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ABSTRACT:

The deformation time series of Persistent Scatterer points show a correlated behavior if they lay on the same rigid structure and
therefore undergo the same deformation process. By clustering, such groups of Persistent Scatterer (PS) points can be identified.
We use segmented mesh representations of single buildings, to find the optimal assignment of such clusters to parts of the structure.
By applying a quality metric, the assignment is judged quantitatively. The proposed method is useful for the integration of PSInSAR
into building information modeling (BIM) and aims at a cost-effective city-wide per-building monitoring.

1. INTRODUCTION

Persistent scatterer interferometry (PSI) (Ferretti et al., 2000,
2001) developed over the last years to a widely used and well-
excepted technique in the remote sensing community (Crosetto
et al., 2016). This advanced differential interferometric syn-
thetic aperture radar (DInSAR) evaluation technique can meas-
ure very small deformations in a wide area. This makes it
interesting for city-wide monitoring applications. For high-
resolution SAR data of urban scenarios the resulting PS-point
clouds can be as dense as 1 PS per m2 in particular on build-
ing facades (Schunert et al., 2012; Gernhardt et al., 2015). For
each PS-point the movement in the line-of-sight direction can
be estimated as a time series, in addition to the position.

The visualization and interpretation of such spatial-temporal
data is challenging. In large-scale applications, such as volcano
activity and earthquakes, velocity maps are a common way to
present the estimated deformations. In single building monit-
oring, the observed motion processes are often caused by sea-
sonal temperature change of annual periodic pattern (Crosetto
et al., 2015). Schneider et al. (2020) have shown, that points
that lay on the same rigid structure, and therefore are undergo-
ing the same deformation process, show a correlated behavior
in their time series. Schneider and Soergel (2021a,b) present
a way to reliably find and cluster such correlated groups. This
leads to the idea of linking those PS-clusters to parts of a build-
ing. To identify structural segments of a construction, a building
information model (BIM) can be utilized. The optimal assign-
ment between the PS-clusters and the structural elements, that
are represented as a segmented mesh, is the main topic of this
paper.

Related work has been carried out by Gernhardt et al. (2015)
who investigated the origin and localization accuracy of PS-
points on buildings by using detailed 3d models. Zhu et al.
(2018) use a hierarchical clustering method to obtain groups of
points that are more trustworthy. Costantini et al. (2018) fol-
low a similar approach to detect the deformation anomalies that
could cause building or infrastructure stability problems. The
∗Corresponding author

point-to-mesh association for geospatial data has been invest-
igated by Laupheimer and Haala (2021) who suggest a face-
centered geometry driven approach, to map airborne laser scan-
ning data onto dense meshes e.g. for label transformation.

In contrast to the previously mentioned research, we use seg-
mented meshes, that represent different parts of a structure, to
map correlated PS-points onto. Such meshes can ideally be de-
rived from BIM models or be manually created, based on high
level of detail (LOD2+) models.

We choose two prominent buildings in Berlin, Germany, where
High-Resolution Spotlight TerraSAR-X data are available as
our study sites. Segmented meshes are created manually, based
on publicly available unstructured models. A commercially
Persistent Scatterer algorithm applied to extract PS-points on
the building. We treat the PS time series and their positions
as points in a high-dimensional space and use a custom dis-
tance metric and a non-linear dimension reduction technique to
cluster them in a suitable fashion. For each of the mesh seg-
ments, the optimal cluster assignment is carried out. Finally,
we present the meshes with the assigned clusters and their cor-
responding time series along with a quality criterion for the as-
signment.

In the following, we describe and explain the applied meth-
ods and the database, thereby we focus on the mesh segmenta-
tion and the optimal assignment between clusters and segments.
Briefly discussed are also the disadvantages of a linear model
in PS motion estimation, especially for applications on large
steel structures. The final results are complemented by a link
to a web platform that allows the three-dimensional data to be
viewed from all sides.

