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ABSTRACT: 
 
Satellite remote sensing has long been used to monitor forest harvesting with accuracies appropriate for practical mapping across a 
wide range of forest types by using different sensors. Unfortunately, in Italy, most of the cuts take place in winter where the cloud 
cover is very high, making it impossible an early detection by optical data. In this framework, synthetic aperture radar (SAR) data such 
as Sentinel-1 (S1) allows a better land monitoring by penetrating cloud cover. In this work we tested some methods for time series 
breakpoint detection with the aim of mapping significant forest cover changes in 2019 over an Italian forested area. These maps can 
be useful tools to support the focusing of field surveys by forest police with the aim of increasing the monitorable areas and decreasing 
the related field survey costs. Four methods were proposed and compared based on the analysis of SAR polarimetric index time series 
(Cross Ratio index). In particular, adopted methods search for a breakpoint in the cross-ratio time series assuming it as moment after 
that forest canopy temporal behaviour significantly change. In general, high overall accuracy and user’s accuracy were found for all 
methods while producer’s accuracy and K values are lower denoting an underestimation of harvested areas by single method. 
Conversely, combining all methods into a final classification shows highest user’s accuracy (> 0.9) in detecting forests harvestings 
when more than two classification methods were adopted. 
 
 
 
 

1. INTRODUCTION  

Remote sensing is well-known for its effectiveness in detecting 
and interpreting forest changes. Satellite remote sensing has long 
been used to monitor forest harvesting with accuracies 
appropriate for practical mapping across a wide range of forest 
types and sensors. Many studies adopted optical remote sensing 
for detecting forest cover changes (Gao et al., 2020; Heckel et al., 
2020; Lui and Coomes, 2015; Singh, 1989) since spaceborne 
remotely sensed data is less expensive than data from other 
sources (Holmgren and Thuresson, 1998). Despite the 
widespread use of optical data for estimating forest harvestings 
(De Petris et al., 2020; Hall et al., 1989; Saksa et al., 2003), this 
type of sensing is restricted by sun irradiation and cloud covering. 
Especially the latter condition affects the availability of images 
over tropical/equatorial forests that are known to be the most 
illegally harvested forests (Reiche et al., 2016). Also European 
forests are very harvested (Levers et al., 2014) and this issue is 
very cared by public opinion (Rametsteiner and Kraxner, 2003; 
Ranacher et al., 2020) therefore many European countries enact 
laws to restrict forest harvesting intensity. In Italy harvesting’s 
location and expected timber removal must be communicated 
before the intervention and bigger cuts need a formal permission 
by forestry authority. Illegal harvestings monitoring must be 
performed by local Forest police. Ordinarily, police checks are 
performed by a notice or by ground controls sampling (about 5% 
of communications) comparing the intervention features in 
respect to forest regulation. Unfortunately, this procedure does 
not allow a land synoptic monitoring, leaving unchecked the 95% 
of the requests and illegal harvestings could be not detected. In 
this context, remote sensing offers a major monitoring capability 
than the one based on ground checks. Thus, forest harvesting 
monitoring services based on earth observation imagery (e.g. 
Copernicus programme) are growing (De Petris et al., 2020). 
Unfortunately, in Italy, most of the cuts take place in winter 

where the cloud cover is very high, making it impossible an early 
detection by optical data. In this framework, synthetic aperture 
radar (SAR) data such as Sentinel-1 (S1) allows a better land 
monitoring by penetrating cloud cover (Geudtner et al., 2014). In 
addition, SAR data are more sensitive to the surfaces geometric 
properties potentially allowing significant changes detection in 
vegetation cover induced by trees removal (Askne and Santoro, 
2005). In this work we tested some change detection methods 
with the aim of detecting significant changes in forest cover and 
producing maps useful for detecting these areas. These can be 
useful tools to support the focusing of field surveys by forest 
police with the aim of increasing the monitorable areas and 
decreasing the related field survey costs. 
 

