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ABSTRACT:

The use of multi-branch architectures in off-the-shelf light-weight residual series neural networks can significantly improve their
performance in remote sensing scene classification tasks. However, such architectures come at the expense of an increased number
of parameters and calculations. In this paper, we propose the Decoupling Multi-branch Pointwise Convolutions (DMPConv), which
works without a corresponding increase in parameters and calculations during inferencing, and at the same time, can maintain the
same performance improvement ability as the multi-branch architectures. DMPConv can be decoupled into two states, the training-
time DMPConv and the inferencing-time DMPConv. The training-time DMPConv enhances the expressivity of the network by using
weighted multi-branch 1×1 convolutions. After training, we use structural reconstruction to convert the training-time DMPConv
to the inferencing-time DMPConv, which has the same form as vanilla 1×1 convolution, so as to realize the inferencing-free.
Extensive experiments were conducted on multiple remote sensing scene classification benchmarks, including Aerial Image data
set and NWPU-RESISC45 data set to demonstrate the superiority of DMPConv.

1. INTRODUCTION

Remote sensing scene classification is the automatic assignment
of semantic labels to each item in remote sensing images (Xia
et al., 2017). The process has recently received massive atten-
tion because it plays a vital role in many applications, such as
geographic target detection, land use classification, and urban
planning. However, remote sensing images have a wide visual
range and a complex spatial structure with high intra-class and
low inter-class variability, and due to the continuous increase
in the volume of remote sensing image data as well, accurate
and efficient scene classification in remote sensing has become
a very challenging issue.

Recently, convolutional neural networks (CNNs) have achieved
remarkable progress in remote sensing scene classification
tasks. This development has enabled emerging technology such
as drones, satellite platforms, vehicle platforms, Internet-of-
Things (IoT) devices, and robots. However, these devices are
often limited in terms of memory storage and computing power,
which hinders the actual deployment of top-performing CNNs
(Szegedy et al., 2017, He et al., 2016) with highly complex
trainable parameters on these resource-constrained platforms.

Regarding the above-mentioned challenge, considerable effort
has been put into designing light-weight residual networks for
emerging applications. In recent years, a popular basic com-
ponent named depthwise separable convolution is welcomed
to design light-weight residual series models, such as Mobi-
leNet (Howard et al., 2017, Sandler et al., 2018) and Shuffle-
Net (Zhang et al., 2018b). In addition, ShiftResNet (Wu et al.,
2018) utilizes shift operations to remove the constraint imposed
∗ Corresponding author

by depthwise separable convolutions, thus attaining competitive
accuracy with fewer parameters. However, when these off-the-
shelf light-weight residual series models remain unable to meet
our specific needs with regards to accuracy and efficiency, new
models need to be redesigned at the cost of numerous man-
hours or GPU hours. In recent years, the superior perform-
ance of multi-branch architectures have been verified, such as
in Multilevel ResNets (Zhang et al., 2018a), which can be in-
corporated into residual series networks to further improve their
accuracy on remote sensing images. However, multi-branch ar-
chitectures are very expensive in both parameters and calcula-
tions, each of which grows multiplies with respect to branch
numbers and may exceed the resource limitations of the em-
bedded platforms, thus significantly affecting the efficiency of
these models.

In order to alleviate this problem, a novel multi-branch archi-
tecture was proposed, where he performance of the off-the-
shelf light-weight residual series networks on remote sensing
images can be improved without a corresponding increase in
parameters and calculations during inferencing. More spe-
cifically, a novel multi-branch architecture called Decoup-
ling Multi-branch Pointwise Convolutions (DMPConv) was de-
signed, which can be decoupled into two states of training-time
DMPConv and inferencing-time DMPConv. The training-time
DMPConv utilizes weighted multi-branch 1×1 convolutions to
enhance the performance of the off-the-shelf light-weight re-
sidual series networks. The multi-branch architectures focus
on different feature subspaces to aggregate more information
and diverse features, which is helpful to extract remote sens-
ing image features with rich and diverse backgrounds, the high
similarity of different scenes, high resolution, color and tex-
ture, and complex and varied imaging methods. After training,
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Figure 1. Overview of DMPConv.

