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ABSTRACT:

Nowadays, researchers have free access to an unprecedentedly large amount of remote sensing images collected by satellites and
sensors with different spatial, temporal, and spectral resolutions. This scenario has promoted the use of satellite image time series
for spatiotemporal analysis. This paper presents a methodology for spatiotemporal segmentation of satellite image time series. Spa-
tiotemporal segmentation finds homogeneous regions in space and time from remote sensing images based on spectral features. The
proposed approach is unsupervised based on the self-organizing map (SOM) neural network and hierarchical clustering algorithm.
It was implemented and applied to a region in the Mato Grosso state, Brazil. The results were evaluated using qualitative and
quantitative approaches. In the qualitative approach, visual analysis was performed based on the land use and land cover map of the
TerrraClass Cerrado project. In the quantitative approach, supervised and geometric metrics were used to analyze the quality of the
produced segments. The results obtained are promising since the segments produced were homogeneous and with a low occurrence
of over-segmentation.

1. INTRODUCTION

Remote sensing imagery is essential for monitoring environ-
mental changes, natural disasters, population growth, and many
other applications. Nowadays, a large number of Earth obser-
vation satellites have generated big volumes of images with
different spatial and temporal resolutions every day. In 2019,
the volume of open data produced by Landsat-7 and Landsat-
8, MODIS (Terra and Aqua units), and the three first Sentinel
satellites (Sentinel-1, -2 and -3) were around 5 PB(Soille et al.,
2018). This scenario poses a great challenge for storing, pro-
cessing, and analyzing this large amount of data and also pro-
motes the use of satellite image time series for spatiotemporal
analysis(Simoes et al., 2021a).

Spatiotemporal segmentation consists in finding homogeneous
regions in space and time from remote sensing images based on
spectral features (Petitjean et al., 2012). Remote sensing im-
age segmentation is widely used in object-based approaches to
produce homogeneous geographical objects (Xi et al., 2019).
Despite being an important step in remote sensing image pro-
cessing, there are few methods proposed in the literature that
consider the space and time dimensions to produce homogen-
eous segments (Petitjean et al., 2012, Costa et al., 2018b, Xi et
al., 2019, Fare Garnot and Landrieu, 2021)

Petitjean et al. (2012) propose an approach that segments
each image of the series and then combines these segments
to provide a classification map. Costa et al. (2018) propose
a method for segmentation applied to image time series, ad-
apting the traditional region growing algorithm and using the
Dynamic Time Warping (DTW) distance to detect homogen-
eous regions in space and time. Xi et al. (2019) describe a
multiresolution segmentation to generate multiscale spatiotem-
poral cubes. Garnot and Landrieu (2021) present a method that
∗ Corresponding author

processes a sequence of images in parallel by a shared convo-
lutional encoder. At the lowest resolution, a temporal encoder
produces a set of temporal attention masks for each pixel, then
spatially interpolated at all resolutions.

Different from the existing methods, this paper presents a spa-
tiotemporal segmentation of satellite image time series using
a self-organizing map (SOM) and hierarchical clustering al-
gorithm. SOM is an unsupervised artificial neural network
based on competitive learning that reduces a high dimensional
feature input space onto a lower-dimensional feature output
space (Kohonen, 1998). It also preserves the neighborhood
topology; that is, similar input data are mapped to the same
neuron or a nearby one. SOM has been widely used for image
time series clustering and spatiotemporal patterns discovering
(Zurita-Milla et al., 2013) and (Santos et al., 2021).

The proposed approach is unsupervised and applied to satellite
image time series; that is, time series associated with pixels of
a satellite image sequence ordered in time. Based on a given
threshold or a number of distinct clusters, it computes the sim-
ilarity among all image time series to produce homogeneous
regions in space and time. The proposed method was imple-
mented and tested in a region in the Mato Grosso state, Brazil,
producing good results that are described in this paper. The
code and data sets used in this work are available on Github to
promote reproducibility1.

An approach to finding homogeneous regions in space and time
using satellite image time series is very useful for identifying
some types of land use and cover classes. Some classes, such as
one-cycle and two-cycle agriculture types, are correctly identi-
fied when we consider the temporal variation of satellite image
spectral values. Regions that are used for one-cycle and two-
cycle crops are homogeneous during an agriculture year. Thus,
1 https://github.com/brazil-data-cube/st-segmentation
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it is important to consider the spatial and temporal dimensions
to extract these classes from satellite image sequences ordered
in time.

