

• Robust LLR 

 

The alternative to smoothing the time series is to detect the 

outliers in the time series.  

 

 

 

A data point is considered as an outlier if:  

 

• it deviates more than three times the scaled median 

absolute deviation from the median, 

• it deviates more than three times the standard deviation 

from the mean, or 

• it is situated more than 1.5 interquartile ranges above 

the upper quartile or below the lower quartile. 

 

The trend component of the time series is estimated in Step 3. 

Linear, quadratic, cubic, and piecewise linear regression models 

can be used. The piecewise linear regression model allows only 

two segments and one Change Point (CP). The best-fitting model 

is chosen based on the BIC and the p-Value derived from a 

significance test of the regression model. Next, the component is 

examined after the time series is detrended. The period of the 

component is selected based on the frequency spectrum of the 

time series. The model used for the seasonal component is a sine 

function. Only the noise component remains after the estimated 

component is subtracted from the residual time series. All three 

components are presented in the fifth tab of Area III in Figure 2. 

This paper presents necessary adaptations of the second, third, 

and fourth step to facilitate the automatization of PSDefoPAT. In 

the adapted version of Step 2, any data point that deviates more 

than three times the scaled median absolute deviation from the 

median is considered an outlier and is replaced. Following that, 

we use wavelet transformation to reduce the noise in the time 

series. Step 3 was adapted to allow more segments and CPs for a 

piecewise linear regression model. The segments and CPs are 

determined with a time series segmentation algorithm. In 

addition to that, the order of the steps was changed. The seasonal 

component is now estimated before the trend component is 

calculated.  

The following two subsections discuss time series de-noising 

with wavelet transformation and time series segmentation. 

 

I III

II

Figure 2. PSDefoPAT userinterface structured into Area I, II and III 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-107-2022 | © Author(s) 2022. CC BY 4.0 License.

 
109



 

3.2 De-noising with Wavelet Transformation  

A wavelet basis consists of wave-like functions that oscillate 

around zero for a limited time. The basic building block of a 

wavelet family is the mother wavelet 𝜓(𝑡). Every other wavelet 
of the family is constructed by dilating or translating the mother 

wavelet.  

 

𝜓𝑎,𝑏(𝑡) =  
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
)                                 (1) 

 

The scaling parameter a and the translation parameter b 

determine the position of the wavelet in time and the width of its 

non-zero-part. The non-zero-part of a wavelet is referred to as its 

support. The wavelet is a compressed version of the mother 

wavelet in case of 𝑎 < 1 and a stretched version in case of 𝑎 > 1 

(Walczak et al., 1997; Motard et al., 2013). Well-known wavelets 

bases are the Daubechies-Wavelets (Daubechies, 1988) and 

Meyer-Wavelets (Meyer, 1992).  

Similar to how sine and cosine functions are used in Fourier 

transformation to represent a uniformly periodic signal, wavelet 

bases describe piecewise regular signals. The projection of the 

signal onto wavelet basis functions is called wavelet transform 

(WT) (Mallat, 1999). As well as any transformation, WT shifts 

the signal from its original domain into a new one, in which 

operations such as noise reduction or signal compression may be 

easier to carry out (Walczak et al., 1997). 

The first step of noise reduction is to employ wavelets to 

decompose the signal into its wavelet representation. The 

Discrete Wavelet Transformation (DWT) decomposes the signal 

into a finite set of wavelet coefficients. The number of wavelet 

coefficients depends on the wavelet basis used to decompose the 

signal. The wavelet coefficients are used to define two filters: (1) 

a scaling filter, which is a low-pass filter, and (2) a wavelet filter, 

which resembles a high-pass filter. Both filters consist of the 

same wavelet coefficients, only with altering signs and in 

reversed order (Walczak et al., 1997). The filters are used for the 

recursive pyramid decomposition algorithm, first introduced by 

Mallat (1989). The algorithm offers a hierarchal multiresolution 

representation of the analyzed signal. The filters are applied to a 

signal f(t) with N data points resulting in N/2 detail coefficients 

and N/2 approximation coefficients at level 1. The approximation 

coefficients are then subjected to the scaling and wavelet filter 

resulting in N/4 detail coefficients and N/4 approximation 

coefficients at level 2. This step is repeated until the preferred 

level is reached (Walczak et al., 1997).  

After the decomposition has been carried out, thresholding is 

applied to the coefficients 𝑐𝑗 at each level (Walczak et al., 1997). 

