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ABSTRACT: 

One of the most challenging effects of remote sensing is landcover materials' Bidirectional Reflectance Distribution Function 

(BRDF). A wide range of approaches and measuring methods address the BRDF in various studies. However, there is a requirement 

for an accurate measurement setup and costly special equipment. Furthermore, the measurements and calculations are applied to model 

the BRDF for a single point on the object's surface. Considering these limitations, we propose a new modular framework and 

methodology for measuring, modeling, and analyzing the BRDF without the need for unique instruments. Instead, we suggest acquiring 

multiple overlapping images in a simple and time-saving way, sampling the desired object's Region Of Interest (ROI) in one image 

and automatically tracking it in the other images. Experimental results using laboratory data acquired under controlled conditions 

clearly show the advantages of our framework in retrieving the camera positions, tracking ROIs in the different images, and accurately 

measuring the BRDF of various land-cover types. Moreover, we observed the variability of the obtained measurements before and 

after applying the kernel-driven approach to minimize the BRDF effect. The results show that the applied correction reduces this 

variability significantly, indicating the high accuracy of measuring the directional reflectance using the proposed approach.    

1. INTRODUCTION

A primary objective of remote sensing is to extract information 

about surfaces without direct contact. In this regard, spectral 

imaging is crucial for understanding surface characteristics, 

phenomena, and changes that occur to them (Shen et al., 2019). 

Nonetheless, extracting valuable information from spectral 

measurements is tricky due to several effects that incorporate 

undesired variability within the acquired data. One of these 

challenging effects is the Bidirectional Reflectance Distribution 

Function (BRDF) (Nicodemus et al., 1977). In the literature, it is 

customary to use a theoretical concept that describes radiation 

from a point source measured by a point sensor. However, such 

assumptions are not realistic in real applications. Thus, we refer 

to the BRDF term in this study, but we measure the Biconical 

Reflectance Factor (BCRF) in practice. The BCRF helps estimate 

the BRDF and is commonly used in remote sensing applications 

(Schaepman-strub et al., 2006). 

The BRDF causes the acquired spectral information of material 

to vary between acquisitions, thereby causing an undesired 

variability (Román et al., 2011). In addition, this variability also 

exists between the different pixels within the same scene. The 

BRDF effect has been addressed extensively. However, despite a 

large number of such research works, executing BRDF 

measurements is still a challenging task, and there are two main 

limitations in the existing approaches: 

1) The measurement of the BRDF mainly relies on a unique

instrument, e.g., a goniometer (Foo, 1997) (Riviere et al.,

2012), which is usually expensive and not available in many

labs.

2) The measurements are applied to model the BRDF of a single

point or small area within the spectroradiometer field of view.

Considering these limitations, we propose a new framework for 

measuring and understanding the BRDF effect of different 

materials based on overlapping images from different viewing 

angles. Using the proposed framework, we can measure the 

reflected light in different directions from a single point, an area 

within an arbitrary polygon, or along a polyline path. Allowing 

the measurements of the BRDF of an area instead of a single 

point (or footprint) will also improve the ability to understand the 

influence of the BRDF affect different scales and resolutions. 

2. METHODOLOGY

The proposed methodology combines five main steps: a) 

multiview imaging and Structure From Motion (SFM) process 

for camera positioning, b) creating a connectivity graph and 

shortest path from base image to other images, c) sampling an 

ROI in the base image, and tracking the ROI in each image along 

the path, d) compute the mean reflectance for the ROI in the 

different images and e) modeling the BRDF of the ROI and 

correcting the reflectance. 

2.1 Multiview spectral and RGB imaging 

We used the Specim IQ camera from Specim (Oulu, Finland, 

year of manufacture 2020). The camera is a handheld push broom 

system featuring integrated controls and an operating system. It 

combines two separate imaging sensors for hyperspectral and 

RGB data. The hyperspectral sensor provides images with 

512 512  pixels and 204 spectral bands between 400-1000 nm 

acquired by a push-broom line scanner with an internal rotating 

mechanism. The visible sensor provides RGB images with 

1280 960  pixels with an area of 645 645  that overlaps with 

the image from the spectral sensor. 

