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ABSTRACT: 

Synoptic remote sensing systems have been broadly used within supervised classification methods to map land use and land cover 

(LULC). Such methods rely on high quality sets of training data that are able to characterize the target classes. Often, training data is 

manually generated, either by field campaigns and/or by photointerpretation of ancillary remote sensing imagery. Several authors 

already proposed methodologies to attenuate such labour-intensive task of generating training data. One of the preferred datasets that 

are used as input training data is OpenStreetMap (OSM), which aims at creating a publicly available vector map of the world with 

the input of volunteers. However, OSM data is spatially heterogenous (e.g., capital cities and highly populated areas often have high 

degrees of completion while unpopulated regions often have a lower degree of completion), where there are still large areas without 

OSM coverage. In this paper we present a set of experiments that aim at assessing the geographical transferability of satellite image-

based segmentation models trained with OSM derived data. To this end, we chose two locations with different OSM coverage and 

disparate landscape (metropolitan region vs natural park region, in different landscape units), and assess how these models behave 

when trained in a region and applied in the other. The results show that the mapping of some classes is improved when considering a 

model trained in a different location. 

 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Land use land cover (LULC) information is central to several 

fields such as climate change monitoring (Li et al., 2017), 

national to urban planning (Schneider, 2012), policy (European 

Commission and Directorate-General for Communication, 

2020), among others (Rajib and Merwade, 2017). Satellite 

systems have been widely used to map such LULC classes, 

given their revisit capabilities and world coverage (Abdi, 2020; 

Clark, 2017; Friedl et al., 2002). Such LULC mapping is often 

based on supervised classification approaches, relying on a set 

of quality training data which is able to map the several target 

classes. However, the creation of a training dataset is costly and 

time consuming given that these are usually performed from 

visual interpretation of higher resolution imagery (e.g., 

commercial satellite imagery) and/or field surveys. 

To avoid such laborious and costly task, and aiming at the 

automation of the generation of LULC training data, several 

researchers have been assessing the use of volunteered 

geographical information such as the data coming from the 

OpenStreetMap (OSM) project. This collaborative project relies 

on the contributions of volunteers to generate an open vector 

map of the world; which is publicly available online at the OSM 

website. Several researchers have been extracting LULC maps 

directly from OSM (Fonte et al., 2017; Jokar Arsanjani et al., 

2013; Jokar Arsanjani and Vaz, 2015; Patriarca et al., 2019). 

The methods focus on the automation of the conversion 

between OSM data and LULC map and on the class 

nomenclature harmonization between maps. However, given the 

spatial heterogeneity of OSM coverage (dependant on user 

contributions), attention has been given to use such information 

as training data within supervised classification approaches 

(Chen et al., 2021; Fonte et al., 2020; Haufel et al., 2018; 

Schultz et al., 2017). In this way, areas without OSM coverage 

could be mapped. Several problems were reported such as 

missing data for some classes (Schultz et al., 2017), positional 

and thematic errors (Johnson and Iizuka, 2016; Schultz et al., 

2017) and class imbalance problems (Fonte et al., 2020; 

Johnson and Iizuka, 2016). 

In a recent work, Fonte et al. (2020) mapped eight LULC 

classes using training data automatically generated from OSM. 

The authors tested their approach considering two different 

study areas and several filtering approaches aiming at 

improving the raw OSM data. Three different datasets, with 

different filtering approaches were tested against an official 

Portuguese thematic map. The authors found that the thematic 

quality improved when using band ratios (NDVI, NDWI and 

NDBI) to filter the raw OSM data. 

In most studies the authors separately assess the classifiers 

behaviour in regions of their study area with no OSM coverage 

(Fonte et al., 2020; Schultz et al., 2017). This allows for a better 

understanding of how representative OSM training data is 

regarding the target classes over a region within their study 

areas but without OSM coverage. However, such geographical 

transferability corresponds to contiguous areas of the same 

study area. Hence, similar to areas with OSM coverage. In such 

cases there is no knowledge regarding the behaviour of the 

model when applied in a region with a different landscape, 

urbanisation density, terrain morphology or forest and 

vegetation types. This is relevant given the current spatial (and 

thematic) heterogeneity regarding OSM contributions, where 

often metropolitan areas and locations of interest (e.g., touristic 

places) have higher concentrations of contributions. In this way, 

models could be trained with OSM data in a region with a 

higher degree of OSM coverage and then be deployed with 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-25-2022 | © Author(s) 2022. CC BY 4.0 License.