2. MATERIALS  

2.1 Study Area  

The area of interest (AOI) sizes about 96 km2 and it is placed in 
the North of the Piemonte region (NW - Italy). AOI is 
characterised by a dominant presence of forest (about 70%) and 
an altitudinal range between 250 and 800 m a.s.l (Fig.1). In 
addition, AOI is noted for having numerous requests for forestry 
cuts, which makes it an excellent and interesting area for the aims 
of this work. It is worth to remind that winter is the silvicultural 
season in Piemonte. In particular, allowed harvesting period 
starts on 1st October and ends on 31st May. In this work, 2019 was 
selected as reference period for testing our methods. 
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Figure 1. AOI location. Reference frame is WGS84 UTM 32N. 
  
2.2 Available data 

The difficulty of SAR data pre-processing, according to Vollrath 
(Vollrath et al., 2020) and Reiche (Reiche et al., 2016) is one of 
the key reasons for its slowly adoption by a larger user 
community. In this regard, the Google Earth Engine (GEE) web-
based platform provides instant access to SAR imagery and 
allows users to focus on the information they need (Gorelick et 
al., 2017) making such data provider useful to transfer the 
following approach into operative framework. Therefore, in this 
work, satellite imagery was collected using GEE while others 
data were download from free-available database.  
 
2.2.1 Forest map: The forestry map (FM) of the Piemonte 
Region (Camerano et al., 2017), was used to identify forest areas 
within AOI. FM has a nominal scale of 1:10000 and updated in 
2016. It was obtained freely as a vector layer from the regional 
geoportal (www.geoportale.piemonte.it). 
 
2.2.2 Sentinel-1 imagery: S1 ground range detected (GRD) 
IW (Interferometric Wide Swath) image collection, available in 
Google Earth Engine (GEE), was used. S1 GRD products consist 
of focused, detected, multi-looked SAR data projected to ground 
range. The product has an approximately squared pixel with a 
spatial resolution of about 10 m provided in backscattering values 
(dB) for VV and VH polarizations. All images in the period 1st 
June 2018 and 30th June 2020 were considered for two orbits: 
orbit path = 66 for ascending and orbit path = 88 for descending. 
A total of 120 images were analysed. This sensing period was 
selected to fit the silvicultural season in Piemonte. Considering 
the 2019 silvicultural season, two winters can occur, one between 
2018-2019 and the other between 2019-2020. Therefore, starting 
from summer 2018 until summer 2020 should assure a proper 
times series length to detect harvestings in 2019. In order to 
minimize speckle all images were averaged at the monthly level 
generating a S1 time series having 24 images for each 
polarization and orbit. Since AOI is in mountain area, some 
geometric distortions are expected to negatively affect the 
monitorability of forest cover (Chen et al., 2018).  Unfortunately, 
GEE S1 imagery currently has not a mask accounting for 
distortion mapping. Therefore, two S1 GRD images were 
download from Copernicus Scihub 
(https://scihub.copernicus.eu/); one was acquired on 21st of 
November 2021 for the ascending orbit (orbit path = 66) the other 
was acquired on 2nd December 2021 for descending orbit (orbit 
path = 88) and were processed in SNAP vs 8.0 (Veci et al., 2014) 
to map geometric distortions. 
 

2.2.3 Reference data: A total of 24 reference data (RD) were 
acquired to validate the methodological approach suggested in 
this work (Fig. 2). RD was collected by photointerpretation of a 
couple of orthophotos (having a geometrical resolution of 30 cm) 
available in Google Earth Pro imagery. Specifically, the images 
referring to August 2018 and September 2019 were used in order 
to detect significant variations associated with forest cuts in the 
forest pattern within AOI. Subsequently, area delimitation was 
carried out by polygons drawing, resulting in a vector file 
containing all RD patches. In particular, 8 patches were identified 
as not harvested (about 30.7 ha) and 16 as harvested (about 9.8 
ha). 
 

