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ABSTRACT:

Neural architecture search (NAS) is a subset of automated machine learning that tries to find the best neural network to perform
a given task. In this article, a network search space is defined and applied to perform the semantic segmentation of satellite
imagery. Due to the spatial nature of the data, the search space uses cells that group parallel operations with kernels of different
sizes, providing options to accommodate the neighborhood information required to perform a better classification. The architecture
search space follows a UNet-like network. The proposed approach uses scaled sigmoid gates, a strategy for network pruning
that was adapted to search for the best operations on the cell search space. The architecture achieved by the proposed approach
uses wider kernels on lower resolution feature maps, which leads to the interpretation that some pixels required information from
pixels farther away than expected. The resulting network was compared to a very similar UNet-like network that only used 3x3

convolutions. The resulting network shows slightly better results on the test set.

1. INTRODUCTION

Satellite imagery is used in many research fields to describe
and understand the spatial and temporal evolution of the Earth’s
surface. Cartography has a particular interest in these images
because of the growing availability of satellite imagery that can
be used to update databases and maps. These high-resolution
images provide worldwide coverage periodically.

Machine learning can be used to extract information from satel-
lite imagery. For example, semantic image segmentation con-
cepts can be used with deep neural network (DNN) methods to
apply labels of land cover to every pixel in a satellite image.

Neural networks require a large number of training samples,
thus benchmark datasets such as Semcity Toulouse (Roscher
et al., 2020) are of great value. The growing availability of
labeled datasets and the improvements in graphic processing
units (GPU) are enabling further research.

A Convolutional Neural Network (CNN) uses convolution lay-
ers instead of dense layers, such as the multilayer perceptrons
used on earlier neural network research. The research on CNN
reached much better accuracy in semantic segmentation than
previous machine learning approaches so far. One of the main
difficulties in improving the results of a CNN is finding which
architecture suits a given task. For example, the number of
layers, the type of transformation applied on each layer, how
they are connected and the number of convolution filters are all
designed by the researcher. A few popular architectures have
been employed for specific tasks, while creating new, faster,
and more accurate architectures is also a research topic.
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Neural Architecture Search (NAS) is a subset of Automated
Machine Learning that tries to automate some of the decision-
making processes on finding the best architecture to solve a
problem. (He et al., 2021). A brute force comparison of many
network configurations could find the best architecture given
a few options, but training semantic segmentation networks is
computationally intensive and there are countless possibilities.
Thus, specific algorithms for NAS have been investigated (Liu
et al., 2019b; Liang et al., 2019). Neural architecture learning
(NAL) has a similar goal, but instead of searching among every
possible network, the algorithms seek to optimize the network
given a set of options designed as the search space (Guo et al.,
2021). Most of the NAS algorithms are trained and tested to
solve computer vision problems (Liu et al., 2019b; Liang et al.,
2019; Peng et al., 2020) and a few have been adapted to address
the semantic segmentation task (Liu et al., 2019a; Peng et al.,
2020).

This paper describes the application of a NAL algorithm for the
task of semantic segmentation of multispectral satellite images.
The proposed approach uses a previously researched scaled sig-
moid layer that can be used to prune a neural network (Guo et
al., 2021). It was originally presented as a tool to prune layer
channels, but we tested it for pruning network paths. The search
algorithm uses the stochastic gradient descent (SGD) to find a
subset of the operations on the cell search space that optim-
izes accuracy. A UNet-like (Ronneberger et al., 2015) network
was defined as the structure for the network search space, with
different convolution kernel sizes as options on the cell search
space. The results comparing the network designed by the al-
gorithm with a regular UNet that uses 3x3 kernels are presented
and discussed. Due to spatial nature of the data, the size of the
convolution filters that remained on the network provide an in-
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tuitive interpretation of how far (in meters) the network has to
look to optimize the classification of a pixel.