2. METHODS AND DATABASE

2.1 Study Site

As exemplary study sites, we choose buildings in our scene
based on two criteria: firstly the building must be large enough
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so a significant amount of persistent scatterers can be found,
secondly a detailed mesh model must be available.

As the main study site, we choose the Reichstag Building.
This neo-renaissance building underwent reconstruction in the
1990s. The building can be roughly divided into its four wings
and the characteristic glass-steel cupola in the center (Figure 3).

As a second building, we choose the Berlin Central Station.
This structure is especially interesting because many previous
DInSAR publications have used it as an example (Gernhardt
and Bamler, 2015; Gernhardt et al., 2010a; Wang and Zhu,
2015; Montazeri et al., 2015). The terminal consists of a long
pier bridge on which the tracks run, and two large main build-
ings perpendicular to it. The bigger part of the platform is
covered by a glass roof (Figure 8/9).

2.2 SAR-Data and PSI

The synthetic aperture radar (SAR) data for our experiments
is a stack of TerraSAR-X images in High-Resolution Spotlight
mode (Airbus, 2017), acquired during a 3 year time span over
Berlin, Germany (Tab. 1). Relative to the master image, the
spatial baselines do not exceed 250 m (Figure 1).

Based on the original idea of Persistent Scatterer Interferometry
(PSI) (Ferretti et al., 2001, 2000), several comercial software
solutions are available.

We processed the SAR data with the PS-module in SARscape
5.5 (SARMAP, 2014), the software is designed to estimate dis-
placements characterized by a linear trend Def(t) = v · t. This
assumption can have a negative impact on the deformation es-
timates of all phenomena characterized by non-linear deform-
ation behavior, where the assumption is not valid. The PSI
products based on the linear assumption typically lack PSs in all
areas where the deformation shows significantly non-linear mo-
tion, because there is a misfit between the linear model and the
observed (non-linear) deformation (Crosetto et al., 2015, 2016).

The result from the PS-analysis is an estimated 3d coordin-
ate for each PS-point along with a time series Def(t) that de-
picts the line-of-sight (LOS) movement of this point towards
the satellite. While the 3d accuracy of the coordinate is usu-
ally in the order of meters, the deformation time series for
X-band SAR can be in the mm/year scale, provided that the
above-mentioned deformation model represents the underlying
displacement processes (Gernhardt et al., 2015; Quin and Lor-
eaux, 2013).

We observe this lack of PS-points on the railway station with a
(temporal model) coherence, value > 0.6 (Figure 10). This is
consistent with findings by Gernhardt (2011) (p. 150ff) who es-
timates a seasonal component of those parts with an amplitude
> 10mm, using a non-linear deformation model. Since we are
not interested in the actual movement, but in the correlated be-
havior of PS-points on the building, we include points down
to the low coherence threshold of 0.4 to receive points on the
highly non-linear moving parts of the building. These results
have to be interpreted very carefully since the estimated linear
trends in Figure 10 do not represent the actual underlying de-
formation processes and have to be considered as a processing
artifact, due to the linear model.

For the second building, we do not observe those strong an-
nual oscillations. The underlying deformation model is suffi-
cient and a temporal model coherence threshold of 0.6 leads to

a dense distribution of PS-points on all parts the building (Fig-
ure 2 & 3).
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Figure 1. Temporal and spatial baselines, relative to the master
image from 23rd January 2012. The 89 images were acquired

between 22nd July 2010 and 26th July 2013, with a repeat
interval of 11 days.

Platform TerraSAR-X
Wavelength 31mm (9.6 GHz, X-Band)
Acquisition Mode HS, Spot 042, VV, R
Central Point N52◦ 31’30.5” E13◦ 22’

3.9”
Orbit Direction Descending
Resolution: Ra × Az 0.6 m × 1.1 m
Number of Images 89
Time interval 22.07.2010 - 26.07.2013
Repeat Time 11 Days
PS-Algorithm L3 SARscape 5.5
Date of Master 23.01.2012
Processing Coherence 0.3

Table 1. SAR Data acquisition and processing parameters.