 
25



 

areas with little or no OSM data, regardless of the landscape, 

urbanisation degree and other possible differences between 

regions such as terrain morphology.  

In this paper, the geographical transferability of such OSM 

image-based segmentation models is assessed between two 

different regions, a metropolitan area with dense built-up 

environment and another rural area with only a major town, 

mountains and forest. To this end, training data was generated 

for the two training areas using OSM data; then, for each region 

a model was trained with the corresponding data. These models 

were then applied to both regions to assess their geographical 

transferability when compared with a classical approach of 

using a set of location specific training data. Section 2 will 

present the study area and the used data, including the satellite 

images and the training data. Section 3 presents the experiments 

while sections 4, 5 and 6 present the results, discussion and 

conclusions, respectively. 

 

2. STUDY AREA AND TRAINING DATASET 

GENERATION 

To assess the geographical transferability of OSM based image 

segmentation models two regions located in continental 

Portugal were chosen. Despite being a small country, Portugal 

presents a diverse landscape due to both its geographical 

situation and a long record of human intervention (Moreira, 

2004). With this in mind, the selected regions are in different 

landscape units, and belong to the Lisbon Metropolitan Area 

(LXMA) and the Serra da Estrela National Park (SENP). See 

Figure 1 for an overview of the location of both study areas 

within Portugal. LXMA presents a high degree of urbanisation, 

high population density and a drier and more Mediterranean 

region when compared with the SENP region. The SENP region 

is characterized by a less urbanised region with low population 

density, with a less dry climate and more mountainous region. 

 

 
Figure 1. Study area A: Lisbon metropolitan area (LXMA); and 

Study Area B: Serra da Estrela National Park (SENP) in 

Portugal, Iberian Peninsula, SW Europe. OpenStreetMap as 

base map. 

 

The experiments were based on two main sets of data: 3 

Sentinel 2 images for each of the study areas, considering the 

year of 2018, see Table 1; and the OSM data used as training 

mask, its generation is explained in sub section 2.1. The year 

2018 was chosen given that there is an official LULC map 

produced by the Portuguese authorities, COS2018, which 

stands for “Carta Ocupação e Uso do Solo para Portugal, 2018” 

(DGT, 2019). Hence, this dataset can be used as reference data 

for the experiments. This thematic map is produced mainly by 

visual interpretation of orthophotos with RGB and near infrared 

bands and a spatial resolution of 25 cm. The overall accuracy of 

this map is still under assessment; however, the technical 

specifications require the overall accuracy to be higher than 

85%. COS2018 maps the LULC with a hierarchical approach, 

with classes ranging from level 1 to level 4, being the level 4 

the level with most thematic detail. Examples of COS 2018 can 

be seen in the top image of Figure 6 and Figure 7. 

 

Study area Image dates Sentinel tile 

LXMA 21-03; 19-06; 22-10-2018 T29SMC 

SENP 26-03; 19-06; 22-10-2018 T29TPE 

Table 1. Date and tile identifier of Sentinel-2 Images used for 

each study area.  

 

2.1 Training data generation 

The first step to generate the training data to be used alongside 

the Sentinel 2 images for training of the models is to convert the 

OSM data to the class nomenclature of this study. This was 

performed by using the OSM2LULC open-source software 

package (Patriarca, 2020; Patriarca et al., 2019). OSM2LULC is 

composed by several modules which automatically convert 

OSM data to LULC maps. This conversion can be made to the 

Urban Atlas, Corine Land Cover Level 2 or GlobeLand30 

nomenclature. In this study the OSM2LULC was adapted to the 

COS2018 nomenclature, as shown in Table 2. The general idea 

regarding the nomenclature was to have classes that are more 

related to land cover than to land use (e.g. include the urban 

green spaces in the herbaceous vegetation class instead of the 

urban level 1 class). 

The map obtained with OSM2LULC was then filtered 

considering several band ratios, such as the normalized 

difference vegetation index (NDVI), the normalized difference 

water index (NDWI) and the normalized difference built-up 

index (NDBI). For example, for a pixel to be considered 

artificial surfaces it must not only that class come from 

OSM2LULC but its NDVI and NDBI have values compatible 

to that class. The radiometric indices threshold values used to 

confirm the pixels assignment to the several classes are shown 

in Table 3.  

