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ABSTRACT:

Graph-based deep learning has been proved a promising approach that has an apparent superiority for learning graph data and
modeling spatial topological relations between features. In particular, graph attention networks (GATs) are good at efficiently
processing the graph-structured hyperspectral data by leveraging masked self-attention layers to address the known shortcomings of
previous frameworks based on graph convolutions or their approximations. In this study, we proposed a novel approach that
combines localized spectral filtering and GAT for the hyperspectral image classification task. First, we conducted unsupervised ¢-
SNE (z-distributed stochastic neighbor embedding) manifold learning-based feature dimensionality reduction to create localized
hyperspectral data cubes. Then, these feature cubes combined with localized adjacent matrices were fed into a shallow graph
attention network in a supervised learning manner. Finally, we obtained credible classification results and promising classification
performance in distinguishing diversified land covers through reducing the possible redundancy of spectral information and
enhancing the expression of local spatial-spectral information. Experiments on two real hyperspectral data sets (that is, Indian Pines-
A (TIA) and Huanghekou (HH) data sets) demonstrated that the presented approach offers promising classification performance, that is,
the GAT using #-SNE acquires superior performance than that of using PCA (principal component analysis), and also proves the great
importance of combining spatial- and spectral information for hyperspectral image classification.
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1. INTRODUCTION

Hyperspectral imaging is particularly useful for per-pixel
thematic classification by mining unique spectral signatures of
land surface materials to obtain attribute map regarding diverse
land covers. Hyperspectral image (HSI) classification
categorizes each three-dimensional (3-D) pixel cube into a set
of groundtruth classes, which has been a very active research
area in recent years (Deng et al., 2018; Pu et al.,, 2021a).
Recently, the graph-based deep learning represented by GCNs
has received more and more attention in describing class
boundaries and modeling topological relations among samples
in the irregular graph domains converted from hyperspectral
data (Pu et al., 2021b).

Graphs are a kind of universal representation of non-Euclidean
structured data, which could encode complex geometric
structures  (Chung and Graham, 1997). Graph-based
representations can be used to model a variety of problems and
domains (Avelar et al., 2020). In this context, the recent
novelties regarding graph-based deep learning have attracted
growing attention from the scientific community. The graph-
based deep learning methods as a kind of deep learning
technique have undoubtedly brought enormous prosperity in
hyperspectral remote sensing intelligent information extraction
(Yang et al., 2018; Pu et al., 2021b). In particular, HSIs from
regular grids (or call image domains) into irregular graph
domains could adapt to the superiority of graph-based deep
learning for preferably illustrating class boundaries and
modeling feature relationships (Pu et al., 2021b).
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Figure 1. Message passing in a typical GCN.

Graph Neural Networks (GNNs) are a class of graph-based deep
learning methods designed to perform inference on data
described by graphs (Wu et al.,, 2019). Graph convolution
networks (GCNs) have received more and more attention in
quantifying nonlinear or topological features in irregular graphs
converted from hyperspectral data (Pu et al., 2021b). Typically,
a simple GCN plays the functional roles depending on the
message-passing, pooling, and fully-connected layers. The
crucial role is the message-passing layer, which is to compute
and update a representation of each node in the graph while
leveraging local information from its neighbours (referring to
Figure 1).

The graph-based convolutional neural networks (that is, a kind
of GCNs) showcase distinctive characteristics (Wan et al., 2020),
that is, competently process the irregular regions in the non-
Euclidean (or non-grid) graph data structure, and even
incorporate multiple graph inputs which can be dynamically
updated and refined with the multi-scale neighborhood.
However, the GCN-based methods might be difficult to
aggregate the newly joined nodes, and then these methods might
fail to understand the global and contextual information of the
graph scenario (Ding et al.,, 2021). In this regard, attention
mechanisms focus on the most relevant parts of the graph-based
input to make effective decisions allowing for handling

variable-sized inputs.