Figure 2. The Reichstag in SLC Image with PS-points (right).
The SAR-typical imaging geometry: layover, foreshortening and
shadowing lead to a highly distorted image of building. During

the PS-processing, the actual spatial distribution for all
PS-points is estimated.

2.3 Segmented Mesh

A building’s physical extension can be modeled as a polyhedral
object. Polygon meshes are widely used in computer graphics
to describe such objects. Meshes generally consist of vertices
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Figure 3. Top: PS-points with color coded coherence from side
and top view. Bottom: Textured mesh of the same building (side

and top view). Note that the PS-point density on the facades,
towards the line-of-sight is is very dense. Also the steel

structures on the roof lead to a high point density, with a high
coherence value.

and faces. Vertices are defined by points in 3d space. Faces are
described by at least 3 combined vertices. Additional more per-
face and/or per-vertex attributes, like material, color, or texture,
can be defined. For geospatial data, meshes have several applic-
ations, e.g., a lean representation of densely textured city mod-
els or the appearance of buildings in LOD1-LOD4 and build-
ing information models (BIM). In BIM those 3D geometries
represent the physical and functional characteristics of a facil-
ity. Depending on the use case of the BIM, parts like walls,
beams, pipes, segments, windows, etc. are modeled. This adds
a second layer to the before unstructured mesh: semantic. Such
a structured segmented mesh represents individual parts of a
building. A model of this kind can be used to monitor a struc-
ture over its lifespan, by assigning measurements to parts and
analyses of their interactions. Nowadays the existence of such
”as build” BIM data is still rare but in the near future BIM-based
design, construction and maintenance will be the standard for
complex projects (Isikdag, 2015).

Since we could not get a hold on a ”as build” model we used
a freely available high detailed model of the Reichstag by
AleXBY (2015) and segmented it into substructures, in a best
effort manner, as shown in Figure 4. For the Berlin Central
Station we used an unstructured mesh from Arndt (2021) and
manually created a segmented building model for our analysis.
The segmentation is based on visible major structural elements
like bridge piers, expansion joints, steel girders, and floors. In
Figure 9 each segment is shown in a different color.

It is known that both buildings do not suffer from linear de-
formation process, hence we assume that any observed motion
is due to thermal expansion. In the following process, we treat
these segments as individual parts of the building. Each part
is subject to thermal expansion and contraction processes with
an annual period. The assumption is that PS-points on those
structures show a highly correlated deformation history and can
therefore be clustered into groups, which can be assigned to the
individual parts. The result of this assignment directly depends
on the quality of the segmentation. If the manually constrained
segments do not represent the actual structure or are too coarse,
the correspondence is estimated falsely.

Figure 4. Manualy segmented mesh of the Berlin Reichstag -
each color indicates an individual segment

2.4 PS- Point clustering

We treat the deformation history Def(t) of each PS-point as a
point in a 89-dimensional space, with a dimension for each ac-
quisition date. Each point dn ∈ RM is defined by the M = 89
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measurements:

dn =
[
dn1 dn2 . . . dnM−1 dnM

]
. (1)

The assumption is that points that lay on a rigid structure show
similar deformation behavior and therefore form clusters in de-
formation space. Clustering directly in this high-dimensional
space goes along with the various curse of dimensionality prob-
lems (Allaoui et al., 2020).

Instead, we use a non-linear dimension reduction method with
a hybrid distance metric followed by a clustering process to
extract such clusters from the PS-point cloud, as proposed by
Schneider and Soergel (2021b). That means, we embed the
points dn ∈ RM into a low dimensional space d′n ∈ R2 while
preserving local neighborhoods, using UMAP (McInnes et al.,
2018). The distance D of two points is defined by a combina-
tion of the Pearson correlation DC and the Euclidean distance
DE as described by Schneider and Soergel (2021a):

D =
√
D2

C +D2
E . (2)

After a noise floor estimation by analyzing the Core Distance
Graph (Ankerst et al., 1999), DBSCAN (Ester et al., 1996)
is used to extract clusters. The embedding with the extracted
clusters is shown in Figure 6.