the training-time DMPConv is equivalently converted into the
corresponding inferencing-time DMPConv via structural recon-
struction of the weighted multi-branch 1×1 convolution ker-
nels with batch normalization to 1×1 convolution kernels. Due
to the additivity principle of 1×1 convolution kernel fusion
and batch normalization (BN) branch fusion, the reconstructed
inferencing-time DMPConv does not incur additional computa-
tional and parameter burdens during inferencing as opposes to
the 1×1 convolution. The general framework of DMPConv is
shown in Fig.1. Furthermore, DMPConv can be applied as a
drop-in replacement to the residual series blocks of the vanilla
1×1 convolutions (He et al., 2016, Howard et al., 2017, Wu et
al., 2018) and 1×1 group convolutions (Zhang et al., 2018b,
Ma et al., 2018). Next, decoupling multi-branch 1×1 convolu-
tions neural networks (denoted as DMP-CNNs) can construct
two states of the training-time DMP-CNNs and inferencing-
time DMP-CNNs via the decoupled DMPConvs.

The experiments show that substituting the 1×1 convolution
with DMPConv improves the performance of popular 2D light-
weight residual series CNN backbones, such as MobileNet
(Howard et al., 2017, Sandler et al., 2018), ShuffleNetV1
(Zhang et al., 2018b), and ShiftResNet (Wu et al., 2018), when
applied to two widely used public remote sensing image data
sets: the Aerial Image (Xia et al., 2017) and the NWPU-
RESISC45 (Cheng et al., 2017a). The following are the key
contributions of this article.

1. A novel weighted multi-branch 1×1 convolutions archi-
tecture, denoted as DMPConv, used to enhance the per-
formance of off-the-shelf light-weight residual series net-
works on remote sensing images, is presented.

2. DMPConv can be decoupled into training-time DMPConv
and inferencing-time DMPConv by structural reconstruc-
tion, which is a key factor in achieving inferencing-free.

3. Comprehensive experiments on three benchmark data sets
prove the effectiveness of DMPConv.

2. RELATED WORK

In this section, we give a brief literature review of this paper,
including prior works on light-weight CNNs design and multi-
branch convolutional networks.

2.1 Light-weight CNNs.

In recent years, high-quality deep neural networks are in-
creasingly run on resource-constrained platforms, creating an
urgent need for further research on light-weight CNNs (He
and Sun, 2015), which can create an optimal balance between
accuracy and efficiency. SqueezeNet (Hu et al., 2018) reduces
the required parameters and computations significantly, by
extensively utilizing the Fire module, in which the output of a
3×3 convolution and a 1×1 convolution are concatenated in the
channel dimension. Xception (Chollet, 2017), MobileNetV1
(Howard et al., 2017) and MobileNetV2 (Sandler et al., 2018)
adopt depthwise separable convolutions as alternatives to
standard convolutions, which greatly improves computational
efficiency. However, when these off-the-shelf light-weight
networks cannot meet our specific needs, many resources
are required to redesign the networks. In order to alleviate
the above problems, multi-branch architectures have been
proposed in recent years, which makes it more convenient to
improve the accuracy of a series of off-the-shelf light-weight
neural networks.

2.2 Multi-branch convolutional networks.

Multi-branch representation has shown to be successful in In-
ception models (Szegedy et al., 2017), where each branch
is carefully customized, to aggregate more information and
myriad features. Multi-branch representation, in which each
branch is carefully customized, has been particularly success-
ful in Inception models (Szegedy et al., 2017) in the capacity
to aggregate a variety of data and features. ResNets (He et al.,
2016) add shortcut connections to layers, in a process called
pure identity mapping. Inspired by all of these methods, multi-
branch weighted 1×1 convolutions are utilized to optimize our
structure. Notably, our structures can be converted into a vanilla
1×1 convolution during inferencing, distinguishing them from
other Multi-branch designs.