Graph attention networks (GATs) are a kind of graph-based
neural network architectures that operate on graph-structured
data, leveraging masked self-attention layers to address the
known shortcomings of prior methods based on graph
convolutions or their approximations (Velikovi et al., 2017).
Different from many related works paid attention to the graph-
based semi-supervised learning methods for HSI classification,
which make the graph input built on the full graph (that is, one
image corresponding to a full graph), which combines the
labeled and unlabeled nodes by employing a graph Laplacian
regularizer (Pu et al,, 2021b). The unlabeled nodes are
completely observed during training or test a deep learning
model, whereas the standard formulation of semi-supervised
learning paradigm requires the independent and identically
distributed (i.i.d) assumption between the labeled and unlabeled
nodes (Hamilton et al., 2020).

In this study, we also follow the abovementioned supervised
setting to train a GAT. Continuing the previous works on
spectral graph-based convolutional neural networks (CNNs) for
HSI classification (Defferrard et al., 2016; Pu et al., 2021b; Pu
et al., 2022), the main contributions of the presented study are
summarized below.

a.  We introduced a graph attention-based deep learning
architecture to perform node classification of the graph-
structured hyperspectral data.

b.  We employed unsupervised #-SNE (z-distributed stochastic
neighbor embedding) manifold learning-based feature
dimensionality reduction to collect the patch-based feature
cubes and to create localized graph adjacent matrices,
subsequently used the usual supervised setting to fit the
presented graph-based deep learning model.

C.  We used two graph attention layers to learn the spatially
local graph representation and to represent the localized
topological patterns of the graph node and its neighboring
nodes.

The rest of this paper is organized as follows. The technical
details of the proposed approach are presented in Section 2.
Next, we analyze the experimental results and discuss the
derived findings in Section 3. Finally, some concluding remarks
are given in Section 4.

2. PROPOSED APPROACH
2.1 SNE

High-dimensional data such as HSIs might not always have
good separability. Since feature dimensionality reduction
methods based on #-SNE (#-distributed stochastic neighbor
embedding) manifold learning have been known to have
excellent properties than those based on principal component
analysis (PCA), hence we tried -SNE for reducing dimensions
of hyperspectral data in this study (see Figure 2). In this regard,
t-SNE can be regarded as one of the effective dimensionality
reduction and visualization methods for high-dimensional data
preprocessing in the scientific community. Besides, -SNE is an
embedded model in essence, which can transfer data from high-
dimensional space to low dimensional-space, while retaining
local characteristics of data (Van der Maaten and Hinton, 2008).
matrix

Given a high-dimensional HSI

CxN .
X=[X1,X2,...,XN]ER “* with N spectral vectors of
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size C (that is, the columns of X , and N = A X W), herein

h s the height and W means the width. Considering -SNE
transforms the affinities between data points into conditional
probabilities, and the similarity of data points in the original
space is represented by Gaussian joint distribution.
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(b) -SNE visualization

(a) PCA visualization

Figure 2. Comparison of PCA and ¢-SNE for feature
dimensionality reduction of the Indian Pines-A (IA) data set.

Therefore, the #-SNE algorithm converts X into a low-

dimensional matrix Y:[yl,yz,...,yN]ERDXN . C

represents the number of bands, and /) denotes the number of

components, both subject to D<<C' . The 1-SNE algorithm can
obtain the optimal dimensionality reduction result by
calculating the minimum value of Kullback-Leibler (KL)
divergence between the joint conditional probability of the
original space and the embedded space. --SNE focuses on local
data structure by identifying the patterns based on the similarity
of data points with multiple features. Intuitively, after --SNE
transformation, the obtained data components will become
separable in the low-dimensional space. In the meantime, the
KL divergence function can be regarded as a loss function
minimized by the stochastic gradient descent (SGD) algorithm.