Figure 2 shows a detail of the resulting map for LXMA study 

area. More details about the generation of the training dataset 

are available in Fonte et al. (2020), in which the authors also 

compare such filtering of the OSM2LULC derived maps with 

other filtering techniques. For this study we chose the best 

performing approach presented in that study, referred to as 

TD_2. 

Table 4 presents the number of pixels per class per region. It 

also presents the class coverage regarding the whole study area 

and as a percentage within brackets ([0-100]). Overall, the 

training data corresponds to 46% and 55% of the study areas for 

the LXMA and SENP region, respectively. Many classes have 

less than 5% of training when comparing to each of the study 

areas. For LXMA only classes 1,3 and 8 have more than 5% of 

area to train the classifiers. While in SENP this happens for 

classes 1,3,6,7 (not present in this region) and 8. 
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Used OSM2LULC COS2018 

1.Artificial 

surfaces 

1.1. Urban fabric 

1.2. Industrial, commercial 

and transport units 

1.3. Mine, dump and 

construction sites 

1.4.2. Sport and leisure 

facilities, excluding golf 

courses 

1. Artificial surfaces, 

excluding golf 

courses (1.6.1.1.) 

public gardens and 

playgrounds 

(1.7.1.1.) 

2.Agricultural 

areas 

2.1. Arable land 

2.2. Permanent crops 

2.4. Heterogeneous 

agricultural areas 

2. Agriculture 

3.Herbaceous 

vegetation 

1.4.1. Green urban areas 

2.3. Pastures 

3.2.1. Natural grasslands 

Sport and leisure facilities 

(only golf) 

3. Herbaceous  

1.6.1.1 Golf courses 

1.7.1.1 Public 

gardens and 

playgrounds 

4.Forest areas 3.1. Forests 4. Agroforestry 

5. Forests 

5.Shrublands 3.2.4 Transitional 

woodland-shrub 

6 Shrublands 

6.Open 

spaces with 

little or no 

vegetation 

3.3. Open spaces with little 

or no vegetation 

7 Open spaces with 

little or no vegetation 

7.Wetlands 4. Wetlands 8 Wetlands 

8.Water 

bodies 

5.1 Inland waters 

5.2 Marine waters 

9. Water bodies 

Table 2. Nomenclature relations between the nomenclature 

used in this paper, the nomenclature coming from OSM2LULC 

and COS2018 

 

 

Classes NDVI/Images NDWI/Images NDBI/Images 

1 <0.3/all <0.0/all >0.0 min. 1 

2 >0.3/all <0.0/all - 

3 >0.3/all <0.0/all - 

4 >0.3/all <0.0/all - 

5 >0.3/all <0.0/all - 

6 >0.0/ min. 1 <0.0/ min. 1 - 

7 >0.0/ min. 1 <0.0/ min. 1 - 

8 <0.3/ min. 1 >0.0/all - 

Table 3 NDVI, NDBI and NDWI threshold values to consider a 

pixel for a given class. “Images” indicates in how many of the 

used images the conditions need to be met, from the total of 3 

images per year per study area. 

 

 

Class 
LXMA  

No. pixel (%) 

SENP 

No. pixel (%) 
Difference 

1 1141937 (12) 105044 (1) 1036893 

2 153597 (2) 737721 (8) 584124 

3 650259 (7) 108530 (1) 541729 

4 301030 (3) 2469325 (27) 2168295 

5 249427 (3) 1648616 (17) 1399189 

6 22539 (~0) 28385 (~0) 5846 

7 171136 (2) 0 (0) 171136 

8 1539833 (16) 11904 (~0) 1527929 

Total 4229758 (46) 5109525 (55) 879767 

Table 4. Number of pixels considered for each of the classes in 

each of the study areas. Within brackets percentage of the area 

occupied by each class of the OSM derived data when 

considering the whole study area of each region. 

 
Figure 2. Above: Detail of the OSM derived training data for 

the LXMA study area, where white areas represent areas with 

no OSM training coming from OSM2LULC. Below: Bing maps 

as basemap. 

 

3. METHODS AND EXPERIMENTS 

Figure 3 shows an overview of the steps followed in the 

experiments for each region. The three Sentinel-2 images and 

the training masks coming from the filtered OSM data were 

used as training data for each of the regions. A segmentation 

model based on convolutional neural networks (see sub-section 

3.1) was used to learn the feature representation of the 8 classes 

present in the OSM data from the Sentinel 2 images of both 

study areas (LXMA and SENP). For each region, three 

Sentinel-2 images (considering only the four 10 m resolution 

bands B2-4 and B8) were concatenated in the channel’s axis (12 

channel image). The next sub-section details the segmentation 

model used for the experiments. 