This paper is organized as follows: Section 2 presents the clus-
tering methods used in spatiotemporal segmentation. Section
3 describes the methodology with the steps of clustering tasks
and spatiotemporal segmentation. Section 4 explores a qualit-
ative and quantitative evaluation of the segments and highlights
the main results. Section 6 describes the settings used for the
experiments, run times, and final considerations.

2. CLUSTERING METHODS

The method is based on two unsupervised clustering al-
gorithms: SOM and agglomerative hierarchical clustering. The
following describes each method in detail.

2.1 Self-Organizing Map (SOM)

SOM is an unsupervised learning method based on competit-
ive learning that reduces a high-dimensional feature input space
to a low-dimensional feature output space. A dataset can be
mapped and represented by a set of neurons by using weight
vectors. Preserve neighborhood topology is a key feature of
SOM so that similar input data is mapped to the same or a
neighboring neuron.

Each output space neuron j has a weight vector (codebook vec-
tor) wj = [wj1, . . . , wjn] that contains the same dimension
n of the input data x(t) = [x(t)1, . . . , x(t)n]. The algorithm
consists of two main steps. First, the distances Dj between a
sample and each neuron in the SOM grid are calculated. The
neuron with the smallest distance value db is selected as the
best matching unit (BMU) for that sample. The equations for
calculating distance and BMU are

Dj =

√√√√ n∑
i=1

(x(t)− wji)2 (1)

db = min(D1, ..., Dj) (2)

The second step is to adjust the weight vectors of the BMU and
its neighbors so that the neurons have similar properties. The
equation for the adjustment is

wji = wji + α× hb,j [x(t)i − wji]. (3)

Where α is the learning rate and hb,j is the neighborhood func-
tion.

These steps are repeated T times to ensure that the neurons
organize themselves into a similar neighborhood. Then, one
neuron is assigned for each sample in the dataset (Kohonen,
1998).

2.2 Hierarchical Clustering

Hierarchical clustering is a method that partitions data sequen-
tially, creating a hierarchy of clusters (Everitt et al., 2011). This
representation makes it easier to visualize each step where level
similarity occurs. Hierarchical clustering is classified into two
types: agglomerative and divisive. The divisive algorithm be-
gins with the entire dataset in one cluster and then divides it

Figure 1. Methodology for spatiotemporal segmentation of
satellite image time series.

into two more similar clusters. The agglomerative method starts
with each weight vector in its own cluster, computes a similarity
matrix, and identifies the two most similar groups. The clusters
are merged at each step, and the hierarchy is built using linkage
criteria (Leonard Kaufman, 1990).

Hierarchical algorithms construct a binary tree called a dendro-
gram. This structure represents the order in which the clusters
were merged. A dendrogram divides the data into groups that
are homogeneous within themselves. The variability of the data
can be visualized using the tree hierarchy. The objective of the
dendrogram is to explore and define the appropriate number of
clusters based on the level of analysis.

3. MATERIAL AND METHODS

Figure 1 shows the methodology for spatiotemporal segmenta-
tion using SOM and agglomerative hierarchical clustering. The
input data are a time series of satellite images obtained over a
data cube, consisting of one or more spectral bands. After ap-
plying the SOM method, the algorithm’s output provides weight
vectors, also called codebook vectors, which have the same size
as the input time series. The number of codebook vectors de-
pends on the grid size defined for the SOM, where each vector
represents a set of time series. In the agglomerative hierarch-
ical clustering step, the codebook vectors are the input data in
which the data are clustered into levels based on a similarity
score. After the final number of clusters is determined, the un-
supervised map is created in the spatiotemporal segmentation
tasks. However, smoothing is performed on this map, which is
used as the basis for segmentation.
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Figure 2. The study area where the experiments were conducted.
The image on the right was taken from Sentinel-2/MSI with a

10-meter resolution. The agricultural composition (Swir16, Nir,
and Blue) was used.

3.1 Study Area

The study area is in the Mato Grosso state, located in the mid-
west of Brazil. Mato Grosso is one of the largest states in Brazil;
its territory is composed of three biomes: Cerrado, Amazon,
and Pantanal. Therefore, it presents a high spatial and temporal
heterogeneity. Figure 2 shows the study area that is located in
Rondonópolis, a city in the Mato Grosso state. The image on
the right side corresponds to the satellite/sensor Sentinel-2/MSI
from an agricultural composition (Swir16, Nir, and Blue) with
a 10-meter spatial resolution.