2.2 Localized spectral filtering

The formulation of CNNs in the context of spectral graph theory
provides the necessary mathematical background and efficient
numerical schemes to design fast localized spectral filters on
graphs (Pu et al., 2021b). Importantly, such a technique offers
the same linear computational complexity and constant learning
complexity as classical CNNs, while being universal to any

graph structure (Defferrard et al., 2016). Then, we give G by

}NXN

using a binary adjacency matrix AE{O,I , node

features X € RV, and edge features E € RVY . For
each sample, we build a K-nearest neighbor (abbreviated as K-
NN) adjacency matrix with

2
[ -]
il (1)
(o2

X

K-NN __
W, =exp| -

where X;, X j are the 2-D coordinates of pixels 7, ] ,and O,

is the scale parameter defined as the averaged distance X, of

the K nearest neighbors for each node.

(b) Topological graph of a
patch
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(a) Image of an adjacency
matrix

Figure 3. Visualization of localized adjacency matrix (without
adding additional noises) in two different forms.

The algorithm for constructing a localized adjacency matrix
(See Figure 3) could be summarized as follows.

Firstly, given data matrix 3-D X e IR and its label vector
ye R”™ . and assign two parameters: the number of
neighbors K and the length of patch /, subsequently calculate
s =2/ +1 and ready to get the adjacency matrix A for the
K-NN graph;

Secondly, we use the size of each patch S as the size of two

same coordinate vectors S € {0, 1} to construct grid-like

2
sampling coordinate matrices M € R®*? , then return 2D
coordinates for a square grid of equally spaced nodes;

Thirdly, we compute the weighted graph G of K-neighbors
with the number of neighbors K for points in M using the
above Eq. (1) and return the resultant adjacent matrix A ;

Finally, it will be ready for creating HSI cubes, and completes
data preparation for GNNs.

2.3 Graph attention network

As known to us, graph attention networks (GATs) introduce
attention-based deep learning architectures to perform node
classification for graph-structured data (Velickovi¢ et al., 2017).
By learning the importance weight of each node to the classified
node, the graph attention mechanism makes the important nodes
have greater weight, and hence global and contextual
information can be learned from the graph via attention
mechanism (Ding et al., 2021). The graph convolution output

h l.l of each node can be expressed as follows:

I _ Ty l-1
hj=c| > a,-Wh"|. (&)

JeN;

where O denotes the activation function, /V, ; is the size of the
neighboring set of node i, and ¢; is the learned attention

weight. The attention coefficient 0547 is generated dynamically
just depending on the local neighborhood and rearranges the
neighbors by their importance, which makes the model more

flexible to the specific input sample. W is a filtering matrix
for dimensionality reduction and feature extraction of HSI data.
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Consequently, some important neighbors could be emphasized
in the summation (Sha et al., 2020).

e\ <A
N\ avs)
e J— >
o /7' \ NI \
Input avs) ELU " \\/i\/‘
Graph Graph
Attention Attention

Figure 4. Flowchart of the designed graph attention network.

The proposed HSI classification model based on GAT is
schematically shown in Figure 4. The main idea for graph
attention-based HSI classification is to refine the graph signal
on the spatial-spectral domain via a localized spectral filter,
implemented by a GAT composed of two graph attention layers
and two fully-connected (FC?) layers. After the multilayer

perceptron, the output Z € R™M for the whole graph was
obtained, and only the labeled nodes were used as supervised
regression in the cross-entropy loss:

L=— Y iym InZ, 3

S€Ylapeled M=1

where Yy~ is the true label of training data and M is the

number of object classes. There is a particularity in the graph-
based learning methods that the eventual predictions for labeled
and unlabeled samples are iterated simultaneously until a stable
status is reached, and therefore, no extra test process is required.
Note that, “ELU” rather than “ReLU” is used for GNN; the 1%
FC layer is with nb_classes*10 (that is, 10 times the number of
classes) units, while the 2" FC layer with nb_classes (that is,
the number of classes) units in this study.