 

 
 

Figure 3. Overview of the several steps of the method for a 

given region (LXMA/SENP). For each region a segmentation 

model is trained and tested for both regions using as reference 

COS2018. 
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3.1 Network definition and experiments 

Regarding the CNN network, the objective was to use a well-

established image segmentation model and apply it for the 

segmentation purposes of this study. Hence, an adaptation of 

densenet121 (Huang et al., 2017) convolutional neural network 

(CNN) for image segmentation was implemented. Densenet 

relies on the connection of a given layer with all preceding ones 

in a feed forward fashion. This is achieved with the stacking of 

consecutive denominated dense blocks. Each dense block is 

composed by a set of two convolutions with different kernel 

sizes (k=1 and k=3) as seen in  

Figure 4. The k=1 convolution aims at reducing the filters block 

dimension before the computationally expensive convolution 

with kernel size of 3 (k=3) (Szegedy et al., 2015). The transition 

blocks ( 

Figure 4) are used to downscale the increasingly more complex 

feature maps throughout the network with pooling (using 

average pooling). The original densenet was initially proposed 

for image classification; hence, it was adapted for the current 

study to perform image segmentation by introducing a decoder 

part on top the original convolutional part of densenet in a 

similar way as in Ronneberger et al. (2015). The decoder part 

consists on the stacking of decoder blocks (right side of Figure 

5), where the decoder block upscales back the feature map size 

and concatenates the feature maps coming from the 

corresponding encoder feature map (left side of Figure 5) 

(Ronneberger et al., 2015). Figure 5 shows how the blocks in  

Figure 4 are used together to form the final network.  

 

Dense block (DB) (n times) 

Convolution (k=1) 

Convolution (k=3) 

 

Transitional block (TB) (size) 

Convolution (k=1) 

Average Pooling 2D 

 

 Decoder block (DcB) (size) 

 . Transpose 2D (size)  

>>> Concatenate 

 Convolution (k=3) x 2 

 

Figure 4 Dense, transitional and decoder blocks used to build 

the network in Figure 5. The indicated convolutions are always 

followed by batch normalization and relu. >>> indicates input 

to the concatenation in the decoder block. k, kernel size. 

 

START  END 

Input 128 x 128 >>> DcB (128x128) 

Convolution (k=3)   

Max Pooling (64x64) >>> DcB (64x64) 

DB x 6   

TB (32x32) >>> DcB (32x32) 

DB x 12   

TB (16 x 16) >>> DcB (16x16) 

DB x 24   

 TB (8x8)  

 DB x 16  

Figure 5. Network architecture to perform image segmentation. 

Denseblock as DB, transitional block as TB and decoder block 

as DcB. Within brackets the feature map size of a given block. 

The indicated convolutions are always followed by batch 

normalization and relu. >>> indicates input to the DcB. 

 

The images and the training data were divided in patches of 

128x128 pixels to be fed to the previously defined network. In 

the end, the input to the networks was a 12-channel image and a 

1 channel image where each pixel contains the indication of a 

given class coming from the generated training data. The images 

were normalized before being fed to the network. Data 

augmentation was used with random crops, rotations and zoom. 

Only a few hyperparameters were tested: optimizer, learning 

rate, batch size and number of epochs. These hyperparameters 

were found through a 3-fold cross validation approach where 

the study data for a given area was divided into training, testing 

and validation.  The optimizer stochastic gradient descent and 

the learning rate of 0.1 were found to be the overall best 

performing. The optimal batch size was 8. These 

hyperparameters were then used to train both models (LXMA 

and SENP) using the whole dataset of each region. Each model 

was applied to both the LXMA and SENP image data 

generating 4 different maps. These maps were then compared 

with the COS2018 derived map, which was generated following 

the nomenclature in Table 2. Confusion matrices were derived 

for each experiment, where both overall accuracy and users and 

producers’ accuracy are shown for each model being applied to 

both regions. 

 

4. RESULTS 

This section will present the overall accuracy of the four 

experiments, the user’s and producer’s accuracy (UA and PA) 

and details of the generated maps. 

Table 5 shows the overall accuracies, where each of the models 

was compared with the COS2018 derived nomenclature. The 

overall accuracy of the model trained with LXMA and tested in 

SENP is much lower, while its counterpart model which was 

trained on SENP and tested on LXMA had higher accuracy. 