3. APPROACH

This paper proposes the DMPConv, which can improve the per-
formance of off-the-shelf light-weight residual series networks
without an increase in the parameters and calculations required
during inferencing. DMPConv has two different states, the
training-time DMPConv and inferencing-time DMPConv. The
training-time DMPConv uses weighted multi-branch 1×1 con-
volutions to improve performance of the networks on remote
sensing images with complex scenes. Through structural re-
construction technology, the training-time DMPConv can be
equivalently transformed into the inferencing-time DMPConv,
thereby achieving no additional computing burden during infer-
encing.

In following sections, the training-time DMPConv structure is
first introduced, before describing the structural reconstruction
for inferencing-free.

3.1 Feature Expression Enhancement with Training-time
DMPConv

Modern convolutional neural networks (Deng et al., 2009,
Szegedy et al., 2015a) are commonly composed of successive
building blocks. The evolutionary ResNet (He et al., 2016) in-
troduces residual structures into the building blocks to target the
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Figure 2. Structural reconstruction of a DMPConv.

problem of vanishing gradients in deep neural networks. Light-
weight residual series CNNs (Zhang et al., 2015) perform ex-
cellently, but in practice, deeper and wider light-weight residual
series networks tend to perform better. However, ResNeXt (Xie
et al., 2017), GoogLeNet (Szegedy et al., 2015b), and ACNet
(Ding et al., 2019) demonstrate that cardinality is also a critical
factor. ResNeXt (Xie et al., 2017) demonstrates that a higher
cardinality can effectively induce accuracy gain than deeper or
wider network structure, especially when increasing depth and
width begin to yield diminishing returns on off-the-shelf net-
works. This is due to increasing the cardinality allows the net-
work to focus on information from different representation sub-
spaces.

Light-weight residual series networks mainly apply 1×1 con-
volutions to achieve a reduction in computational costs. How-
ever, due to the limited capacity of 1×1 convolutions, weighted
multi-branch 1×1 convolutions are used to improve networks
expression capacity are considered instead, as it increases car-
dinality.

To this end, we introduce the training-time DMPConv, which
utilizes weighted multi-branch 1×1 convolutions, transforming
every 1×1 convolution in the residual series blocks into a par-
allel weighted multi-branch structure.

In the formula, X,Y ∈ Rc×h×w denote the input and output
feature tensor of the weighted multi-branch 1×1 convolutions,
respectively. While h and w denote the spatial dimensions, and
c represents the channel numbers. πi is the learnable weight for
each branch, Pi is the i-th branch of 1 × 1 convolution kernel,
and Yi is the corresponding result. The input tensor for each Pi

is exactly the same. The result of each weighted multi-branch
1×1 convolutions can be computed according to Eq.1, where ∗
denotes the 2D convolution operator.

Y =

N∑
i=1

Yi =

N∑
i=1

πi(Pi ∗X) (1)

Due to the weighted multi-branch 1×1 convolutions architec-
ture, our proposed modules tend to obtain richer feature inform-
ation than the 1×1 convolution. Multi-branch architectures can
be said to be extremely similar to the idea of integrated learning,
which increase the expressiveness and robustness of the trained
networks.

3.2 Structural Reconstruction for Inferencing-time DMP-
Conv

The weighted multi-branch 1×1 convolutions structure is adop-
ted to improve accuracy. However, the increase in parameters
and calculations decreases the efficiency of the models. When
training is completed, each training-time DMPConv is trans-
formed into a 1×1 convolutional layer, which is the form of
the inferencing-time DMPConv, and produces the same output
as training-time DMPConv. In this way, a more powerful net-
work, which requires no additional calculations during inferen-
cing can be obtained. Thus, inferencing-free is mainly achieved
through two steps, namely, weighted multi-branch 1×1 convo-
lutions reconstruction and BN branches reconstruction. The de-
tails can be seen in Algorithm 1.