3. EXPERIMENTS
3.1 Environmental setting and data sets

The cloud-based experimental platform used in this study is the
“Planetary Computer” platform built on Microsoft Azure cloud,
which is a development environment that provides access to its
data resources and application programming interfaces (APIs)
through open-source tools and allows users to easily extend the
experimental analysis process using the power of Azure
computing. For an independent virtual machine with a 4-core
CPU, 28 GB of RAM, and a T4 GPU (graphics processing unit)
(NVIDIA Tesla T4 GPUs, 16 GB of graphic memory). These
virtual machines are ideal for deploying artificial intelligence
(AI) services, responding to user-generated requests in real-time,
or using NVIDIA’s grid driver and virtual GPU technology for
interactive graphics and visualization workloads.

Indian Pines (IP) scene was gathered by the 224-band AVIRIS
(airborne visible/infrared imaging spectrometer) sensor in the
wavelength range 400 to 2500 nm at a 20 m spatial resolution
(that is, 20 meters/pixel, or abbreviated as 20 m/p), in north-
western Indiana. Indian Pines-A (IA) data set (see Figure 5 was
a subset of the IP dataset, which consisted of 86 x 69 pixels and
contained 200 spectral reflectance bands by removing bands

covering the region of water absorption.
[ .
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Figure 5. Indian Pines-A (IA) and Huanghekou (HH) data sets.

Huanghekou (HH) data set is released by Jiao et al. (2019),
which includes 21 classes, and its material types of
overwhelming landscapes incorporate water bodies, grassland,
forest land, buildings, bare land, etc., which are different from
the traditional land cover types. Specifically, a GF-5 AHSI
(advanced hyperspectral imager) sensor was adopted with a
spatial resolution of 30 m and a spectral range covering VNIR
(visible and near-infrared: 390-1029 nm) and SWIR (short-
wave infrared: 1005-2513 nm). There are 150 bands in the
VNIR spectral range (visible and near-infrared, without
excluding band 1) and 180 bands in the SWIR spectral range
(short-wave infrared, without excluding bands 42-53, 96-115,
119-121, 172-173, 175-180, etc.), so there are 285 bands left
after removing a number of bad bands from a total of 330 bands.
The spatial size of the HH data set was 1185 rows and 1342
columns, and its capturing time was November 1%, 2018. Note
that, the spectral resolution is 5 nm of VNIR (visible and near-
infrared) and 10 nm of SWIR (short-wave infrared). Note that,
the spatial distribution of groundtruth samples of HH appears
very sparse than that of the IA data set. That's why there's a lot
of white space in the scene.
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3.2 Parameters and training

In order to facilitate parameter analysis of the experiments, all
parameters have been divided into three groups (see Table 1).
The first group contains parameters for training a network, the
second group relates to sampling a data set and preparing data
for training, the third one involves extra control parameters for
each instance of the experiments. For the -classification
experiments, the size of the training sample set of different
hyperspectral data sets was set to 35 samples for each category,
and there are 5 independent random runs were performed in
total. The training procedure continues 200 epochs. Note that,
the values listed are finally determined, which are not

necessarily the optimal value for acquiring the best
classification performance.
Groups Parameters Values
Number of graph attention layers 2
Number of neighbors 8
Number of attention heads 4
#1 Regularization rate for 12 Se-4
Training Learning rate for stochastic le-3
(network) gradient descent (SGD)
Number of training epochs 200
Patience for early stopping 100
Batch size 32
Number of training samples 35
2#
Sampling Patch ler_lgth 3
(data set) . Patch size . 7
Noise level (affinity matrix) 0.0
3 Number of components 3
. Random noise (note that adding
Controlling . 0%
(instance) before featufe. redu.ctlon).
Number of repetitions (iterations) 5

Table 1. Parameters and setting.
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Figure 6. Accuracy and loss curves of fitting and validating the
designed GAT model using the HH data set.