2.2 Structure From Motion (SFM) for Camera Positioning 

Given a set of acquiring images of the same object from different 

viewing directions,  the SFM determines the camera location and 

orientation corresponding to each image (Jiang, 2020). The SFM 
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involves using various techniques such as point detection 

(Saleem, 2018), feature extraction, finding transformations 

between cameras, and calculating camera movements. We use 

the SFM to estimate the accurate camera location for each RGB 

image acquired in the multiview imaging step. RGB images are 

preferable instead of spectral ones for the SFM due to their higher 

spatial resolution and contrast. 

 

2.3 Graph theory and Shortest-Path for Object Tracking 

Graph theory describes the relationships between different 

objects or observations (Wang, 2015). The graph offers a flexible 

data representation and saves time and resources when 

"traveling" from one node to another. In this regard, the shortest-

path strategy (Goldberg and Harrelson, 2005)  is a fundamental 

problem in graph theory that consists of finding the path between 

two nodes in a directed graph with a minimal sum of the edges' 

weight along the path. Thus, we use graph theory to enable a 

dynamic transition between the acquired images (see  

Figure 1). Accordingly, we can track an arbitrary ROI that we 

sample in one image and automatically determine its projection 

onto the other images in the set. For this purpose, we first find a 

set of tie points between each pair of images using the Speeded-

up Robust Features (SURF) method (Oyallon and Rabin, 2015). 

Then, we use the detected tie points to estimate the geometrical 

transformation between the image pair. Besides, we use the 

number of detected tie points to calculate the weight of the arc 

that connects these two images in the connected graph as follows:  

  

   

 , , ,= =1i j j i i jw w p  (1) 

  

where ,i jp  and ,i jw  are the number of tie points detected 

between images i and j, and the weight of the corresponding arc 

connecting between them in the graph, respectively. 

Accordingly, the detection of more points between a pair of 

images leads to a smaller weight (cost) of the arc connecting 

them, meaning it is "more profitable" to move along this arc 

while searching for the shortest path. 

 

 
 

Figure 1. An illustration of multiview 33 images with an 

example of a direct path (green line) and the shortest path 

(indicated with orange lines) between two images. 

We start by sampling a polygon, i.e., region of interest (ROI), 

representing the object/landcover we are interested in measuring 

its BRDF. In practice, we automatically sample the ROI in the 

nearly vertical image and detect its corresponding projection onto 

the other images, relying on the described shortest path strategy. 

 

2.4 BRDF modeling and correction 

As a final evaluation of the proposed methodology, we examined 

the performance of a common BRDF correction strategy on the 

obtained measurements. Accordingly, to minimize the negative 

influence of the BRDF effect on the spectral data, we correct the 

measured reflectance from the different directions to a reference 

direction (the nadir view). Such a correction calculates an 

anisotropy factor that describes the ratio between the measuring 

and reference directions. To calculate the anisotropy factor for 

each viewing direction, we first need to model the BRDF for each 

landcover type. Therefore, several models exist for describing 

and correcting BRDF effects on spectral images. Here we use the 

proposed model by Jia et al. (Jia et al., 2020). The model is based 

on a kernel-driven BRDF approach using a linear combination of 

three kernels: 1) A volumetric kernel represents the intrinsic 

property of the surface/object. It quantifies the reflected radiation 

from randomly distributed small facets (Kawata, 2008). A 

commonly used kernel is the hotspot-revised Ross-Thick-

Maignan (RTM) kernel by Maignan et al. (Maignan et al., 2004). 

2) A geometric kernel models the geometric structure of opaque 

reflectors and shadowing effects, as described in the Li-Transit-

Reciprocal (LTR) kernel (Li et al., 1999). 3) A component of 

isotropic scattering is assumed to be uniform over the entire 

image for a given spectral band. Then, the BRDF model is 

described as follows: 

 

 

( , , , , ) ( , )

( , ) ( , , )

( , ) ( , , )

c f c
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f c k
vol vol i r
f c k
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 (2) 

 

where i  and r  are the illumination and viewing zenith angles, 

respectively.  is the relative azimuth angle between the 

illumination source and the camera position, c  indicates a 

material or landcover type, and  corresponds to a particular 

spectral band. ,iso volf f  and geof  are coefficients (weights) of 

isotropic, volumetric, and geometric scattering, respectively, and 

volk  and geok  are the volumetric and geometric scattering 

kernels, respectively. 

