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ABSTRACT: 

 

The existing NDVI products have problems in terms of low spatial resolution and inconsistent values at a large geographical scale. 

Based on medium and high-resolution multi-source remote sensing data (GF-1 and GF-2 data), this paper normalized NDVI by 

combining absolute radiation normalization with relative radiation normalization. And the existing relative radiation normalization 

method, single-scene global linear normalization (SGloLM) method, is improved to adapt to the production of large-range high-

resolution NDVI products. Aiming at the problem of obvious mosaic seams when the SGloLM method is applied to multi-scene 

images, it is mainly improved from two aspects. One is to improve the coefficient solution of the SGloLM algorithm and propose a 

new method considering the surrounding multi-scene data, the multi-scene global linear model (MGloLM). The other is to 

incorporate the Maximum Value Composite (MVC) method to synthesize the maximum value of NDVI at different times in a season, 

to represent the optimal situation of vegetation growth in the current season. In this study, combined experiments of different 

methods were performed, as well as qualitative and quantitative evaluations. The experimental results show that SGloLM+MVC and 

the MGloLM+MVC methods can better eliminate the mosaic seams, and their histogram is most similar to the histogram of standard 

data, and all quantitative evaluation indexes of SGloLM+MVC are optimal (CC=0.7804, MAD=0.0643, RMSE=0.1012). 
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1. INTRODUCTION 

Vegetation plays a vital role in the ecosystem and is closely 

related to natural environment elements such as soil, 

topography, climate, and hydrology, and has a profound impact 

on the energy balance of the earth-atmosphere system (Zhang, 

2009), and has long been of great interest to scientists and 

governments worldwide. As one of the most effective means of 

global vegetation monitoring at present, satellite remote sensing 

can be free from the constraints of social and natural conditions.  

And it can quickly obtain large-scale observation data, which 

provides us with conditions for studying and monitoring global 

or regional vegetation growth changes (Guo, 2003). Based on 

the vegetation's spectral properties, various vegetation indexes 

have been generated by linear or nonlinear combination 

operations on the visible light and near-infrared bands of remote 

sensing data (Guo, 2003; Zhang, 2009). So far, more than one 

hundred and fifty vegetation index models have been proposed 

in various literature. Among them, the Normalized Difference 

Vegetation Index (NDVI) proposed by Deering (1978) is not 

only easy to calculate, but also enhances the sensitivity to 

vegetation by eliminating most of the effects related to sensor 

radiometric calibration, topography, atmospheric conditions, 

and observation angle (Ge, 2016). Hence, it has become one of 

the most widely used vegetation indexes today. As one of the 

important parameters to describe the characteristics of surface 

vegetation coverage, vegetation index is a simple, effective and 

empirical measure of surface vegetation status (Guo, 2003). It 

has been widely used in qualitative and quantitative evaluation 

of vegetation coverage and its growing status. The NDVI 

obtained based on satellite remote sensing data can 

comprehensively reflect the growth status and seasonal 

variation characteristics of vegetation, and provide important 

support for the dynamic monitoring of vegetation at the regional 

and global scales. At present, it has been widely used in the 

fields of vegetation growth monitoring, seasonal and 

interannual variation analysis, etc (Gan, 2015). 

 

However, most of the existing vegetation index products use 

single remote sensing data, which have certain deficiencies in 

temporal resolution, spatial resolution, accuracy and stability 

(Ge, 2016), and the integrated use of multi-source remote 

sensing data can compensate for these deficiencies to a certain 

extent. Because of the differences in sensors and imaging 

conditions of multi-source remote sensing data, it is necessary 

to normalize them. Radiation normalization is divided into 

absolute radiation normalization and relative radiation 

normalization, and when normalizing multi-temporal data from 

a single sensor, simple relative radiation normalization can 

achieve high accuracy. However, in quantitative applications, 

the absolute radiation normalization should be combined with 

the relative radiation normalization, and the influence of 

reflection differences caused by different sensors due to spectral 

response characteristics and atmospheric correction on the 

normalization results should be considered. And the 

normalization of multi-source data should be carried out at the 

surface reflectance level to truly achieve normalization between 

different images from different sensors (Xu, 2019). For a long 

time, many research scholars have conducted a lot of research 

work on the normalization of multi-source remote sensing data. 