 
 

Figure 2. Harvested and not- harvested reference polygons 
location in AOI. Reference frame is WGS84 UTM 32N. 

 
3. METHODS 

3.1 CR time series generation 

In this work, the Cross-ratio (CR) radar index was adopted to 
monitor forest canopy. In fact, CR is sensitive to vegetation 
canopy density (Vreugdenhil et al., 2020), therefore a canopy 
structure change should affect CR values (De Petris et al., 2021; 
Mandal et al., 2020; Nasirzadehdizaji et al., 2019). CR was 
computed directly on GEE by subtraction between S1 VH and 
VV time series previously defined (i.e. CRdB = VHdB - VVdB), 
resulting in 2 different CR time series (CRTS) having 24 
observations, one for ascending orbit and one for descending one. 
Subsequently, the two CR stacks were downloaded and projected 
into the WGS84/UTM 32N (EPGS: 32632) reference frame. 
 
3.2 SAR geometric distortions masks 

Considering many SAR images acquired from the same orbit 
path, look angle for the same pixel does not change significantly 
along the CRTS, therefore, parallel rays’ approximation 
commonly used in interferometry could be assumed (Richards, 
2009) and SAR geometric distortion should be in the same 
position along the analysed period. Hence, only two S1 GRD 
images were used in this work to detect SAR geometric 
distortions.  The latter were mapped using the tool available in 
SNAP. Specifically, layover and shadows areas were detected 
using orbit information and SRTM HGT digital elevation model 
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having a geometric resolution of 30 m. Finally, distortions were 
then geocoded into WGS84 UTM 32N reference frame for both 
ascending and descending images. Resulted images were used to 
mask out all CRTS pixels in the distorted areas. 
 
3.3 Harvesting’s detection methods 

In this work, 4 different methods for forest harvesting detection 
were used and compared. All methods are based on the 
assumption that a forest harvesting constitutes a single breakpoint 
in the CRTS significantly changing CR behaviour after the event 
moving from higher CR values to lower ones. All breakpoint 
analysis were performed using R software vs 4.1 (R Development 
Core Team, 2013). 
 
3.3.1 Pettitt’s test: The Pettitt’s test is a non-parametric test 
based on Mann-Whitney two sample test (rank based) (Pettitt, 
1979) that looks for a single breakpoint at an unknown 
observation t. The null hypothesis is that no change occurs along 
the CRTS; the alternative hypothesis is that the CRTS built in the 
range before t is significantly different from the one built after 
the breakpoint. If the corresponding p-value is lower than the 
selected significance level, one can reject the null hypothesis; 
consequently, the CRTS can be divided into two sub-series. The 
map of breakpoint moment (i.e. CRTS observation at which 
occurred a significant breakpoint) and the map of correspondent 
p-value were computed maintaining the same geometrical 
resolution of CRTS.  In this work, the significance level was 
cautelatively set equal to 0.9 (α = 0.1). Therefore, all pixels 
having p-value greater than 0.1 were masked out, while the 
reminder ones were coded as 1 and labelled as Harvested. 
 
3.3.2 Residuals CUSUM: This method is based on the 
cumulative sum of the residuals of the differences between CRTS 
and the mean of CRTS signal in the considered period. The 
CUSUM function is increasing before the breakpoint and starts 
decreasing after the breakpoint; therefore, the moment at 
CUSUM is maximized can be assumed as the breakpoint one and 
mapped accordingly. Unfortunately, for each CRTS profile a 
maximum is always possible, therefore an auxiliary statistic 
hereafter called SD (Significance of the difference) was 
computed and mapped according to eq.1. SD(x,y) map can be 
used to assess if the difference between two mean signals , i.e. 
before and after the breakpoint, is significant based on variance 
propagation law (Hughes and Hase, 2010). Assuming the 
standard error of the mean (SEM) as a measure of the mean 
uncertainty (Andrade, 2020) we can compute the uncertainty of 
the difference and compare it (by ratio) to the difference value. 
SD value greater than 1 means that signal difference before and 
after the breakpoint is significantly higher than its uncertainty (i.e 
noise). Cautelatively, this significance was set double (i.e. 2) in 
order to guarantee a better detection of highly significant 
breakpoints.    