2. RELATED WORK
2.1 Deep Learning for image segmentation

There are several works available on the literature that indicate
that the encoder-decoder architecture is a reasonable and flex-
ible option for satellite image semantic segmentation (Neupane
et al., 2021; ?). The UNet is an architecture that inspired many
fully convolutional network (FCN) for semantic segmentation.
The main concept behind the UNet is the use of skip connec-
tions via concatenation from encoder layers to decoder layers
(Ronneberger et al., 2015). This allows reusing features with
different receptive fields and prevents the vanishing gradients
problem. Figure 1 illustrates the general architecture used on
encoder-decoder networks similar to UNet.
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Figure 1. UNet-like general architecture.
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The encoder part of UNet-like networks (layers on the left side
of Figure 1) is used to extract features that describe decreas-
ingly lower levels of details. Each “Max pool” layer creates a
lower resolution version of the data processed through earlier
convolution layers. The right part of the network is the decoder
part. It uses up sampling, thus increasing the level of details
until the original image size is reached. The skip connections
procedure connects the same level layers using a concatenation
operation. This way, the network brings the features extracted
on each level back before the next set of convolutions. In doing
so, some features that were lost on the lower resolutions can be
reintegrated for later use on the classification. (Ronneberger et
al., 2015)

2.2 Differentiable Neural Architecture Search (DNAS)

Automated machine learning (AutoML) is a research field that
focuses on building systems without human intervention (He
et al., 2021). Concerning neural networks, there are many ap-
proaches of how to address the network optimization problem
and each has its own distinct research field. Among the most
popular, there are evolutionary algorithms, grid and random
search, reinforcement learning and gradient descent (He et al.,
2021).

The use of the SGD to learn the architecture of a network is
called Differential Neural Architecture Search, which was first
proposed by (Liu et al., 2019b) with an algorithm named Dif-
ferentiable Architecture Search (DARTS). The main advantage
of this algorithm was the reduced training cost. While previous
approaches required hundreds or thousands of days to reach the
final architecture, DARTS required a few days on CIFAR-10
dataset. On the other hand, DARTS has all the disadvantages of
SGD, such as finding non-optimal solutions depending on the
training data and search space architecture (Liu et al., 2019b).

Figure 2 presents a CNN as an acyclic graph that uses connected
layers, beginning on the input data and ending on the output
data. These layers represent operations on the data received
from the previous layer.
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Figure 2. A general illustration of a CNN represented as an
acyclic graph.

NAS algorithms work on finding a subset of these infinite op-
tions. The literature provides several options for the operations
that can be performed as a layer, so most NAS algorithms re-
duce those options to a finite set that is tested. In DARTS, for
example, the operations chosen were: 3x3 separable convolu-
tions, 5x5 separable convolutions, 3x3 dilated separable convo-
lutions, 5x5 dilated separable convolutions, 3x3 max pooling,
3%3 average pooling, identity and zero (Liu et al., 2019b). The
set of operations may differ depending on the implementation
and this can be a relevant factor in network performance. The
operations chosen by Liu et al. (2019b) were tested for whole
scene image classification.

DARTS uses the concept of cells and nodes, using a search
space similar to NASNet (Liu et al., 2019b). The cells represent
a group of layers and it’s connections. The network is defined
as a sequence of repeated cell (Zoph et al., 2018). All these
cells have the same architecture and share the same weights. In
order to find which operations are present on each cell, DARTS
connects every layer option in parallel. A node is the feature
map representing the sum of these layers. Figure 3 illustrates
DARTS search with 4 nodes (0,1,2,3) and 3 operations (repres-
ented by the colored lines). Every node is connected to every
previous node with each operation. DARTS gives a weight «,
related to the architecture, to each operation and the operations
have weights w. « represents the relative weight of each op-
eration when compared to the other options. The training uses
SGD in two steps: weights (w) and architecture (a)). When
the weights (w) are the trained, the architecture weights («) are
frozen, thus the network is pushed to a better representation of
the samples. During architecture training, « is trained and w
is frozen, changing the influence of each operation as a whole.
In the end, o of the operations that arrive in a given node are
compared using a softmax.
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Figure 3. DARTS search strategy: Begins with every operation,
then excludes the ones with low probability. Source: (Liu et al.,
2019b)
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The search described in Figure 3 is only possible because of the
continuous relaxation of the operations search. In other words,
the choice of which operation to use is binary, but the weighted
sum of the operations results is continuous, thus the gradient
can be used to search for the best option. Other researchers
propose different continuous relaxation strategies (Guo et al.,
2021; Kim et al., 2019) because the softmax strategy requires
building and training a network with every possible operation.
This is a key concept on NAS because the results of the searched
network are affected directly by the chosen operations.