However, the previous studies on NDVI normalization of multi-

source data mostly focus on low and medium-resolution data 

such as MODIS and Landsat, and less on high-resolution data. 
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This study proposes an improved normalization method for the 

construction of high-resolution quantitative product datasets to 

improve the dynamic monitoring of urban vegetation resources 

by normalizing medium and high-resolution multi-source 

remote sensing data based on previous experiences and methods. 

 

2. MATERIALS AND METHODS 

2.1 Data and study area 

This study used DN data from the GaoFen-1 (GF-1) wide field 

of view (WFV) sensor and the GF-2 panchromatic multispectral 

sensor (PMS). These data were available for free download 

from the China High-resolution Earth Observation System 

(CHEOS) grid platform (www.cheosgrid.org.cn). The GF-1 

satellite carries a 16 m-resolution WFV multispectral camera 

with an imaging width of 800 km and a temporal resolution of 4 

days. The GF-2 satellite has a multispectral resolution of 4 m, 

an imaging width of 45 km (Wu, 2014), and an absolute 

temporal resolution of 69 days. Both of these multispectral 

cameras have four bands, and in this study, band 3 (red band) 

and band 4 (near-infrared band) were used. The spectral 

response function curves of GF-1 WFV data and GF-2 PMS 

data are shown in Figure 1 (GF-1 WFV1 and GF-2 PMS2 as an 

example). It can be seen from the figure that the spectral 

response function curves of the two are very similar, which is 

the basic condition for the relative radiation normalization of 

the GF-2 PMS data with the GF-1 WFV data as the reference 

data. 

 

 

Figure 1. Spectral response function curves of GF-1 WFV and 

GF-2 PMS. 

 

The GF-1 WFV data and GF-2 data used in the experiments are 

located in Wuhan, Hubei Province. Wuhan is the central city in 

the central region of China, located in the eastern part of the 

Jianghan Plain and the middle reaches of the Yangtze River. 

The specific geographical location is from 113°41' to 115°05' E 

and 29°58' to 31°22' N. Wuhan is the central city of the national 

synthesis coordinated reforms experimental plot of "two types 

society", which is resource-saving and environment-friendly, 

and pays attention to forestry ecological construction and 

resource protection. The typical vegetation in Wuhan is a mixed 

forest consisting of subtropical evergreen broadleaf forest and 

deciduous broadleaf forest. Details about the data were shown 

in Figure 2 and Table 1.  

 

 

Figure 2. GF-1 and GF-2 data coverage maps used in the study. 

 

Sensor Scene ID Acquisition 

Data 

Pixel 

Size (m) 

GF-1 WFV3 2510476 14/06/2016 16 

GF-2 PMS1/2 

2509145, 

2509146 
14/06/2016 4 

2763984, 

2763985, 

2763983, 

2764226, 

2764227, 

2763986 

01/09/2016 4 

Table 1. GF-1 and GF-2 data used in the study. 

 

2.2 Data pre-processing 

In this study, absolute and relative radiation normalization were 

combined. The high-resolution NDVI data to be normalized 

were first calculated from surface reflectance data. In addition, 

the normalization process requires correspondingly medium-

resolution reference, classification, and cloud mask data. 

 

The pre-processing of GF-1 and GF-2 data mainly includes the 

following steps: 

 

Step 1. Orthorectification: It is the process of correcting 

geometric distortions caused by sensors, terrain and other 

factors by using ground control points and certain mathematical 

models. Here the orthorectification of the image is realized by 

using the rational polynomial coefficients (RPC) files that come 

with the image and the Digital Elevation Model (DEM) that 

comes with the ENVI software. The RPC file of the high-

resolution remote sensing image is a transformation matrix 

solved from the orbital parameters of the sensor and some other 

physical parameters, combined with ground control points 

(Zhuo, 2017). 

 

Step 2. Radiation calibration: It is the process of converting the 

original dimensionless brightness gray value (DN value) 

recorded by the sensor into the absolute radiance value with 

actual physical significance. This process can eliminate the 

errors caused by the sensor, to determine the exact radiation 

value of the sensor at the entrance.GF-1 and GF-2 satellite 

sensor radiation calibration formula is as follows: 

 

 ( )c cL gain DN offset       (1) 
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where  ( )c cL   = a band radiation luminance value 

 gain  = the calibration coefficient 

 DN  = the original luminance gray value 

 offset  =  the absolute calibration coefficient offset 

 