    𝑆𝐷(𝑥, 𝑦)  =  
ఓభ: ି ఓ:మర

ඥ(ௌாெభ:)మା(ௌாெ:మర)మ
      (1) 

Where 𝜇ଵ:௧  and 𝜇௧:ଶସare mean CR signals before and after the 
breakpoint respectively considering 24 observations in CRTS. 
𝑆𝐸𝑀ଵ:௧ and 𝑆𝐸𝑀௧:ଶସ are the standard errors of the mean before 
and after the breakpoint respectively. The pixels having SD lower 
than 2 were masked out, while the reminder ones were coded as 
1 and labelled as Harvested. 
  

3.3.3 Linear trend slope: A third approach to detect forest 
harvestings is based on the assumption that harvested forest 
pixels have a negative trend since they move from higher CR 
values to lower ones with no significant recovery rate in the 
considered period (two years). Thus, the trend was modelled as 
first order polynomial by ordinary least squares between CR 
values and observations time at the pixel level. Subsequently, the 
slope value and its significance, i.e. p-value of t-test to assess that 
slope value is significantly different from 0 (Andrade and 
Estévez-Pérez, 2014), were mapped. All pixels having a p-value 
higher than 0.1 or having a positive slope value were masked out, 
while the reminder ones were coded as 1 and labelled as 
Harvested. 
 
3.3.4 Three methods combination: To give a degree of 
reliability of the detections about harvested areas, a final 
classification was produced combining the previously mentioned 
methods. In particular, the three harvestings’ classifications were 
summed resulting in a new map with the following codes: 0, for 
not harvested forests; 1, for those pixels having at least one 
classification coded as 1 (harvested); 2, for those pixels having at 
least two classifications coded as 1 (harvested); 3, for those pixels 
having all classifications coded as 1 (harvested). 
 
3.4 Validation and comparison 

All methods were assessed by confusion matrix computation 
involving RD. In particular, producer’s accuracy (PA), user’s 
accuracy (UA), overall accuracy (OA) and kappa values (K) were 
computed according to (Congalton and Green, 2019) for each 
classification and for both ascending and descending orbits.   
 

4. RESULTS AND DISCUSSIONS 

4.1 SAR geometric distortions masks 

Using SNAP software, the geometric distortions were mapped 
(Fig. 3) and related CRTS pixels finally masked out from 
subsequently processing steps. About 21 ha and 17 ha were 
detected as distorted areas for ascending and descending images 
respectively, denoting how less than 1% of the forest areas were 
distorted. This analysis shows that ascending orbit see more than 
23% of distorted areas than descending orbit highlighting how 
ascending CRTS has a minor monitoring capability than 
descending one in AOI.  
 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-225-2022 | © Author(s) 2022. CC BY 4.0 License.

 
227



 

 
 

Figure 3. Geometric distortions mapped by SNAP tool for 
ascending and descending nodes. Reference frame is WGS84 

UTM 32N. 
 
4.2 Harvesting’s detection methods 

Figure 4 shows CRTS profiles representing the average CR 
values of RD for both harvested and not-harvested areas. After 
October 2019 there is a clear decreasing of CR values probably 
caused by forest harvesting in AOI. This moment could be 
assumed as CRTS breakpoint. In fact, before this moment CRTS 
are very similar for both RD classes; after breakpoint CRTS 
profiles show different behaviours. RD harvested areas have 
lower CR values than not-harvested ones, supporting the 
hypothesis that forest harvesting significantly change vegetation 
structure/cover resulting into different CRTS.  
  