A recently developed strategy uses the scaled sigmoid (SS) lay-
ers (Guo et al., 2021). In this approach, every operation in the
search space is followed by a SS layer. The SS layer is trained
during the architecture training step (similar to a in DARTYS),
while every other layer is trained during weights training (w).
This strategy provides flexibility because the network search
space can be designed to improve specific parts of a given net-
work. In addition, the SS layers are also applied in the channel
wise weights (Guo et al., 2021). This means that the SS layer
can be used to optimize the number of filters in a given convo-
lution layer, improving performance with a smaller network.

2.3 NAS on semantic segmentation

Despite the popularity of NAS research, many important art-
icles such as Liu et al. (2019b), Jin et al. (2019) and Liang et
al. (2019) do not approach the semantic segmentation problem.
Among the articles that target semantic segmentation, Auto-
DeepLab (Liu et al., 2019a) used the architecture search from
DARTS and introduced a cell-based search using cells similar
to DeepLab (Chen et al., 2018).

There is also some work on medical image segmentation (Kim
et al., 2019), where the authors proposed the use of an archi-
tecture search space similar to a UNet. The proposed algorithm
optimized the choices and connections of layers on 3 different
cells (reduction, expansion and normal) on a UNet-like archi-
tecture. Additionally, they used a Gumbel-softmax to perform
continuous relaxation. Regarding NAS for semantic segment-
ation of satellite images, there are few articles in the literature
(Zhang et al., 2020; Peng et al., 2020), that uses sequences of
repeated cells, similar to DARTS (Liang et al., 2019).

3. PROPOSED APPROACH

This article aims to use DNAS algorithms to improve the design
of UNet-like network by replacing some 3x3 convolution lay-
ers with parallel layers of different kernel sizes, then pruning
the network using SS layers. Repeatable cells, that represent a
sub-network, might not be well suited for this purpose, because
it would force the network to use the same layers despite how
many MaxPool layers were applied before it. In this research,
the constraint of a single repeatable cell was lifted, allowing the
cells to be different. Because of that, the memory consumption
of the search was increased, so the architecture search space
was narrowed. Figure 4 illustrates the architecture search space
used in this research. It followed a UNet-like construction, sim-
ilar to Kim et al. (2019), but there are 3 encoder cells (with
white background) that were searched using the SS layers (Guo
etal., 2021).
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Figure 4. Architecture search space in this research.

Each of the “Convolution layers cells” represent a group of lay-
ers. To address the kernel size search that was the main idea
on this research, each cell contained a set of dilated convolution
layers of different kernel sizes. The search algorithm was used
to choose which kernel size would better fit the training data.
Every cell in gray in Figure 4 was not part of the search space,
so these were not changed by the search algorithm.

To perform the search, the SS layers from Guo et al. (2021)
were added to the network after every optional layer. Equation
1 represents how the sigmoid of a given layer is computed. §; is
a growing constant that increases exponentially with each epoch
i. s; represents the weights of the SS layer. In this research, a
single weight was applied to every channel. The result of ap-
plying an SS layer [ to a feature map z is defined as the function
fi(x) in Equation 2.

sigmoid(6;.s;) = 1/(1 + e %) (1)
filx) = x - sigmoid(d;.s;) )

Each SS begins with s; = 0, thus the SS layer multiplies the in-
puts by 0.5. When the architecture training begins, the gradient
pushes s; to optimize the network. Since every layer is frozen,
except the SS layers, only the s; weights are going to be trained
to improve the network classification result. When s; grows,
the SS layer multiplier gets near 1 and when s; lowers, the SS
layer multiplier approaches 0. When every SS layer reaches
0 or 1, the network can be pruned to remove the layers with
sigmoid(d;.s;) = 0.