Both regions present better results when trained with their 

respective data. 

 

Overall accuracies Testing  

(%) Lisbon MA S. Estrela NP 

T
ra

in
in

g
  

Lisbon MA 64 19 

S. Estrela NP 55 63 

 

Table 5 Overall accuracies for the experiments. Considering 

each of the combinations of training and testing datasets. 

COS2018 used as reference data. 

 

Table 6 and Table 7 show both the UA and PA for each of the 

testing sites, LXMA and SENP, respectively, and considering 

each of the models trained in each of the regions. The tables 

also present the difference between these models, where 

negative values indicate that the model trained in a different 

region performed better. Focusing on LXMA as testing area 

(Table 6) the model trained on the LXMA provides overall 

better results for classes 5 to 8, where both UA and PA are 

higher for that model; only the UA for class 8 is just 3% lower. 

However, this is not so clear for classes 1 to 4. In these classes 

the model trained in SENP had higher UA for classes 1 and 3, 

and PA for class 2. In class 4, the SENP model even 

outperformed the one trained in LXMA.  

For the SENP testing case (Table 7), classes 4 to 6 were better 

mapped with SENP model while class 3 was better mapped with 
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the LXMA, even if the difference between the UA values is 

small (only 1%). The LXMA model had higher PA for classes 1 

and 8, while having lower UA for these same classes. 

 

 Testing on LXMA (%) 

Classes 
LXMA SENP LXMA - SENP 

UA PA UA PA UA PA 

1 77 81 90 58 -12 23 

2 44 42 27 86 17 -44 

3 4 10 16 0 -12 10 

4 71 41 73 69 -2 -28 

5 24 30 1 3 22 27 

6 48 2 1 1 47 1 

7 8 21 0 0 8 21 

8 96 93 99 50 -3 43 

Table 6. User’s and Producer’s accuracy for each of the classes, 

considering each of the training datasets, LXMA and SENP; 

testing only LXMA dataset. 

 

 

 Testing on SENP 

Classes 
SENP LXMA SENP – LXMA 

UA PA UA PA UA PA 

1 59 38 8 78 51 -40 

2 70 77 79 22 -8 55 

3 2 0 3 28 -1 -28 

4 67 72 62 26 5 46 

5 54 57 18 1 36 55 

6 43 13 44 1 0 12 

7 -- -- --- --- ---- --- 

8 97 26 9 46 88 -19 

Table 7 User’s and Producer’s accuracy for each of the classes, 

considering each of the training datasets, LXMA and SENP; 

tested only on the SENP dataset. 

 

The results shown regarding UA and PA are also reflected in 

Figure 6 and 

Figure 7. For example in Figure 6, when testing in LXMA 

region. The model trained with PNSE data while being able to 

map the artificial surfaces class it struggles in differentiating 

agricultural areas from open spaces with little or no vegetation 

and herbaceous vegetation. In  

Figure 7, when testing in SENP, the model trained with LXMA 

just reflects the poor accuracy for that region, where the model 

classified most of the region with the artificial surfaces or forest 

areas. 

 

5. DISCUSSION 

In this study we assessed the geographical transferability of 

OSM derived image segmentation models. Two distinct regions 

were chosen given the disparate landscape composition, 

urbanisation, terrain morphology and population density. Four 

main experiments were presented. Two for each region, SENP 

and LXMA, where the model trained with the data from a given 

region is also applied to the other one. Overall accuracy as well 

as user’s and producers’ accuracy for the experiments was 

presented, having as reference “Carta Ocupação e Uso do Solo 

para Portugal, 2018” (DGT, 2019) an official Portuguese LULC 

map. 

 

 
Figure 6. Results when testing in LXMA study area_ Top: 

COS2018 (considered as ground truth); Middle: model trained 

with LXMA data; Bottom: model trained with PNSE data. 

 

Considering overall accuracy, the model trained with SENP 

data performed better; mainly given its overall accuracy when 

applied to the LXMA region.   