The universal threshold 𝜅 first introduced by Donoho et al. 

(1995) can be written as: 

 

𝜅 =  √2log2𝑁 .                                  (2) 

 

The thresholding can be applied as hard thresholding or soft 

thresholding. In the case of hard thresholding, the coefficient 𝑐𝑗 

is dismissed if its value is less than 𝜅 and kept if it surpasses 𝜅. 

 

𝑐𝑗
ℎ𝑎𝑟𝑑 = {

0,   |𝑐𝑗| < 𝜅

𝑐𝑗 , |𝑐𝑗| ≥ 𝜅
                            (3) 

 

In the case of soft thresholding, the coefficient 𝑐𝑗  is also 

dismissed if its value is smaller than 𝜅, but the coefficient is 

shifted towards zero if its value surpasses 𝜅 by subtracting 𝜅 from 

the absolute value of the coefficient. 

 

𝑐𝑗
𝑠𝑜𝑓𝑡

= {
0,                                  |𝑐𝑗| < 𝜅

𝑠𝑖𝑔𝑛(𝑐𝑗)(|𝑐𝑗| − 𝜅), |𝑐𝑗| ≥ 𝜅
              (4) 

 

After thresholding, the signal is reconstructed based on the 

remaining wavelet coefficients.  

For our purposes, we decided to use the third Daubechies wavelet 

for the WT and soft thresholding for the de-noising step. Soft-

thresholding provides a smooth and continuous time series 

reconstruction (Donoho, 1995). 

 

3.3 Segmentation Algorithms 

Regardless of which specific model is selected for the trend 

component, its characteristic parameters may change over time, 

such as the slope in case of a linear trend. The representation of 

a piecewise linear time series with a regression model is referred 

to as a piecewise linear representation (PLR). The PLR 

approximates a given time series of length N with K straight lines 

(Keogh et al., 2004). An example is shown in Figure 3. The black 

dots represent the time series, while the linear approximation of 

the time series is depicted with a blue line and the PLR with three 

consecutive red lines. The PLR in Figure 3 is characterized by 

three segments and two change points (CP), which are transition 

points between two consecutive segments. A segmentation 

algorithm takes a time series as input and returns the segments 

and CPs. The literature distinguishes between offline and online 

algorithms. Online algorithms allow data points to be added 

parallel to the execution of the algorithm and thus do not have 

access to the entire time series to produce the best PLR. The 

functional principle of offline algorithms, on the other hand, is 

that the data set remains unchanged during the execution of the 

algorithm, and the entire time series is taken into consideration to 

find the best PLR (Lovrić et al., 2014). The concrete task of a 

segmentation algorithm can be understood in three different 

ways: 

 

1. Produce the best PLR for the provided time series with 

K segments. 

2. Produce the best PLR of the provided time series so 

that the maximum error of each approximated segment 

does not exceed a previously specified threshold. 

3. Produce the best PLR of the provided time series so 

that the maximum combined error of all approximated 

segments does not exceed a previously specified 

threshold (Keogh et al., 2004). 

A CB

   

  2

Figure 3. Exemplarily time series (black dots) approximated 

with a linear regression (blue line) and a piecewise linear 

representation (PLR) (red line). The PLR is defined by 

Segments A, B, and C, as well as the change points (CP) 𝐶𝑃   

and 𝐶𝑃2. 
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Further, most segmentation algorithms can be divided into three 

categories: (1) Sliding-Window, (2) Top-Down, and (3) Bottom-

Up. 

The Sliding-Window algorithm starts with the first couple of data 

points from the given time series as a segment and adds to the 

segment as long as the error of the segment does not exceed a 

user-specified threshold. Should the segment exceed the 

threshold, the recently added data point is removed from the 

segment, and the algorithm starts to form a new segment 

beginning with that data point. Since the algorithm never uses the 

entire time series to determine the boundaries of the segments, it 

is considered an online algorithm.  