Figure 5 represents the cell search space. The first convolution
layer (in gray) has a fixed 3x3 kernel. The following layers
represent the operations with different kernel sizes: convolu-
tion 1x1, convolution 3x3, convolution 3x3 with dilation 2 and
convolution 3x3 with dilation 3.
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Figure 5. Cell search space on this research.

The training was performed using the alternated search, with
two steps of weight training followed by one step of architec-
ture training. During the weight training steps, every layer ex-
cept the SS layers were trained. During the architecture train-
ing steps, every layer was frozen and only the SS layers were
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trained. The training ended when the sigmoid values of each
SS layer reached either O or 1, considering a threshold of 0.001.
This state means that the network has reached a binary indic-
ation of which layers should be used. The sigmoid values for
each layer were concatenated in an architecture vector, similar
to DARTS.

Following Guo et al. (2021), a different loss function was used
during the architecture an the weight training. To evaluate the
semantic segmentation problem, the categorical cross-entropy
was used as the base loss function (Lg). Since each SS layer
has a single weight s; for the entire layer, the modified loss was
defined as Equation 3. The factor &; was defined as 2 where i
is the number of epochs, starting on 0. A = 5 - 1075 was used,
following the best result found by Guo et al. (2021).

Toss layers

L=1Lo+ X\ Z stgmoid(d;.s1) 3)
1=0

After the architecture search, the network was rebuilt using the
architecture vector found. The network was trained using the
same training and validation sets from the previous step and
then evaluated on the test images. A similar UNet network,
using only 3x3 convolutions instead of the search cell, was used
as a baseline to evaluate if the network found by the algorithm
is a better option than the classic architecture approach.

Every training step was performed using ADAM optimizer with
a learning rate of 0.001, which is the default on the library used
Abadi et al. (2016). Both the searched network and baseline
network were trained for 100 epochs, with an early stopping
mechanism with patience of 20 epochs, monitoring validation
accuracy improvements of at least 0.1%. Both networks ended
their training before the 100 epochs limit was reached. Tests
were performed on Google Colab Pro cloud platform using, re-
portedly, NVIDIA P100 with 16GB of GPU memory.

4. DATA SET

International Society of Photogrammetry and Remote Sensing
(ISPRS) Working Group II/6 has offered a new benchmark for
semantic image segmentation: Semcity Toulouse (Roscher et
al., 2020). This dataset contains 16 high-resolution images of
spatial resolution of 0.5m, generated from the panchromatic fu-
sion of 3 multispectral bands (Red, Green, Near-infrared). Cur-
rently, out of the 16, 4 images are labeled for semantic segment-
ation. Table 1 contains a list of the classes labeled on the dataset
and the percentage of the total samples each represents.

class % labeled samples
impervious surface | 23%

building 23%

pervious surface 30%

high vegetation 16%

car 2%

water 3%

sport venues 3%

Table 1. Classes available on the Semcity Toulouse dataset

Figure 6 shows, on the left, the high-resolution multispectral

images available on the Toulouse dataset and its respective classes,

on the right. The images represent tiles of the original dataset
(Roscher et al., 2020).

W sport venues

Figure 6. Example tile from the Toulouse dataset: image and
labels.

Out of the 4 images, 3 were used for training (images 3,4 and 7)
and one for testing (image 8). Using a stride of 224 pixels, the
individual images were tiled in patches of 256x256 pixels with
8 channels (spectral bands) each. 675 patches were generated
for training and 225 for testing. From the training area, 540
patches where use for training and 135 for validation.

5. RESULTS AND DISCUSSION

5.1 Architecture performance

The network configuration that represents the result of the ar-
chitecture training with the SS layers will be addressed as NAS
network. Figure 7 shows the accuracy and loss on both train-
ing and validation processes during each epoch of architecture
training. The training ended when the architecture vector only
had 0 and 1 values. The first epochs have worse accuracy, but
architecture training only begins on the third epoch. This way,
the starting point for the architecture training reached around
70% accuracy in the training set, which is better than the first
epoch. The impact of the proportion was not fully tested, so the
number of epochs for weights and architecture on each training
cycle were implemented as a hyperparameter.
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Figure 7. Accuracy on training and validation data during
architecture training.
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Figure 8 illustrates the NAS network. Every cell had one con-
volution 3x3 followed by the parallel convolution options. The
term “Fixed 3x3” represents the initial convolution 3x3 of each
cell. The layers bellow it represent the layers that remained on
the NAS network. The gray boxes were not inside the search
space and were not changed by the algorithm.
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Figure 8. NAS network.