3.2.1 Weighted Multi-branch 1×1 Convolutions Recon-
struction: The homogeneous property of convolutions is very
useful. Several 1×1 convolution kernels, each with a consistent
size, operate on the same input, which produces an output with
the same resolution. As illustrated in Fig.2, the weighted para-
meters can be directly added to the corresponding positions to
acquire an equivalent kernel with the same output. This com-
putation can be written as in Eq.2. Additionally,

∑
represents

the element-wise addition of the kernel parameters.

Y =

N∑
i=1

πi(Pi ∗X) = X ∗ (
N∑
i=1

πiPi) (2)

3.2.2 BN Branches Reconstruction: In modern CNNs,
BN (Ioffe and Szegedy, 2015) is commonly employed to pre-
vent overfitting and accelerate the training. A linear scaling
transformation follows a BN layer to improve the representa-
tion capability as a common practice. Let X, B[i]:,:,k be the
input and k-th output layer filter in the i-th branch, respect-
ively. For the k-th output layer filter in the i-th branch, the
corresponding output feature map channel can be formulated as

B[i]:,:,k = (πi(X ∗ P (k)
i )− µ[i]k)

γ[i]k
σ[i]k

+ β[i]k (3)

where µ[i]k and σ[i]k represent the channel-wise mean and
standard deviation of BN. γ[i]k and β[i]k respectively denote the
trainable scaling and bias parameters. Eq.3 can then be conver-
ted to Eq.4, which produces identical outputs, that can be easily
verified.

B[i]:,:,k = X ∗
γ[i]k
σ[i]k

πiP
(k)
i + (β[i]k − µ[i]k

γ[i]k
σ[i]k

) (4)

Every BN and its preceding conv layer are then reconstructed
into a conv with a bias. bk and P (k) are the bias term and con-
volution kernel after reconstitution, respectively. They can be
formulated as

bk =

N∑
i

β[i]k −
α[i]k

γ[i]k
µ[i]k (5)
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Figure 3. Framework of DMP-CNN.
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Figure 4. some examples from the NWPU-RESISC45 data set.

P (k) =

N∑
i

(πi

γ[i]k
σ[i]k

P
(k)
i ) (6)

Thus the output for the weighted multi-branch 1×1 convolu-
tions can also be calculated as:

B:,:,k = X ∗ P (k) + bk (7)

3.3 From CNNs to DMP-CNNs

Decoupling Multi-branch Pointwise Convolutions can easily be
employed as a drop-in replacement for 1×1 convolutions in ar-
chitectures of light-weight residual series. In this paper, we
use the prefix DMP- for the networks that employ Decoup-
ling Multi-branch Pointwise Convolutions. Fig.3 illustrates the
framework of DMP-CNN.

4. EXPERIMENTS

In order to validate the performance of DMPConv, numerous
experiments are performed on two commonly used remote sens-
ing image classification benchmarks: Aerial Image (Xia et al.,
2017) and NWPU-RESISC45 (Cheng et al., 2017a). Each ex-
periment was repeated five times to reduce the effect of random
initialization. All experiments were conducted with the PyT-
orch (Paszke et al., 2019) library.

4.1 Data sets Description

4.1.1 Aerial Image data set: The data set contains 10,000
scenes whose resolution is 600×600. The number of classes
is 30, and the sensing spatial resolution varies from 0.5 to 8m.
Each class has 220 to 420 images.