The Top-Down and Bottom-Up algorithms, on the other hand, 

are offline algorithms. The Top-Down algorithm starts with one 

segment representing the entire time series. This segment is  then 

divided into two segments if the error of the segment exceeds a 

user-specified threshold. After that, the algorithm recursively 

tests each segment and divides the time series into additional 

segments until the error of each segment is less than the 

threshold. In contrast, the Bottom-Up algorithm starts with the 

finest possible segmentation of the given time series, i.e., the 

algorithm assumes that each combination of two neighboring 

data points is a segment and then merges adjacent segments if the 

error of the resulting segment does not exceed a user-specified 

threshold (Keogh et al., 2004). We decided to use a top-down 

algorithm with the second formulation of the problem at hand in 

mind for our purposes. The Sliding-Window approach is not used 

because it delivers poor results. And although it is reported in 

literature that the bottom-up approach outperforms the top-down 

approach (Keogh et al., 2004), in our case, the bottom-up 

approach provided a to fine segmentation of the displacement 

time series. To evaluate the segmentation, we used the mean 

squared error. The threshold is set to 15 % of the standard 

deviation of the analyzed time series. 

 

 

4. RESULTS & DISCUSSION 

In the following section, the models for the LOS displacement 

time series dPS of three different PS are presented. The 

exemplarily PS are the same ones that were examined in the 

previous study by Evers et al. (2021). Therefore, the selected 

models dPS are compared to the previously estimated models 

uPS. The PS are located within the red rectangles in Figure 1 

(Area A, B, and C).  

(b)

(a)

Figure 7.  Displacement time series of PS 2(a) decomposed into 

a linear trend and cyclic component, (b) the estimated additive 

model. 

Figure 4.  Original displacement time series of PS 1 (black stars) 

and the de-noised signal (blue). 

Figure 5. Displacement time series of P1 2 (black) with a 

quadratic trend (blue) and the residual component (red). 

Figure 6. Original displacement time series of PS 2 (black stars) 

and the de-noised signal (blue). 
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They were selected because they are subject to different 

deformation phenomena: (1) subsidence due to the consolidation 

of building material, (2) varying uplift and subsidence, and (3) a 

landslide with varying velocity. PS 1 is located in Area C on the 

dam body of the Parapeiros-Peiros dam. The construction of the 

dam was finished in early 2019 and has been storing water since 

September 2019. The dam body is expected to subside due to the 

dead load of its weight and the stored water (Evers et al.,2020; 

Hunter et al., 2003). PS 2 is located in Area A, which covers the 

center and South of the city of Patras. It is a mainly residential 

area. Therefore, subsidence due to urbanization and deformation 

due to varying groundwater levels are expected. PS 3 is located 

in Area B. Area B is located southeast of Patras. It is a 

mountainous and landslide-prone area (Del Soldato et al., 2018). 

PS 3 belongs most likely to a landslide. Thus, a linear or 

piecewise linear deformation is expected to be observed. 

Figure 4 shows the original displacement time series of PS 1 

(black) and the de-noised time series (blue). The time series was 

de-noised based on its WT with the third Daubechies-Wavelet 

and using soft-thresholding. 

The model dPS1  was developed based on the de-noised signal. 

The displacement time series exhibits a quadratic trend with the 

following coefficients: 

 
𝑑𝑃𝑆1 = −7.73

mm

year
 𝑡2 − 0.01

mm

year
𝑡 + 10.8 mm.                         (5) 

 

A seasonal component was not estimated because the 

periodogram of the de-noised time series did not reveal a 

significant frequency. 

Figure 5 shows the original time series (black), the trend (blue), 

and residual (red) components. The mean absolute deviation 

(MAD) of the model dPS1  is 2.55 mm.  

Previously, the time series was approximated with a linear trend 

and seasonal component instead of a quadratic trend. The model 

uPS1  has the following coefficients (Evers et al., 2021): 

 

𝑢𝑃𝑆1 = −12.91
mm

year
𝑡 + 12.5 mm + 3 mm ∗ sin (

2𝜋

362 days
∗ (𝑡 − 81 days)).   (6) 

 

The lower estimation for the interceptor and the selection of a 

different model are probably due to de-noising the time series  

before the model dPS1  was estimated instead of only removing 

three outliers based on user input. However, a quadratic trend is 

in better agreement with the expected deformation phenomena 

than a linear trend combined with a seasonal component. The PS 

is experiencing subsidence due to the consolidation of the 

building and foundation material of the dam body. The 

subsidence was expected to start after the construction finished, 

which was in Spring 2019, and was expected to exhilarate with 

an increasing water level in the reservoir (Hunter et al., 2003). 

The InSAR time series starts in January 2019 and end in January 

2021 covering the time period in which the subsidence is 

expected to exhilarate. The MAD of the previous model uPS1is 

2.18 mm.  