 

After defining the general model, we estimate the kernel 

coefficients for each landcover type at each spectral band by 

solving a system of linear equations. Given n measurements of 

the same landcover type, but from different viewing directions, 

each measurement contributes a single equation as follows:  
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which we can write in a matrix form as 

 

 Kf r , (4) 

 

where, 
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The terms 
1 2, , , nvol vol volk k k  and 

1 2, , , ngeo geo geok k k represent the 

values of the volumetric and geometric scattering kernels 

corresponding to the 1st, 2nd, . . . , nth observed reflectance 

measurements, i.e., 1 2, , , n , respectively. Accordingly, to 

correct the entire spectra for each landcover type, we defined a 

similar problem for each spectral band separately (Jia et al., 

2020). Then, we achieve an estimation of coefficient vector, i.e. 

f̂ , by solving an unconstrained least-squares problem as follows: 

 

 
1ˆ ( )T Tf K K K r  (6) 

 

Next, we calculate the vector of modeled reflectance 

m ,1 ,2 ,[ , , , ]Tm m m nr , corresponding to the measured 

reflectance 1 2[ , , , ]Tnr  by 

 

 m
ˆr Kf . (7) 

 

Finally, we compute the anisotropy factor (ANIF) for each 

measurement as given by: 

 

 
, , , ,
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c
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and calculate the corrected reflectance c  as follows 

 

 c ANIF
 (9) 

 

 

3. DATA ACQUISITION AND EXPERIMENTAL 

EVALUATION 

3.1 Hyperspectral and RGB Data of BRDF Scenes 

We chose nine materials to examine the BRDF measurement and 

correction for various landcover types (see Figure 2). We placed 

the light source at the position with an azimuth of 73 degrees and 

a zenith of 42.5 degrees relative to the normal of the tested scene. 

Besides, we placed a barium sulfate (BaSO4) calibration panel 

(Biggar et al., 1988) within the acquired frame in each image for 

efficient spectral calibration. We maintained a one-meter 

distance between the camera and the sample's plate center 

throughout the experiment. The RGB and spectral images were 

obtained simultaneously. First, we positioned the camera at the 

nadir and acquired the vertical image.  

 

Next, we moved to zenith 30 degrees, placed the camera each 

time at a 45-degree interval from the previous azimuth, and 

acquired an image. Then, we continued until we reached the 

zenith of 70 degrees. Accordingly, our data set includes 33 

spectral and corresponding RGB images, as Figure 3 shows. 

Finally, both the RGB and the spectral cameras were 

photogrammetric calibrated using a 2D pattern of the chessboard 

type with 29 mm square (Douskos et al., 2006). 

 

 
Figure 2. The nine different materials used in experiment (a) 

were placed on top of a wooden plate marked with a circle of 

azimuths (b). 

 
Figure 3. Set of 33 RGB images (a) and spectral images (b) 

from the vertical image through images of Zenith 30, 45, 60, to 

70 degrees. 

3.2 Reflectance retrieval 

We used the radiance images obtained by the camera to compute 

the average radiance and reflectance of the sampled ROI values 

in each acquired image as follows: 

 

1) First, we averaged the radiance values of all pixels within the 

sampled ROI as follows  

 

 1
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where 
ip
L is the recorded radiance value at the ith pixel, out 

of np pixels within the sampled ROI. 

2) Then we calculate its reflectance as follows: 

 
, , ,

, , ,
, , ,

material i r
material i r

ref i r

L

L
 (11) 

where refL  is the average radiance of the reference BaSO4 

panel under the same specified conditions of illumination and 

viewing (zenith and azimuth angles). , ,i r  
and   are 

the illumination zenith angle, view zenith angle, relative 

azimuth angle between the illumination source and the 

camera position, and the central spectral band wavelength. 

 

3.3 Quantitative Evaluation of the BRDF measurement and 

Correction 

To evaluate the results of measuring and correcting the BRDF, 

we observed the obtained reflectance values before and after the 

correction. We use the coefficient of variation (CV) statistics as 

a quantitative evaluation. Accordingly, we calculated the CV of 

the obtained reflectance of a specific landcover type from the 

different viewing angles. The CV in each spectral band is given 

by the ratio of the standard deviation  to the mean  of the 

measurements as follows: 

 

 CV 100  (12) 

 

where ,
1

1
n

p
p
n

 and 
2

,
1

1
n

p
p

n
 are the 

mean and standard deviation over the n measured pixels at the 

spectral band denoted by , respectively, and ,p  is the 

reflectance value at the p th  pixel. Then, for each landcover 

type, we computed the following statistical measures: 
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1
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n
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where, CV , std CV , and max CV  are the mean, standard 

deviation, and maximal value of the CV, respectively, and n  is 

the number of spectral bands.  