Step 3. Atmospheric correction: It is the process of eliminating 

the radiation errors caused by atmospheric scattering, 

absorption, and reflection, so as to obtain the true reflectivity of 

surface objects. Here, the fast line-of-sight atmospheric analysis 

of spectral hypercubes (FLAASH) atmospheric correction is 

used for the GF-1 reference data. It has been commercially 

applied and is one of the more accurate atmospheric correction 

models available. It is an atmospheric correction algorithm 

based on principal component analysis and uses the procedure 

of MODTRAN 4+ radiative transfer model (Wang et al., 2013) 

for pixel-based correction, which can eliminate or reduce the 

cascading effects caused by diffuse reflections and adjust the 

spectral smoothing caused by artificial suppression (Hao et al., 

2008). Its spectral radiation equation is as follows: 

 

 ( ) ( )
1 1e e

A B
L L

S S


 

 
  

 
   (2) 

 

where  L  = the radiance of the pixel 

A, B = the coefficients depending on the atmospheric 

and geometric conditions 

  = the surface reflectance of the pixel 

e  = the average surface reflectance of the pixel and 

its surrounding area 

S = the atmospheric albedo 

L  = the atmospheric backward scattered radiation 

 

The GF-2 data are processed using the Quick Atmospheric 

Correction (QUAC) tool in ENVI to balance the processing 

time, result accuracy, and ease of batch processing. Compared 

with the FLAASH correction algorithm, the QUAC algorithm 

can make full use of remote sensing images to obtain spectral 

information of different ground objects, and perform fast and 

accurate atmospheric correction through empirical values to 

obtain the real surface reflectance without complex 

environmental parameters. 

 

Step 4. Calculation of NDVI: After the above absolute radiation 

normalization, the reflectance data of GF-1 and GF-2 are 

obtained. The red light band and the near-infrared band are used 

for combined operation. The reference NDVI data were 

calculated from the reflectance data of GF-1, and the NDVI data 

to be normalized is calculated from GF-2 reflectance data. The 

calculation formula is as follows: 

 NIR RED

NIR RED

NDVI
 

 





   (3) 

 

where  
NIR  = the near-infrared band 

 
RED  = the red band 

 

Step 5. Prepare auxiliary data: Classification data and cloud 

mask data. The Classification data corresponding to the data to 

be normalized is obtained by applying ENVI IsoData 

Classification to GF-2 reflectance data. And deep learning-

based cloud detection method named multi-scale convolutional 

feature fusion (MSCFF) (Li et al., 2019) is applied to obtain 

cloud mask data corresponding to the data to be normalized. 

 

2.3 Methods 

The SGloLM has a significant problem of mosaic seams when 

NDVI normalization is performed on multi-scene high-

resolution images. Therefore, this study has improved it in two 

aspects. On the one hand, the coefficient solution of the 

SGloLM algorithm is improved. On the other hand, the MVC 

method is added. 

 

2.3.1 Single-scene global linear model: Linear models are 

the most widely used typical models for cross-sensor NDVI 

conversion. In the earlier reference-based normalization, the 

global linear model is often applied to the normalization of 

reflectance data. Based on previous studies (Miura et al., 2013; 

Potapov et al., 2020; Gan et al., 2014), it can be found that there 

is usually a linear correlation between different sensors and 

multi-temporal images of the same region. In other words, their 

grayscale values in the same band can be interconverted by a 

linear equation. Therefore, the SGloLM method assumes that 

the relationship between the data to be normalized and the 

reference data can be described by a simple linear regression 

equation as:  

  

 y a x b      (4) 

 

where  x = the reflectance value of the experimental image 

y = the normalized reflectance value of the 

experimental image 

a, b = the slope and intercept of the linear regression 

equation 

 

Based on the above assumptions, after downsampling the high-

resolution data to be normalized to the resolution of the 

medium-resolution reference data, the slope and the intercept of 

the linear regression equation are solved according to the 

medium-resolution sample point pairs. And then the 

normalization results of each image element of the data to be 

normalized are calculated by this linear relationship element by 

element. The specific processing flow is as follows: 

 

Step 1. The high-resolution data to be normalized should be 

downsampled to the medium resolution of the reference data. 