Figure 6 shows the original displacement time series and the de-

noised signal of PS 2. The estimated model dPS2  consists of a 

seasonal and a linear trend component.  

 

𝑑𝑃𝑆2 = −1.03
mm

year
𝑡 + 1.29 mm + 5.62 mm ∙ sin (

2𝜋

360.6 days
∗ (𝑡 − 46 days))  (7) 

 

Figure 7a presents the separate components of the time series. 

The seasonal component is represented by the blue line, the trend 

component by the green line, and the residual component by the 

red line. Figure 7b presents the additive model of the time series, 

i.e., the trend and seasonal component are summed up. The model 

agrees with the original data. The average discrepancy between 

the additive model and the displacement time series is 3.02 mm. 

The average difference between the previously estimated model 

and the original time series is 4.73 mm. Previously, the time 

series was also approximated with a seasonal and a linear trend 

component. However, the coefficients of the model uPS2 differ 

from the currently estimated ones. The period and the amplitude 

of the seasonal component were estimated to be 359.5 days and 

5.44 mm. The slope and interceptor of the linear trend component 

were estimated to be -2.57 mm/year and 3.03 mm (Evers et al., 

2021).  

 

𝑢𝑃𝑆2 = −2.57
mm

year
𝑡 + 3.03 mm + 5.44 mm ∙ sin (

2𝜋

359.5 days
∗ (𝑡 − 46 days))  (8) 

 

Both models revealed that the displacement time series of PS 2 

has a seasonal component with a period of roughly one year and 

a linear trend. The seasonal component can most likely be traced 

(b)

(a)

Figure 9. Displacement time series of PS 3 (a) divided into two 

segments, (b) approximated by a piecewise linear model. 

Figure 8.  Original displacement time series of PS 3 (black 

stars), extreme outliers (red), and the de-noised signal (blue). 
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back to a varying groundwater level in the area. However, 

groundwater level measurements would be needed to confirm 

this hypothesis. 

Figure 8 shows the original time series and the de-noised signal 

of PS 3. Both time series exhibit a piecewise linear trend with one 

CP. Figure 9a presents the results from the top-down 

segmentation algorithm. The algorithm divided the time series 

into two segments. The CP, i.e., the transition from the first to the 

second segment, occurs after 444 days. The first segment has a 

slope of -9.1 mm/year, and for the second segment, the slope 

changed to -1.95 mm/year.  
 

𝑑𝑃𝑆3 = {
−9.1

mm

year
𝑡 + 7.59 mm,                                           𝑡 ≤ 444

−9.1
mm

year
𝑡 + 7.15

mm

year
(𝑡 − 444) + 7.59 mm, 𝑡 ≥ 444

            (9) 

 

Figure 9b shows the piecewise linear model dPS3  fitted to the de-

noised signal. The MAD of the model is 2.89 mm, while the 

previously estimated model uPS3 has a MAD of 2.46 mm. The 

previously selected model is also a PLR of the time series.  

However, a different CP was estimated. The CP occurred after 

416 days. The slope changed from -12.05 mm/year to -1.679 

mm/year (Evers et al., 2021). 

 

𝑢𝑃𝑆3 = {
−12.05

mm

year
𝑡 + 9.84 mm,                                           𝑡 ≤ 416

−12.05
mm

year
𝑡 + 9.31

mm

year
(𝑡 − 416) + 9.84 mm, 𝑡 ≥ 416

    (10) 

 

In both cases, the time series analysis revealed that PS 3 slowed 

down its movement. 

 

 

5. CONCLUSION 

In this paper, we presented the adaptations made to PSDefoPAT, 

which facilitate the automatization of its application. The 

required user input is reduced to one variable, which is the 

threshold to find the best PLR of the time series. The smaller the 

threshold is selected, the more segments are used for the PLR of 

the time series. 

The estimated coefficients and calculated MAD values of all 

models are summarized in Table 1. The adjusted version of 

PSDefoPAT delivered similar results as the original one, except 

for PS 1. The deviations of the models estimated for PS 1 are 

probably based on the de-noising step introduced in the adjusted 

version of PSDefoPAT. However, we also outlined that the now 

selected quadratic model is in better agreement with the expected 

deformation phenomena than the previously estimated model. 

The next step is to apply the algorithm to an entire PSI data set 

and define a reliability value for each PS based on the 

discrepancy of the displacement time series and the estimated 

model for each PS. 
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