 

3.4 Experimental Testing 

We first built the connectivity between all RGB images and 

calculated initial relative locations for each camera (location and 

orientation) as initial values for the Bundle Adjustment phase. 

Then we used the SFM process to estimate the correct camera 

locations and create a 3D model of the scene. In addition to 

examining our code in MATLAB for SFM, we used Meshroom 

and cloudCompare software. Finally, we calculated the camera 

locations in the local system by computing the zenith angle and 

azimuth for each camera position. Figure 4 presents the locations 

in a top view of the local polar system.  

Here we focused on the measurements on the main profiles to 

evaluate our methodology's performance (see Figure 4). In 

particular, we selected the principal plane, which contains the 

object, the light source, spectral sensor. In our case, the principal 

plane profile includes the images in azimuth 90 to 270 degrees. 

 

To validate our methodology, we applied the following steps to 

the different types of materials on the two profiles: 

 

• Sample an ROI in the base (vertical) image. 

• Compute the shortest path from the base image to each other 

image. 

• Track the ROI in each image along the path. 

• Compute the mean reflectance for the ROI in the different 

images. 

• Model the BRDF of the ROI, compute the anisotropy  

factor and correct the reflectance. 

 

 
Figure 4. A top view of all estimated camera locations as 

obtained through SFM. The numbers 0 to 315 on the 

circumferential circle and 10 to 70 between the various circles 

indicate azimuth and zenith angles in degrees, respectively. We 

consider the locations within the rectangular area as 

approximately placed within the principal plane. 

 

4. RESULTS AND DISCUSSION 

To study the BRDF of a given  land cover type, we observed and 

modeled the measurements and corrected reflectance values at 

the nine zenith angles on the selected profile within the principal 

plane. First, we applied the proposed strategy for automatically 

tracking the sampled ROI. For example, Figure 5 presents the 

sampled ROI for Grass in the near-vertical image and 

automatically derived corresponding ROIs on the other images. 

Then, as mentioned before, the mean reflectance spectra in the 
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different viewing directions were extracted by averaging the 

ROIs in each spectral band. 

Figure 6 illustrates the results for a selected wavelength. The 

corrected reflectance values are scattered around those obtained 

from the vertical image, i.e., the reference viewing direction. 

Such a scattering indicates a high accuracy correction of the 

BRDF. In addition, the light source is located at an azimuth of 73 

degrees and a zenith of 42.5 degrees. The results show a "hot-

spot" with maximal reflectance around this direction. This result 

agrees with the theoretical back-scattering effect and indicates 

the wellness of the BRDF measurements. Similarly, there is a 

decrease in the reflectance values due to the forward scattering at 

the other side of the selected profile on the principal plane (i.e., 

measurements from locations with an azimuth of 270 degrees). 

 

 
Figure 5. An example of a sampled ROI on the near-vertical 

image ( 10.2 ) for the landcover type Grass, and the 

corresponding ROIs on the other images on the profile of 90 to 

270 degrees, as obtained by the proposed automatic tracking 

strategy. 

Besides, Figure 7 presents the measured and corrected 

reflectance of the grass landcover and the corresponding CV 

values. The obtained spectral signatures of Grass have typical 

properties of vegetation spectra; high absorption in the red, high 

in the blue, and ultraviolet, whereas they have a peak of the 

reflectance in the green wavelength and high reflectance in the 

near-infrared (Division, 1989). 

 

Moreover, the results clearly show the accuracy of the BRDF 

correction. The correction of data in 60 and 70 degrees is 

noticeable. Despite the inaccuracy in the measured reflectance in 

these two angles, the corrected reflectance values are closer to a 

vegetation signature. In general, the signatures for the different 

wavelengths are close to each other after the correction of the 

BRDF. Specifically, the reflectance values for wavelengths 650 

to 750 nm are very close, and the CV of the corrected 

measurements in this region is accordingly low. 