 

Step 2. The purity of each medium resolution pixel is calculated 

according to the high-resolution classification data (6-10 

categories). Then, through a given threshold (0.5-0.6), the pure 

pixel is determined. The calculation formula for pixel purity is 

as follows: 

 

 ck
r =

m m
   (5) 

 

where  r = pixel purity 

ck  = the number of pixels belonging to the feature 

category c, which has the largest proportion in any 

medium resolution pixel range 

m = the scale ratio between the high-resolution and 

the medium-resolution 

 

Step 3. Based on the pure pixels, the linear relational 

coefficients are solved by Huber-type M-estimation according 

to the following equation: 
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n ny = a x +b    (6) 

 

where  
nx  = the downsampled data to be normalized 

ny  = the corresponding medium-resolution reference 

data 

a, b = the coefficients of the linear relationship 

 

Errors in geometric correction, resampling, and unsupervised 

classification are bound to bring noise and outliers. However, 

the standard least-squares method is easily affected by these 

noises and outliers, which leads to errors in coefficient solving. 

Therefore, a more robust Huber type M-estimation is used here: 

 

 =uv uv uve a x +b- y    (7) 

 

The coefficient is solved by minimizing ( )uv

uv

e , where   is 

the influence function. There are many influence functions in 

the robust estimation, and the Huber type influence function is 

selected here: 

 

 

2

 

 
        ,          

2
( )

  ,     
2

2

uv
uv

uv

uv uv

e
e c

e
c

c e e c






 
  


，
   (8) 

 

where  c = the Huber parameter 

 

In order to facilitate the optimization of the calculation process, 

the minimization problem of the following equation (9) can be 

equivalently transformed into the iterative reweighted least-

squares problem: 

 

 
2

min ( ( ) )uv uvw e e    (9) 

 

( )uvw e  is the weight of each pixel, equal to ( )uv

uv

e

e

 . In this 

way, coefficients can be solved by an iterative process. 

 

Step 4. Each pixel of the data to be normalized is substituted 

into the linear relationship equation obtained above to obtain its 

normalized value. The calculation formula is as follows: 

 

 
m my = a x +b    (10) 

 

where  
mx  = the high-resolution data to be normalized 

my  = the corresponding normalized value 

a, b = the coefficients of the linear relationship 

obtained in step 3 

 

2.3.2 Multi-scene global linear model: To address the 

problem of obvious multi-scene image mosaic seams that occurs 

when the SGloLM method is applied to product production. 

Based on the SGloLM method, this study proposes MGloLM. 

The improvements are made to alleviate the problem of obvious 

mosaic seams in a wide range of products. The improvement 

idea is as follows: when processing the data to be normalized in 

one scene, read in the adjacent image data of the top, bottom, 

left, and right four scenes at the same time, and carry out steps 1 

and 2 in the previous subsection to obtain the pure pixels of 

each scene. And then solve the coefficients of the linear 

relationship equation based on the pure pixels of these five 

scenes to obtain the linear relationship equation. Finally, 

substitute each pixel of the data to be normalized is substituted 

into the linear relationship equation derived above to obtain its 

normalized value. 

 

2.3.3 Maximum Value Composite method: The MVC can 

effectively reduce the effects of atmospheric aerosols, cloud 

shadows, and solar altitude angle, and has been widely used in 

the production of low and medium-resolution remote sensing 

vegetation index products (such as MOD13 and MYD13 based 

on EOS/MODIS sensors; PAL, GIMMS, and GVI based on 

AVHRR sensors; VGT-S10 based on VEGETATION sensors 

(Ge, 2016)). In this study, the NDVI data of one season was 

used as the basis to obtain the quarterly maximum NDVI using 

the MVC, which characterizes the best condition of vegetation 

growth in the current season. The calculation formula is as 

follows: 

 

 
max 1 2max( , )NDVI NDVI NDVI                  (11) 

 

where  
maxNDVI  = the maximum value of NDVI 

1NDVI , 
2NDVI  = multiple NDVI values in 

different periods of the quarter 

 

2.3.4 Precision evaluation: For the experimental results of 

this study, the reference data resampled to high-resolution was 

used as the standard data, and the accuracy was evaluated by 

qualitative and quantitative methods. The qualitative evaluation 

mainly includes the visual effect of the image and the 

comparison of its histogram. The quantitative evaluation is 

mainly completed by the following three indicators: 

 

① The Correlation Coefficient (CC), the calculation formula is 

as follows: 

 

 

2 2

ˆ ˆ( )( )

ˆ ˆ( ) ( )

i i

i

i i

i i

y y y y

r
y y y y

 


 



 

                  (12) 