 
 

Figure 4. CRST average profiles of RD. Red line is the 
expected winter cutting moment considering the 2019 

silvicultural season. 
 
The forest harvestings detection map using the Pettitt’s test 
approach is reported in figure 5. Adopting this method, about 208 
ha and 239 ha were classified as harvested for in the 2019.  

 

 
 

Figure 5. Forest harvestings classification by Pettitt’s test 
method for (a) ascending CRTS and (b) for descending CRTS. 

Reference frame is WGS84 UTM 32N. 
 
The forest harvestings detection map using the residuals CUSUM 
approach is reported in figure 6. Adopting this method, about 828 
ha and 737 ha were classified as harvested for in the 2019.  
 

 
 

Figure 6. Forest harvestings classification by Residuals 
CUSUM method for (a) ascending CRTS and (b) for 

descending CRTS. Reference frame is WGS84 UTM 32N. 
 
The forest harvestings detection map using the linear trend slope 
approach is reported in figure 7. Adopting this method, about 296 
ha and 272 ha were classified as harvested for in the 2019.  
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Figure 7. Forest harvestings classification by Linear Trend 
Slope method for (a) ascending CRTS and (b) for descending 

CRTS. Reference frame is WGS84 UTM 32N. 
 
The forest harvestings detection map using the combined 
approach is reported in figure 8. Adopting this method and 
assuming harvested all pixels having a value greater than equal 
to 1, about 704 ha and 651 ha were classified as harvested for in 
the 2019. In particular, for both ascending and descending nodes 
about 25% of harvested pixels were coded as harvested (3); about 
10% for harvested (2) while 65% as harvested (1).  
 

 
 
Figure 8. Forest harvestings classification by combined method 
for (a) ascending CRTS and (b) for descending CRTS. Colours 
represent how many times a pixel was classified as Harvested 
by combining all methods.  Reference frame is WGS84 UTM 

32N. 
 
In general, it can be noted that ascending orbit overestimates of 
about 10% than descending one for all methods excepting for 
Pettitt’s test approach where harvesting classification by 
ascending imagery underestimates of about 12% than descending 
orbit.  
 
4.3 Validation and comparison 

Proposed methods accuracies were computed in respect to RD 
using confusion matrix elements. Figure 9 reports the OA and K 
values for each classification. In general, all classifications have 
OA greater than 0.78 for ascending orbit while OA greater than 
0.85 for descending one with no significant differences between 
methods. K values are higher in descending (>0.59) than 
ascending (>0.34) denoting a major randomness contribution for 
ascending classifications.  
 
 

 
 

Figure 9. OA and K values resulting from different forest 
harvesting classifications in respect to RD. 

 
 
PA values reported in Figure 10a, appear to be quite high for Not-
Harvested class for both ascending (PA > 0.87) and descending 
orbit (PA > 0.91). For this class no significant differences in PA 
between methods were found. Conversely, some critical points 
were found in the Harvested class. Specifically, a great difference 
between ascending and descending orbit was noted resulted in 
PA > 0.28 and PA > 0.50 respectively. Moreover, significant PA 
differences between methods have been observed. In particular, 
Pettitt's test was the worst performing method, while the 
combined method results to be the best having PA equal to 0.52 
and 0.72 for ascending and descending orbits respectively. UA 
values reported in Figure 10b, appear to be quite high for Not-
Harvested class for both ascending and descending orbit, UA > 
0.81 and UA > 0.86 respectively. For this class no significant 
differences in UA between methods were found. While, again, 
some critical points were found in the Harvested class. 
Specifically, a great difference between ascending and 
descending orbit was noted, UA > 0.55 and UA > 0.76 
respectively. Moreover, significant UA differences between 
methods have been observed. In particular, Residuals CUSUM 
was the worst performing method, while Pettitt's test (UA equal 
to 0.83 and 0.97 for ascending and descending orbit respectively) 
and Linear Trend Slope (UA equal to 0.84 and 0.96 for ascending 
and descending orbit respectively) prove to be the best methods. 
Combined method shows UA equal to 0.62 and 0.76 for the 
ascending and descending orbit respectively. 
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Figure 10. (a) PA and (b) UA values resulting from different 
forest harvesting classifications in respect to RD. 