4.1.2 NWPU-RESISC45 data set: The data set is com-
prised of 31,500 images with 45 classes, and each class con-
sists of 700 images with a spatial resolution ranging from about
30 to 0.2 m/pixel and fixed at 256×256 pixels. The NWPU-
RESISC45 is the biggest remote sensing scene classification
benchmark in both the types of classes and the number of im-
ages, making this data set the most challenging. Some examples
of images are shown in Fig.4.
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Model Dual-DMP 1×1 Training ratio
10% 20%

ShuffleNet 2x X 87.25 90.18
ShuffleNet 2x X 88.85 91.48
ShiftResNet110-3 X 87.43 90.45
ShiftResNet110-3 X 89.62 92.17
MobileNetV2 X 88.15 90.44
MobileNetV2 X 89.89 92.82

Table 1. Ablation study on NWPU-RESISC45 data set.

4.2 Data Set Setting and Parameter Setting

As in previous studies, datasets are split into training images
and testing images. For the Aerial Image data set (Xia et al.,
2017), the ratio of the training are set to 20% and 50%, re-
spectively, while in the NWPU-RESISC45 data set (Cheng et
al., 2017a), the ratio of the training are set to 10% and 20%.
These settings are identical to previous studies in the literature
(Cheng et al., 2018). The data augmentation techniques scheme
for training is adhered to as follows: random center cropping,
random rotating 15 degrees and left-right cropping before feed-
ing it into the network for training.

The method is performed on various light-weight residual series
CNN architectures, which are pre-trained on ImageNet. Sev-
eral representative benchmark models, including ShuffleNet
2x, ShiftResNet110-3, and MobileNetV2, are trained with
Stochastic Gradient Descent (SGD). The hyperparameter set-
tings in paper (Liu et al., 2019) is followed, where init lr = 0.001
before being set to 0.0001 for the last ten epochs, and training
proceeds for 120 epochs with a batch size of 36, weight decay
of 5e−4, and Nesterov momentum of 0.9. The correlative DMP-
CNNs use identical training settings. Overall accuracy (OA) is
adopted to assess the scene classification performance of these
methods in the subsequent experiments.

4.3 Ablation Study

4.3.1 DMPConv vs 1×1 Convolution: In our networks, the
Decoupling Multi-Branch Pointwise Convolutions (DMPConv)
structure is employed to improve network performance. To val-
idate the effectiveness of the DMPConv, ablation experiments
are performed (see Table.1). For a clear comparison, the per-
formance of the proposed Decoupling Dual-Branch Pointwise
Convolutions (Dual-DMP) structure is first evaluated.

The ablation experiments are conducted on the largest and
most challenging scene data set (i.e., NWPU-RESISC45 data
set(Cheng et al., 2017a)). As shown in the Table.1, for the
NWPU-RESISC45 data set (10% training images), the Shuffle-
Net 2x equipped Dual-DMP shows an improved OA from
87.25% to 88.85% (1.60% ↑), while the NWPU-RESISC45
data set (20% training images) increased from 90.18% to
91.48% (1.30% ↑). The OA for MobileNetV2 increased by
1.74% on NWPU-RESISC45 (10% training images) and in-
creased by 2.38% on NWPU-RESISC45 (20% training im-
ages). Notably, compared to using 1×1 convolutions, the use
of Dual-DMP achieves a greater improvement, which can also
be demonstrated by ShiftResNet110-3 in Table.1.

4.3.2 Effects of Different Number of Branches: For fur-
ther exploration on the benefit of the DMPConv structure, ex-
periments on a spectrum of branch numbers from a candid-
ate set of {1, 2, 3, 4, 5, 6} are conducted. As shown in Fig.5,

(a) 10% training images

(b) 20% training images

Figure 5. Performance of DMP-CNNs with different branch
numbers on the NWPU-RESISC45 data set.