In this study, a fixed number of samples were used for each
category (that is, each category has an equal number of training
samples). Then, the validation set was designed in the same way
to make it the same size as the training set. Finally, the training
set and validation set were removed from all samples, and the

remaining samples were treated as the test set. If the
aforementioned condition is not met, the existing samples in
hand will be simply reproduced by creating multiple copies to
meet the requirements of the due amount of samples. In the
following, the robustness of graph-based deep learning models
mainly depends on fine-tuning hyperparameters in an iterative
optimization.

The most representative method is to draw the accuracy and loss
curves when training and validating in the designed graph-based
deep learning models. It can reflect several aspects of the
model’s robustness, that is, whether a final convergence,
whether a smooth convergence, and a general number of epochs
required for convergence, etc. Therefore, the accuracy and loss
curves of fitting and validating the designed GAT model with
200 epochs using HH data set were illustrated in this study. It
can be seen from Figure 6 that the GAT model with different
feature dimensionality reduction algorithms (that is, PCA and ¢-
SNE) have relatively good characteristics of convergence. Note
that, for the HH data set, the 2™ run using PCA dimensionality
reduction and the 1% run using -SNE dimensionality reduction
indicate the best classification results in the total 5 random runs.
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3.3 Classification results
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Figure 7. Classification maps of the presented experiments
using the IA and HH data sets.
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Experiments using two real hyperspectral data sets (note that,
the first one IA is a small data set, and the latter one HH is a
large data set) show that the proposed approach has promising
classification performance using three classification accuracy
metrics of overall accuracy (OA), average accuracy (AA), and
Kappa (K), indicating that the combination of ~-SNE and local
spectral graph convolution filtering can indeed improve the
discriminant ability of the graph-based deep learning model for
identifying every pixel’ category, and also prove the importance
of combining spatial- and spectral information for hyperspectral
remote sensing image classification. Particularly, probability
maps are essentially a kind of heat map with scale normalization.
It can be seen from the probability maps that the graph-based
deep learning models also have weak prediction phenomena for
the pixels residing on the boundary between categories.

10

0 -~y 10 [ == = g
" el ' _ ] |
10 -_;_'P‘“ " 10 je s ]
5 & 5 08 ” - 1;?- 08
F-‘.""-K;\_, ar- >\
30 ,1“ - 30 '. ‘: b
¢ 06 3 e - 0.6
40 i - \ 40 v -‘, ] AJ
< . - —3 —_—
50 T-..i__.f - :Ai 0.4 50 'V _,.l o 0.4
60 _’_ ¥ sl ke i
. _— r
70 LS g— 0.2 55 - ‘.—-'"_'; 02
o & ot
80 801 |
!k , 00 0.0

(a) IA with PCA (the 5" run)  (b) IA with ~~-SNE (the 1*' run)
Figure 8. Predictive maximum probability maps of the

presented experiments using the A data set.

By observing classification maps in Figure 7 (a)-(c), probability
maps in Figure 8, and confusion matrices in Figure 9, for
experiments using IA data set, most misclassifications occur
between class 1 (corn-notill) and class 3 (soybean-notill), class
1 (corn-notill) and class 4 (soybean-mintill), and between class
3 (soybean-notill) and class 4 (soybean-mintill). At the same
time, class 2 (grass-trees) maintains good separability from
other categories, which means small intra-class differences.
Note that, as confusion matrices have been disclosed here,
therefore the per-class accuracies will not be included in the
statistics of classification accuracies. In a sense, the effect of
both is equivalent. Note that, see Figure 9, the names of every
class are as follows, class 1 (corn-notill) class 2 (grass-trees),
class 3 (soybean-notill), and class 4 (soybean-mintill).

1

Predicted

(b) IA with £-SNE (the 1% run)

2 3
Predicted

(a) IA with PCA (the 5" run)

Figure 9. Confusion matrices of the presented experiments
using the IA data set.