Regarding per class assessment for the LXMA region, the 

‘Forest areas’ class (class 4) was better mapped when 

considering the model trained with SENP data, where both UA 

and PA were higher. Likewise, but this time testing in SENP 

and considering ‘Herbaceous vegetation’ (class 3), the model 

trained with LXMA data performed better than the one trained 

with SENP data. However, the SENP model was not able to 

map class 3 for the SENP region, presenting already an UA and 

PA close to zero. Class imbalance could be one of the factors 

influencing the results (Buda et al., 2018). However, 

‘Shrublands’ (class 5) and ‘Artificial surfaces’ (class 1) seem to 

indicate that the class imbalance on itself does not explain the 

differences in the results. For example, ‘Artificial surfaces’ 

(class 1) corresponds to 12% of the training area of the LXMA 

study area, while it only corresponds to 1% of the SENP 

training; however, this is not translated in a better recognition 

capability of the LXMA model to detect class 1 when compared 

with the SENP model. However, ‘Forest areas’ (class 4), which 
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Figure 7. Results when testing in SENP study area. Top: 

COS2018, used as reference; Middle: Training with SENP data; 

Bottom: training with LXMA 

 

also has a high amount of training data in the SENP study area 

improved the detection of that class in the LXMA region.  

While the ‘Forest areas’ (class 4), seems to have similar feature 

information regardless of the landscape, this is not the case for 

the class 5 ‘Shrublands’.  

Still considering the LXMA region and regarding class 1 

‘Artificial surfaces’, the SENP model, even with a much smaller 

amount of training data, is able to improve the UA in 12%. 

However, at the expense of a 23% lower PA. Having less 

regions wrongly classified as artificial surfaces but missing 

more artificial surfaces. LXMA model when applied to SENP 

improves the PA while making the UA worst. Which in this 

case shows that less artificial surfaces were missing from the 

map, but more regions were wrongly classified as artificial 

surfaces. Hence, it seems that LXMA model is overestimating 

the class 1 ‘Artificial surfaces. 

Some classes may not be present in the training data. In this 

study, this can be seen for class 7 ‘Wetlands’ which is not 

present in the SENP training dataset and consequently is not 

able to map it when the model is applied to the LXMA region.  

Many classes, regardless of the considered region, are not well 

represented in the training data; as reported in previous studies 

(Schultz et al., 2017). For example, class 6 ‘Open spaces with 

little to no vegetation’ is barely present in either of the study 

areas considered, indicating that regardless of the region this 

class is not well represented in OSM.  

An adaptation of a widely used CNN for computer vision tasks 

was used, which is certainly not optimal for the task at hand; 

given that these models are often used in problems with 

hundreds of classes and millions of training samples. Which in 

this case might have contributed to overfitting problems given 

the low amount of data present for the experiments. 

Another limitation is regarding the reference data used for the 

experiments. COS2018 is a LULC map with a minimum 

mapping unit of 1 ha, where the generated maps have 10m 

resolution. While a general view of the quality might be 

assessed, it was not performed to the resolution of the resulting 

maps. Moreover, given the land use nature of COS2018, 

airports for example, are considered as built-up, where in fact 

the polygons also correspond also different land cover classes, 

such as vegetation.  

 

6. CONCLUSIONS 

The geographical transferability of image-based segmentation 

models trained with OSM derived data was assessed in a study 

conducted in continental Portugal. To this end two Portuguese 

regions with distinct landscape, urbanisation degree and forest 

and vegetation types were used. One of the regions being the 

metropolitan area of Lisbon and the other location in the NE 

part of Portugal consisting of a mountainous region part of the 

Serra da Estrela National Park. For each region a CNN 

segmentation model was trained with OSM data, these were 

then used to classify each of the regions satellite images. The 

resulting maps were then compared to an official Portuguese 

LULC map.   

Overall, the results show that while some classes might be 

transferable, this is not true for all the classes. For example, 

Shrublands (class 5) seems to vary significantly from region to 

region given that this class always presented better results when 

using the respective model for that region. On the other hand, 

classes such as ‘Forest areas’ (class 4) or ‘Herbaceous 

vegetation’ (class 3) seem to be more transferable from one 

region to the other. While the amount of training data might be 

one of the explanations for these improvements, this does not 

happen to other classes presenting similar discrepancies in the 

amount of training data such as ‘Artificial surfaces’ (class 1). 

Given the different behaviour regarding this geographical 

transferability for the considered classes, LULC image-based 

segmentation methods could improve their performance being 

able to optimally merge this feature information from several 

regions and create a model which is able to accommodate 

differences related to a specific location and class. This would 

not only allow to have training regarding otherwise less well 

represented classes; while at the same time moving further from 

the costly and time-consuming training data generation for a 

specific location. 
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