Each of the clusters represents a group of PS-points that move
in a correlated way and are not too far apart on the building. For
each of the clusters, the centroid can be analyzed. If treated as
a time series one can derive the mean deformation history for
each cluster. In Figure 7 the centroids for the extracted clusters
from Reichstag are shown.

2.5 Cluster to Segment Assignment

Our cluster to segment assignment workflow aims to treat the
task as a one (cluster) to many (segments) assignment problem.
The goal is to assign each of the J segments to one of the I
clusters. That means that one cluster can be assigned to multiple
parts of a building.

To find the optimal assignment, we use a variant of the Hun-
garian algorithm (Kuhn, 1955). Generally spoken, this al-
gorithm finds the optimal one-to-one assignment for a given
bipartite graph, that is described by a qualification matrix Q.

For the qualification matrix Q, we use ”1-the normalized vertex
neighbor count“ 1− ||C|| for each segment. For each vertex in
the mesh, we count the class (cluster) appearance in the k = 10
closest PS-points. For each segment, this count is normalized
by the total count.

To achieve a one-to-many assignment, we concatenate the qual-
ification matrix Q several times.

A short example for I = 3 clusters and J = 5 segment is given
in the following:

The vertices in Segment1 have 50 k-closest neighbors to
Cluster1, 20 k-closest neighbors to Cluster2 and no neigh-
boring PS-points to Cluster3 etc. this leads to the connection

Matrix C:

C =


Seg1 Seg2 Seg3 Seg4 Seg5

Cl1 50 0 30 60 0
Cl2 20 20 10 30 0
Cl3 0 10 10 40 60

 (3)

By normalizing the columns ofC, by dividing them through the
sum, we can compensate for parts with higher vertex counts in
the normalized cost matrix connection matrix ||C||:

||C|| =


Seg1 Seg2 Seg3 Seg4 Seg5

Cl1 0.71 0.0 0.60 0.46 0.00
Cl2 0.29 0.67 0.20 0.23 0.00
Cl3 0.0 0.33 0.20 0.31 1.00


(4)

If we would use 1−||C|| as the qualification matrix in the Hun-
garian algorithm, we would not be able to assign one cluster to
multiple segments. We overcome this limitation by concaten-
ating the ||C|| vertically for multiple times (two times in this
example):

Q = 1−
[
||C||
||C||

]
(5)

= 1−



Seg1 Seg2 Seg3 Seg4 Seg5
Cl1 0.71 0.0 0.60 0.46 0.00
Cl2 0.29 0.67 0.20 0.23 0.00
Cl3 0.0 0.33 0.20 0.31 1.00
Cl′1 0.71 0.0 0.60 0.46 0.00
Cl′2 0.29 0.67 0.20 0.23 0.00
Cl′3 0.0 0.33 0.20 0.31 1.00


(6)

The optimal assignment for this example would be:

Seg1 Seg2 Seg3 Seg4 Seg5
Cl1 1 0 1 0 0
Cl2 0 1 0 0 0
Cl3 0 0 0 1 1

(7)

Note how the number of concatenations allows multiple assign-
ments of each cluster to different segments. In our experiments,
we set this to 10.