 

Along with the accuracy of the ROI tracking process, the BRDF 

correction has yielded good results. For example, the results for 

the light-soil landcover, presented in Figure 8, show a significant 

reduction in the CV of the corrected measurements. As a result, 

the variability between the reflectance values is much lower, and 

the signatures obtained from the different viewing angles are 

similar. To better understand the obtained results through 

quantitative analysis, we examined the CV and its statistics of 

four materials in the scene. Table 1 summarizes the results. 

Table 1 shows the noticeable differences in CV values before and 

after BRDF correction in landcover types. All the selected 

landcover types, i.e., natural Grass, synthetic Grass, brown soil, 

and light soil, are characterized by a relatively rough surface. 

However, the results reveal interesting outcomes. On the one 

hand, the obtained results for natural and synthetic Grass are 

highly similar. This outcome is correlated with the fact that these 

land covers have similar brightness and subpixel topographic 

structures. However, on the other hand, the brown and light soil 

land covers also have similar subpixel topography, but the 

obtained CV metrics for the measured reflectance are highly 

different. We believe that this difference happens due to the 

brightness difference. The variability of the brightness between 

illuminated and shaded facets in the light soil is more significant 

than in the brown soil. Thus, the CV of the light soil 

measurements is accordingly higher. However, the obtained CV 

for these two land covers after the BRDF correction is highly 

similar. Reducing the CV values indicates the importance of 

correcting the BRDF effect. Besides, it tells the proposed 

methodology's efficiency in accurately tracking ROIs and 

accordingly measuring the BRDF of different land cover types. 

Accordingly, it supports the conclusion that we accurately 

measure the BRDF through the images.  

 

 
Figure 6. The measured, modeled, and corrected reflectance 

values at different zenith angles for profile 90-270 degrees at 

wavelength 513.4 nm. 

            CV   max( )CV   ( )std CV  

Material   '      '     '  

Grass 12.37 5.84 14.59 7.42 2.21 1.1 

Synthetic 

 Grass 
13.53 5.52 16.81 6.45 2.41 0.68 

Light 

Soil 
23.31 5.21 27.52 6.44 3.93 0.97 

Brown 

Soil 
6.74 5.93 7.9 7.32 0.81 0.85 

Table 1 

Statistic of CV parameters for different materials. ρ and ρ' are 

the measured and corrected reflectance measurements, 

respectively. 
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Figure 7. The reflectance values of the Grass ROI before 

correction (a), after correction (b), and the statistics CV of 

reflectance values at different zenith angles (c). 

 

 

 
Figure 8. The reflectance values of the Light Soil ROI before 

correction (a), after correction (b), and the statistics CV of 

reflectance values at different zenith angles (c). 

 

5. CONCLUSION 

This article presented a new study regarding the BRDF 

measurement and proposed a new methodological framework. 

This framework contributes to studying the BRDF of different 

materials and landcover types by automatically measuring 

surface directional reflectance. It reduces the complexity of such 

measurements and the analysis of the BRDF by allowing 

automatic 3D positioning of the acquired images without using 

special and expensive instruments, analyzing the BRDF of 

different shapes, and accessible analysis of objects' BRDF in 

different scales and resolutions. Moreover, our methodology can 

also be applied to drone-based imaging. In this regard, existing 

studies addressing the image-based BRDF  (Hakala et al., 2018) 

usually use one or very few images relying on the asumbtion that 

similar landcover types can appear in diiferent pixels accordingly 

being measured from different directions. In contrast, the 

proposed methodology is suitable for datasets with many 

overlapping images. Thus, it allows for analyzing the BRDF of a 

given land cover type's same point/ROI from a broader range of 

directions. 

To evaluate the proposed methodology's performance and test the 

impact of the BRDF, we experimented with data acquired under 

controlled conditions. In the case of materials with smooth 

surfaces, the results revealed that the effect of the BRDF is 

uniform. In contrast, the effect is neither uniform nor has a 

specific intensity in rough materials. The results clearly showed 

that our strategy for tracking and optimizing the ROI's location 

in different images is accurate. Moreover, using the kernel-driven 

BRDF approach for correcting the BRDF effects obtained 

accurate results in reducing the CV of spectral signatures for the 

examined materials.  
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