 
Unfortunately, all classifications show medium-low PA values 
for harvested areas denoting a general underestimation of 
harvestings. Nevertheless, UA values show medium-high 
accuracy denoting that detected harvestings are effectively 
mapped. Considering this discrepancy, it is desirable to select a 
method that balances PA and UA. Therefore, in this context the 
combined method appears to be a good compromise. 
Specifically, it should be noted that the descending orbit showed 
excellent results for both Not Harvested class, UA equal to 0.91, 
PA equal to 0.93, and Harvested class UA equal to 0.76, PA equal 
to 0.72, resulting in an OA equal to 0.81. It is worth to remind 
that in a technology transfer context, where detection and 
monitoring of forest cuts could be carried out by S1 data, the use 
of combined method allows the forest authority to obtain a map 
of reliability degree of the deductions from harvesting detection 
map. In particular, the combined method gives us information 
about the concordance between other proposed methods, 
counting how many times a forest pixel is seen harvested by 
different methods. From figure 11 it can be noted that pixels 
coded as harvested (1), i.e. classified as harvested by only one 
method, show very low UA values (< 0.52) for both ascending 
and descending orbits, while considering class harvested (2) and 
harvested (3) show very high UA values > 0.90 for descending. 
These results suggest that if more than two harvesting detection 
methods are adopted, combined classification is very accurate 
and prove to be an effective procedure. Despite these results, 
some doubts still persist concerning the discrepancy between 
classifications generated by ascending and descending CRTS. In 
fact, CR index should allow to compare images acquired from 

slightly different look angle (De Petris et al., 2021), but the 
consistency seems not so effective resulting into different CRTS 
behaviours and finally generating harvesting different detection 
results. A possible reason of this discrepancy could be the 
presence of not modelled geometric distortions as mapped by 
SNAP software. A recent work developed by (De Petris et al., 
2021) proved how slightly changes of look angle from images 
taken from the same orbit path can negatively affect target-sensor 
line of sight visibility. Probably, the jointly adoption of a course 
resolution DEM (i.e. SRTM) and not considering the 
active/passive relationship between layover/shadows areas from 
SNAP tool, compromised the effectiveness of geometric 
distortion mapping. Further experiments will be expected to 
prove this hypothesis adopting the routine developed by (De 
Petris et al., 2021) directly applicable in GEE.  
 

 
 
Figure 11. UA values of different classes in the combined 
method using ascending and descending CRTS. 

5. CONCLUSIONS 

In this work different methods to detect forest harvestings were 
compared. All methods are based on the analysis of SAR 
polarimetric index time series (i.e., CR). In particular, adopted 
methods search for a breakpoint in the CRTS assuming it as 
moment after that forest canopy temporal behaviour significantly 
change. In general, high OA and UA were found for all methods 
while PA and K values are lower denoting a underestimation of 
harvested areas by single method. Conversely, the combined 
method shows highest UA accuracy (> 0.9) when more than two 
classification method were adopted. 
In respect of more common supervised classification methods 
(like machine learning ones), the adoption of time series analysis 
approach allows to be independent from a training data making 
these approach more transferable to operative sector. Moreover, 
the combined method here proposed allows mapping how many 
times a pixel is seen as harvested by different classifiers alerting 
the final user (i.e. forest police) about the reliability degree of the 
deductions from S1 imagery. Finally, some doubt about the 
discrepancy between deductions derived by CRTS from 
ascending and descending nodes have been raised opening new 
research scenarios to investigate this phenomenon.  
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