Model OA
20% 50%

fine-tuned ShuffleNet 2x 92.07±0.16 95.03±0.10
DMP-ShuffleNet 2x 92.36±0.14 95.84±0.10
fine-tuned ShiftResNet110-3 90.92±0.17 94.77±0.15
DMP-ShiftResNet110-3 91.43±0.13 95.93±0.13
fine-tuned MobileNetV2 92.55±0.12 95.21±0.10
DMP-MobileNetV2 92.77±0.11 96.22±0.10

Table 2. Performance improvement of ShuffleNet,
ShiftResNet110-3 and MobileNetV2 on Aerial Image data set.

when branch=1, DMP-CNNs degrade to the original light-
weight networks, which obtain the lowest OA on data sets in-
cluding NWPU-RESISC45 (10% training images) and NWPU-
RESISC45 (20% training images). In particular, Fig.5 demon-
strates that the performance in DMP-CNNs with branches less
than 4 improves with an increased number of branches, while
the rate of improvement slows down. As branches more than
4, performance stops growing and may deteriorate slightly as
the number of branches increases due to parameter redund-
ancy. Besides, all DMP-CNNs models are able to achieve
the best balance between accuracy and computational burden
on the NWPU-RESISC45 data set (10% training images) and
the NWPU-RESISC45 data set (20% training images), when
branch = 4. Thus, the branch is set to 4 in the following experi-
ments.

4.4 Experimental Results and Comparisons

In order to clearly demonstrate the effectiveness of our method,
DMPConv was embedded in several representative models in-
cluding ShuffleNet 2x, ShiftResNet110-3 and MobileNetV2.
The AID data set(Xia et al., 2017) and the NWPU-RESISC45
data set(Cheng et al., 2017a) are used in the following experi-
ments.
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Model Inferencing Inferencing OA
Parameters (M) Flops (M) 10% 20%

fine-tuned ShuffleNet 2x 5.63 524 87.25±0.22 90.18±0.14
DMP-ShuffleNet 2x 5.61 524 89.23±0.18 91.63±0.12
fine-tuned ShiftResNet110-3 0.59 96 87.43±0.20 90.45±0.16
DMP-ShiftResNet110-3 0.53 96 89.92±0.16 92.37±0.18
fine-tuned MobileNetV2 3.50 315 88.15±0.17 90.44 ±0.16
DMP-MobileNetV2 3.47 315 90.27±0.13 93.11±0.10

Table 3. Performance improvement of ShuffleNet, ShiftResNet110-3 and MobileNetV2 on NWPU-RESISC45 data set.

Backbone Method Inferencing Parameters OA
10% 20%

Alexnet BoVW(Cheng et al., 2017b) - 55.22±0.39 59.22±0.39
VGG16 BoVW(Cheng et al., 2017b) - 82.65±0.31 84.32±0.17
Alexnet MSCP(He et al., 2018) - 81.70±0.23 85.58±0.16
VGG16 MSCP(He et al., 2018) - 85.33±0.21 88.93±0.14
Alexnet Fine-tuning 60M 80.66±0.29 84.74±0.31
VGG16 Fine-tuning 130M 87.76±0.10 91.67±0.12
Alexnet DCNN(Cheng et al., 2018) 60M 85.56±0.20 87.24±0.12
VGG16 DCNN(Cheng et al., 2018) 130M 89.22±0.50 91.89±0.22
Alexnet SCCov(He et al., 2020) 6M 84.33±0.26 87.30±0.23
VGG16 SCCov(He et al., 2020) 13M 89.30±0.35 92.10±0.25
MobileNetV2 Fine-tuned 3.50M 88.15±0.17 90.44 ±0.16
MobileNetV2 DMPConv 3.47M 90.27±0.13 93.11±0.10

Table 4. Comparison of OAs (%) obtained on the NWPU-RESISC45 data set.

Figure 6. Examples of the CAMs generated from the NWPU-RESISC45 data set. We show the original images, CAMs generated
from fine-tuned MobileNetV2 and DMP-MobileNetV2, respectively.
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4.4.1 Experiment on Aerial Image Data Set: The pro-
posed method is evaluated on the AID dataset. Table 2 shows
the results. The adoption of DMPConv significantly enhances
the classification accuracy in each of the above light-weight re-
sidual series networks. For instance, when training rate (Tr) =
20%, the OA of ShuffleNet 2x, ShiftResNet110-3 and Mobile-
NetV2 is lifted by 0.29%, 0.51% and 0.22%, respectively.