 

where  r = the correlation coefficient 

ˆ
iy  = the value of the i th pixel of the normalized 

image 

ŷ = the average value of the normalized image 

iy  = the value of the i th pixel of the standard data 

y  = the mean value of the standard data 

 

②  The Mean Absolute Difference (MAD), the calculation 

formula is as follows: 
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1

1
ˆ=

n

i i

i

MAD y y
n 

   (13) 

 

where  MAD = the mean absolute error value 

n  = the number of pixels 

ˆ
iy  = the value of the i th pixel of the normalized 

image 

iy  = the value of the i th pixel of the standard data 

 

③  The Root Mean Squared Error (RMSE), the calculation 

formula is as follows: 

 

 2

1

1
ˆ= ( )

n

i i

i

RMSE y y
n 

   (14) 

 

where  RMSE = the root mean square error 

n  = the number of pixels 

ˆ
iy  = the value of the i th pixel of the normalized 

image 

iy  = the value of the i th pixel of the standard data 

 

3. RESULTS AND ANALYSIS 

In this study, two scenes of images were selected, normalization 

experiments were performed, and their normalization results 

were mosaicked, as well as qualitative and quantitative 

evaluations.  

 

The experimental results are shown in Figure 3 below. Visually, 

the spatial pattern and spatial distribution of the images changed 

to a certain extent after normalization, with the SGloLM 

method showing the worst results, the normalized images of the 

SGloLM+MVC method being the most similar to the standard 

data used for evaluation. The mosaic seams of the 

SGloLM+MVC and the MGloLM+MVC methods are not 

obvious, and the improved SGloLM+MVC method can better 

eliminate the mosaic seams. 

 

The histogram of experimental results of different methods in 

the small area at the lower right corner of Figure 3 is shown in 

Figure 4 below (the NDVI shown here is enlarged by 10,000 

times). It can be seen from the figure that the histogram of 

normalized results is closer to the histogram of standard data 

than before normalization. Among them, the histogram curves 

of SGloLM +MVC and MGloLM +MVC methods are closest to 

the standard data. 

 

 

 
(a)   (b)                                                 (c) 

 
(d)                                                (e)                                                  (f)                                                (g) 

Figure 3. (a) Reflectance data before normalization, (b) NDVI data before normalization, (c) standard NDVI data, (d) NDVI data 

after SGloLM normalization, (e) NDVI data after SGloLM+MVC normalization, (f) NDVI data after MGloLM normalization, (g) 

NDVI data after MGloLM+MVC normalization NDVI data. 
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Figure 4. Comparison of histograms before and after normalization. 

 

 

 

The quantitative evaluation results for this small area are shown 

in Table 2. Compared with the data before normalization, the 

normalized data of the three methods are better in all indicators. 

CC improves from 0.6852 to about 0.74, MAD decreases from 

0.1598 to about 0.08, and RMSE decreases from 0.1965 to 

about 0.11. Among them, the SGloLM+MVC method has the 

largest CC, followed by MGloLM +MVC, the SGloLM+MVC 

method has the smallest MAD and RMSE, followed by 

MGloLM+MVC. Combining the three indicators, the 

SGloLM+MVC method has the best quantitative results, 

followed by MGloLM +MVC method, and the MGloLM 

method is the worst. 

 

 

Table 2. Quantitative evaluation of normalized results. 

 

 

4. CONCLUSION 

In this study, using GF-1 WFV and GF-2 PMS multispectral 

data, combined with absolute radiometric correction and 

relative radiometric correction, the NDVI normalization method 

was studied. First, a series of pre-processing of the data was 

performed to obtain the reflectance data. Then, based on the 

reflectance data, relative radiation normalization was performed 

and the existing SGloLM method is improved to accommodate 

the production of high-resolution vegetation index data 

products on a large scale. The improvement mainly starts from 

two aspects. On the one hand, it is to improve the coefficient 

solution of the SGloLM method, using the data to be 

normalized and its adjacent images to jointly participate in the 

solution of the coefficients of the linear regression equation, 

and MGloLM is proposed. On the other hand, it is to add the 

MVC method, the maximum value of NDVI at different times 

in a season is synthesized to represent the best condition of 

vegetation growth in the current season. For the improved 

method, combined experiments were performed and qualitative 

and quantitative evaluations were done respectively. The 

experimental results show that visually, both SGloLM+MVC 

and MGloLM+MVC are more effective, and the 

SGloLM+MVC method is the best in terms of quantitative 

indicators. 
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