The NAS Cell 1 has a convolution of kernel 3x3 followed by
3 parallel convolutions (1x1, 3x3 dilation 1 and 3x3 dilation
2). This means that Cell 1 had every convolution, except the
dilation 3. Differently, Cell 2 had only a convolution 3x3 fol-
lowed by a convolution 1x1, which is the smallest possible.
This brings an interpretation that the other kernels might not
be contributing more than the previous dilated convolutions.

Cell 3 represents the highest level of the NAS network and the
NAS cell has a convolution 3x3 followed by a dilated convolu-
tion 3x3 with rate 3, which is the largest possible kernel. Due
to the number of previous MaxPools layers, this layer brings
information that was not available on previous layers. For some
pixels, that information might have been relevant. After three
MaxPool layers, which represent a change in image size, the
feature attribute on Cell 3 is only 32x32 pixels. This means that
a kernel of 7x7 brings information from 12m away from the
current pixel (3pizels - 23 Max Pools - 0.5m). This might have
been relevant to classify pixels on open areas.

5.2 Classification performance

Table 2 presents the accuracy values achieved by each network
on the different sample sets. The network used for architec-
ture search has more parameters. While validation accuracy
on both NAS and baseline networks was comparable, training
accuracy was much higher on the NAS network and the accur-
acy obtained on the test set was slightly higher (2.03 percent-
age points). This is probably because the network architecture
was decided using the training and validation data. It should be
noted that the improvement in the classification accuracy was
achieved with fewer parameters, which suggests that some of
the convolutions regularly used on UNet-like networks are not
contributing to improving results.

Network Architecture search NAS Baseline
Parameters 1,916,628 1,123,592 | 1,213,320
Train. acc. 83.12% 93.67% 85.47%

Val. acc. 60.64% 80.56% 80.92%

Test acc. - 76.12% 74.09%
Train. time 304s 542s 627s

Table 2. Summary of accuracy values and training time for the
proposed and baseline approaches

The F1 score is the harmonic mean of precision and recall, de-
scribed in Equations 4, 5 and 6 (Sokolova et al., 2006). Table
3 contains the F1 scores achieved after testing each network.
Remarkably, the NAS network F1 score was higher or equal on
every class. The average F1 shown on the last table row de-
scribes that overall higher F1 score.

true positives

preciston = true positives + false positives @
recall — ‘t?"ue positives . )
true positives + false negatives
= 2 prf'ac?sion - recall ©)
precision + recall
Class NAS | Baseline
void 12.9% 4.6%
impervious surface | 77.0% 74.6%
building 87.8% 87.8%
pervious surface 70.6% | 67.2%
high vegetation 71.7% | 68.8%
car 66.4% 64.2%
water 95.4% 95.2%
sport venues 68.0% | 59.7%
average F1 68.7% 65.3%

Table 3. Summary of F1 scores achieved with each network

Figures 9 and 10 show the confusion matrix for the NAS and
baseline networks respectively, using the same vertical scale.
Comparing both matrices, it can be seen that the NAS network
achieved worse results on impervious surfaces and water. A
higher number of impervious surfaces pixels were classified as
buildings and pervious. Also, a higher number of water pixels
were classified as impervious surfaces. These differences might
come from the wider look that the NAS network represents,
because of increased kernel sizes.
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woid 36788 215199 74122 156248 11051 9278 1820 122

impervious surface 11433 WY 165475 480084 46906 59284 2514 16138
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True

high vegetation 2283 182691 24277 782758 3538 18011 1141 15

car 1221 73950 3827 9018 655 166888 1 10

water 354 6681 2088 10618 20426 27 778333 703

sport venues 213 38405 8799 63360 1286 39 8766 159172
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Figure 9. Confusion matrix of the NAS network.
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Figure 10. Confusion matrix of the baseline network.