4.4.2 Experiment on NWPU-RESISC45 Data Set:
Lastly, the proposed approach is applied to the most extensive
and difficult scene data sets (i.e., NWPU-RESISC45 data set)
for contrast with related fine-tuned models. Table.3 shows a
summary of experimental results: DMP-CNNs show significant
improvement with 10% and 20% training ratios compared to
related fine-tuned models, demonstrating their effectiveness.

For instance, when training rate (Tr) = 20%, with Mobi-
leNetV2 as the backbone, the DMP-MobileNetV2 achieves
93.11%classification accuracy, while the fine-tuned method ob-
tains only 90.44% classification accuracy.

In conclusion, DMPConv can be used to enhance OA by a large
margin under the same computational complexity and memory.
The increased performance is essentially a free benefit for the
end-users.

4.5 Visualization Experiment

CAMs (Zhou et al., 2016) can reveal discriminative object seg-
ments the CNN has detected. To better understand our method,
CAM is used to determine if the network can identify the ap-
propriate image segments belonging to the true class. Fig. 6
shows the CAMs produced by the fine-tuned MobileNetV2 and
DMP-MobileNetV2. The original images are from the NWPU-
RESISC45 data set. We observed that the semantic object
corresponding to the true class could be highlighted by both
the fine-tuned MobileNetV2 and DMP-MobileNetV2, indicat-
ing that CNN can localize and identify objects. However, the
CAMs created by DMP-MobileNetV2 have a wider and more
accurate range of highlights, allowing them to better cover se-
mantic objects. This is due to the weighted multi-branch 1×1
convolution used in our network, which enables the network to
discriminate more complex information.

4.6 Comparisons With Other Methods

To further demonstrate the effectiveness of DMPConv, we com-
pare DMP-MobileNetV2 with several state-of-the-art models
on the NWPU-RESISC45 dataset. The comparison models in-
clude the fine-tuned Alexnet and VGG16, the BoVW (Cheng
et al., 2017b) with Alexnet and VGG16, the MSCP (He et
al., 2018) with Alexnet and VGG16, the DCNN (Cheng et al.,
2018) with Alexnet and VGG16 and the SCCov (He et al.,
2020) with Alexnet and VGG16.

Table 4 reports the performance of different models. As
shown in this table, when training rate (Tr) = 20%, our DMP-
MobileNetV2 achieves 93.11%, which surpasses the classfica-
tion accuracy obtained by second-best model—SCCov(He et
al., 2020) with VGG16 by 1.01%. Similarly, when training
rate (Tr) = 10%, our DMP-MobileNetV2 also obtained the best
performance with an OA of 90.27% that is 0.97% higher than
the OA of the second-best model-SCCov(He et al., 2020) with
VGG16. In addition, our model has the fewest parameters. Fur-
thermore, by contrast to the fine-tuned MobileNetV2, the gain

of our DMP-MobileNetV2 on OA can be achieved without ex-
tra parameters, computational and storage space requirements
during inferencing, such that end-users can enjoy additional
performance improvements at no extra cost.

5. CONCLUSIONS

This paper proposes an efficient DMPConv for remote sens-
ing image classification task. DMPConv can be decoupled into
training-time DMPConv and inferencing-time DMPConv. With
our structural reconstruction method, DMPConv is able to im-
prove the performance of the off-the-shelf light-weight residual
series CNNs without additional computational and parameter
burdens during inferencing. Experimental results show that
DMPConv is able to improve the performance of various light-
weight residual series CNNs on UC Merced Land-Use data set,
Aerial Image data set, and NWPU-RESISC45 data set.
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