2.6 Quality Metric

The quality of the assignment mainly depends on how well the
mesh segments represent the borders of the clusters. If mul-
tiple clusters fall on one segment, the corresponding column in
||C|| (4) would have a wide distribution. Such a histogram of
class affiliation can be described by entropy. We calculate a per
segment-entropy from ||C|| as follows:

H(Segj) =

I∑
i=1

||Ci,j || · log2(||Ci,j ||) (8)

high entropy values indicate poor cluster-segment allocation,
whereby low values indicate a good match.
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3. RESULTS

We find sufficient PS-point for the Reichstag building (Figure
2). The embedding in the 2d dimensional space, followed by the
cluster extraction shows plausible groups of PS-points (Figure
6 a)). The time series for most clusters can be interpreted as
small annual temperature-induced seasonal oscillations with an
amplitude< 5mm in the line-of-sight direction (Figure 7). The
matching of these extracted clusters to segments of the mesh
works especially well for the four turrets and the upper part of
the cupola. The per-segment entropy in Figure 6 b) suggests
that the manually divided mesh is not definite for some parts.
This is coherent with a visual inspection of the parts and the
clusters.

We also present the results for the second test site Berlin Cent-
ral Station in the Appendix. Figure 8 shows the PS-points in
the SLC scene, next to an orthophoto. As mentioned in 2.2, the
PSI software we use is not capable of reliably extracting PS-
points that underlay a highly non-linear deformation process.
Figure 10 shows that in areas of low temporal model coher-
ence, the estimated linear velocity is high. Nevertheless, our
approach also works with falsely estimated time series. We can
successfully extract plausible clusters from the PS-points and
link them to the manually segmented mesh (Figure 11). Note-
worthy, the clusters coincide with the bridge piers and expan-
sion joints presented by Gernhardt et al. (2010b), which affects
the per-segment entropy in those areas to be good.

For the better interpretation, we also provide a website with a
3d visualization of these results. The three-dimensional nature
of these data makes it much easier to understand, if viewed from
different perspectives (Figure 5).

https://ifpwww.ifp.uni-stuttgart.de/philipp/

ISPRS2022/rst/

Figure 5. A web portal with the presented results. Left: Mesh
superimposed with the PS-points. The clusters are color coded
and correspond with the extracted time series on the right hand

side. The user can move the mouse over a time series to
highlight it in the 3d view, freely rotate and zoom and show/hide

the mesh and the points.

4. CONCLUSION AND OUTLOOK

We presented an approach to link PSInSAR data with mesh rep-
resentations of a building. While the extraction of Persistent
Scatterer (PS) points has its own challenges, especially with
non-linear deformations, the interpretation and presentation of
a huge number of PS-points have been investigated here. The

overall goal of this work is the integration of continuous, city-
wide InSAR measurements into a single building monitoring.
This would highly profit from the availability of building in-
formation modeling (BIM) data, where each structural element
is represented by an individual instance. The lack of suitable as-
built BIM models led us to generate our own segmented meshes
from freely available city models. The experiments on the two
test sites showed that the extracted PS-clusters can automatic-
ally and plausible be combined with the segmented mesh, using
an optimal assignment algorithm.

For the future and current work, we are trying to get our hands
on actual as-built models in areas where high-resolution SAR
data is available. We are optimistic that both are broadly avail-
able in the future.

Since we could not satisfactorily extract PS-points on the build-
ing parts that undergo a periodical movement, a non-linear Per-
sistent Scatterer Interferometry approach is very important for
building monitoring. Interesting work is carried out by Ogushi
et al. (2019, 2021) and we hope that this will lead to wider avail-
ability of this powerful remote-sensing technique in the future.
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a)

b)

Figure 6. a) Embedding of the PS-points in 2d deformations
space. The extracted clusters are shown in different colors. b)
Top: PS-point on Reichstag all the colors correspond to a) and
Figure 7. Middle: Mesh colored with the assigned PS-cluster.

Bottom: Entropy for each mesh segment. A lower entropy
indicates a good match between the cluster and the segment.

Figure 7. Time series for the extracted PS-clusters. The colored
line indicates the mean deformation for the cluster. The colors

correspond to Figure 6.
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APPENDIX

Figure 8. Top/Middle: SLC Image with and without PS-points
on Berlin Central Station. Bottom: Orthophoto of the same

scene.

Figure 9. Manually segmented mesh of the Berlin Central
Station - each color indicates an individual segment
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