Figure 11 provides a visual illustration of the classification res-
ults. The the improvement in the classification accuracy on the
NAS network is very hard to evaluate visually. Both baseline
and NAS networks have the same strengths and flaws as UNet-
like networks, because of how the search space was designed.
Some finer details were not well represented. For example,
there were few water bodies and cars both on training and test-
ing sets, thus both networks failed to identify two out of three
water bodies. Building edges and the transitions between the
high vegetation and pervious surfaces represent a large area
of classification errors. The classification errors vegetation is
unexpected, since the dataset uses infrared bands. There were
fewer samples for the water bodies class, so there was a samples
balancing issue.

- \oid
W impervious surface
W building
pervious surface
high vegetation
car
— vater
N sport venues

Figure 11. Visual results.

5.3 Lessons learned with the proposed approach

The SS layers strategy applied in this research is a very flex-
ible tool that seems promising for future research. Guo et al.

(2021) uses the SS layers to create more efficient networks from
networks that had high performance already. Our experience
with the SS layers indicate that there are more uses for this
concept and that it can be integrated in different neural network
researches. The channel-wise SS layers have an even broader
research field, because it can be used to improve high perform-
ance networks that were consuming too much memory and pos-
sibly improve their accuracy.

A major issue with our search procedure was found during test-
ing. When using the search cell on the decoder part of the net-
work, the SS layers for all options on that cell could approach
zero. This hindered the previous layers, even if they had already
reached 1. To avoid this issue no cells were added to the de-
coder part of the network, which had fixed convolutions, and
there are no sequential SS layers. The training step could force
the architecture vector to save at least one operation among the
parallel ones, but this was not tested.

Earlier tests were performed with separable convolutions, fol-
lowing the operations from (Liu et al., 2019b), and the results
were compared to the baseline. Many changes to network struc-
ture and different kernel sizes were tested and, in every test, the
baseline network reached better validation accuracy, while most
networks reached higher training accuracy. These tests were
discarded because the NAS network used separable convolu-
tions, while the UNet used regular convolutions. After chan-
ging to regular dilated convolutions, the NAS network reached
better accuracy values.

The output of a cell was tested using sum (Liu et al., 2019a)
and concatenate (Liu et al., 2019b) layers without significant
differences in the accuracy. There was an impressive increase
in the number of parameters to evaluate because the number
of output filters using concatenate layers is higher. Since GPU
memory is a regular constraint, the sum operation was kept on
the code.

6. CONCLUSION

The research described in this article is a very early experiment
of how the scaled sigmoid layers can be used on satellite im-
ages for semantic segmentation. There are many state of the art
architectures that were found through empirical tests that could
be improved with SS layers, both searching for better layer op-
tions or searching for improvements in the number of channels
on each layer.

The cell and architecture search spaces used in this article were
found by trial and error. So despite being a search mechanism,
the search space on NAS algorithms is still constrained by many
decisions made by the user. NAS research still has a long path
to reach the AutoML goal, thus this is a prominent research
field. The searched network was chosen using a deep learning
method based on training and validation data. Different images
or different parameters may lead to a different network archi-
tecture.

The NAS network presented interesting aspects to the remote
sensing community. The NAS network achieved higher accur-
acy with fewer parameters and used a wider kernel on the lower
resolution part of the network. With a different search strategy,
it might also solve the issues related to how many MaxPool lay-
ers are required for a given semantic segmentaion task.
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Further research is still required to bring the concepts integrated
on this article to everyday use. The SS layer brought more flex-
ibility to the search space, allowing researchers to design their
own search space instead of using a previously defined one. We
hope that this flexibility empowers new research on the field.

The code and dataset used on this research are available on
Google Colab through the link https://colab.research.g
oogle.com/drive/1a0Q4N3£ftBL9iEm8GOmjQDoEHDnwavozQ
to foster future research.
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