Also, by observing classification maps in Figure 7 (d)-(f), for
the presented experiments using the HH data set, some
categories like, classes 2-4 (deep sea, locust, and rice), class 6
(broomcorn), classes 8-9 (soybean and spartina), class 12 (river),
classes 15-17 (salt marshes, intertidal saltwater marshes, and

Tamarix Chinensis), classes 20-21 (freshwater herbaceous
marshes and emergent vegetation) maintain good separability
from other categories.

Due to the non-strict production of data sets in many cases, that
would make the labeled samples much smaller in size or
sparsely distributed in the geospatial distribution, or even the
labeled area of groundtruth samples has certain generalization
processing. That is, there might be mislabeling issues at the
boundary of or inside a certain category. Therefore, the
reliability of the graph-based deep learning model will
inevitably be adversely affected. In other words, the difference
or variance within an individual class might be relatively small.
The reason is that, on the one hand, there might be some dirty
(or wrong) labels in the labeling procedure; on the other hand,
the definition of categories might not consider the difference of
materials, or the boundary between categories might go through
generalized processing. The aforementioned two reasons may
lead to the decrease of inter-class separability. In addition to the
above reasons, strictly speaking, there might be mixed
categories in the definition of some categories, or the intra-class
differences might be over influential leading to misclassification
to some extent.

Experi Training Test
ments K 0A AA time (s) | time (s)
. 0.7242 | 0.8102 | 0.7951
I?g:h + : + 412 0.9
0.0137 | 0.0081 | 0.0253
. 0.7346 | 0.8171 | 0.8073
I?S\E]tgh + + + 40.7 0.9
) 0.0241 | 0.0165 | 0.0148
. 0.8781 | 0.8875 | 0.8241
HI;CVXth + : + 129.7 1.1
0.0140 | 0.0130 | 0.0261
HH with 0.9287 | 0.9343 | 0.8751
+-SNE + + + 130.9 1.1
) 0.0074 | 0.0068 | 0.0156

Table 2. Classification accuracies and running time statistics.

It also can be seen from Table 2 that, introducing #-SNE
dimensionality reduction has brought up a better performance in
feature learning and predicting labels of GNNs. The reason is
that ~-SNE can effectively improve the separability among
classes in the feature space. Such excellent performance is not
invariable in deep learning but is possibly affected by parameter
settings and changes in the network structure. At the same time,
the different number of categories, class separability, and scene
complexity, all would lead to possible uncertainty when
measuring the final classification performance. In terms of
running time, since having the same number of components
after the feature dimensionality reduction of raw HSI data,
therefore their computational costs are fairly approximate for
the same data set. Note that, the derived evaluation metrics (that
is, OA, AA, K) are based on test samples rather than the whole
image. At the same time, the records of training and test times
don’t include the processing times of #SNE or PCA
transformation. Therefore, it is the reason why fitting a GAT
using #-SNE could be faster than that of using PCA.
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4. CONCLUSIONS

Graph-based deep learning model has been widely used in HSI
classification, and has attracted more and more attention due to
its strong expression ability. In particular, the emerging graph
representation learning and graph neural networks show good
characteristics in processing and analyzing graph-structured
data. In this study, we proposed a novel approach that combines
localized spectral filtering and ~SNE manifold learning based
on graph attention mechanism. Newly HH data set has poor
separability between categories, yet better classification
performance could be obtained. It indicates that class
separability might not be a critical issue, and the spatial texture
or contextual information might somehow reduce the sensitivity

of spectral differences to the properties of land surface materials.

For #-SNE based feature learning that contains a large number
of iterative calculations would lead to huge computational cost,
so we have to adopt GPU acceleration to derive feature data and
saves them to the storage medium, then loads and resamples
them again, further to effectively avoid huge memory
consumption. In conclusion, with the emergence of more and
more intelligent algorithms for HSI information extraction,
graph-based deep learning models such as GATs would drive
the advanced development of future HSI classification research.
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