The selected study region has several interesting land use and
cover elements for the segmentation task. For example, an ex-
tensive urban center, the watershed of the Rio Vermelho that ex-
tends throughout the state, native vegetation, agricultural areas,
and exposed soil regions.

3.2 Earth observation data cubes

Earth observation (EO) data cubes can be defined as multidi-
mensional arrays with space and time dimensions and spectral
derived properties created from remote sensing images mainly
to support image time series analysis (Appel and Pebesma,
2019). The Brazil Data Cube (BDC) project is producing EO
data cubes from analysis-ready data of CBERS-4, Sentinel-2,
and Landsat-8 satellite images for the entire Brazilian territory
(Ferreira et al., 2020).

This paper used the EO data cubes of Sentinel-2 images with
a spatial resolution of 10-meters and temporal aggregation of
16 days using the best-pixel approach produced by the BDC
project. For the experiments, we used these EO data cubes for
the study area considering one agricultural year, 2019-08-29 to
2020-08-12, corresponding to 23 images.

To be general as possible, only the Normalized Difference Ve-
getation Index (NDVI) was used for this study. However, if the
goal is to segment a specific land cover, different bands can be
used to segment the target better.

3.3 Satellite image time series processing

The step of satellite image time series processing decreases the
cloud and cloud shadow in the image time series. The pixels
flagged as clouds or cloud shadow by the cloud band were
marked as invalid (NAS). For each non-valid pixel, a linear in-
terpolation was applied, in which the previous or later times of

the same pixel were considered to fill the non-valid values. Fig-
ure 3 shows a time series of NDVI extracted from the EO data
cube of Sentinel-2 images and associated with a spatial location
of the study area.

After interpolation, the image time series were formatted to
serve as input to the SOM. Based on the study area section,
the images used in this work have 1954 × 2188 pixels. The
input format of the model is an array[4275352, 23], where the
first component is the total size image’s pixels and the second
one depends on the temporal resolution and spectral bands. For
this experiment, 23 time-series images with only one band were
used. Another configuration, for example, if we had a temporal
resolution of 25 images and three spectral bands, would be the
array [4275352, 75], since multiplying 25 by 3 gives 75, which
corresponds to the concatenation of spectral bands.

Figure 3. Example of an interpolated NDVI time series.

3.4 Clustering and Segmentation

Each time series represents one image pixel in the time domain
and serves as input for the SOM algorithm. After the clustering
step, each time series is assigned to a neuron, which in turn
has an associated codebook vector, i.e., the codebook vector
represents all-time series associated with the respective neuron,
that characterizes the dimensionality reduction since an image
with N pixels is represented by the number of neurons that make
up the model.

Note that the number of patterns found in the image depends
on the grid size chosen for SOM. How they are grouped also
depends on the selected distance, the shape of the grid, and the
neighborhood function.

After clustering with the SOM, the codebook vectors resulting
from the first step are used as input for agglomerative hierarch-
ical clustering. This is a clustering of the entire image repres-
ented by the codebook vectors, which would be impractical if
all pixels were used, depending on the size of the image. After
the new clustering, it is possible to create a visualization of the
different levels of the clusters formed using a dendrogram. As
in the previous step, the clusters are formed depending on some
parameters such as the distance to be computed, the linkage cri-
terion, and the number of the new clusters.

Once the unsupervised map was created using the clustered
hierarchical method, spatial smoothing was applied to reduce
noise. Since this is a pixel-based approach, one pixel or a small
set of noisy pixels may interfere with the formation of polygons
more representative of the actual area. Finally, the last step is
the generation of homogeneous segments to their temporal pro-
file.
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Figure 4. Results obtained with the settings with 4 and 12
groups.

4. RESULTS AND DISCUSSION

For this experiment with the following results, only two para-
meters were selected for the SOM, the grid size and the number
of epochs, and two parameters were also selected for the hier-
archical algorithm, the final number of clusters and the linkage,
the other parameters were set by default for XPySom (Mancini
et al., 2020) and sklearn (Pedregosa et al., 2011) Agglomer-
ative Clustering, respectively. For the SOM with 20 epochs, a
grid with 12x12 neurons was chosen, and for the hierarchical
algorithm, two configurations with 4 and 12 final cluster num-
bers with the average linkage were used.

The results were evaluated using qualitative and quantitative ap-
proaches. In the qualitative approach, a visual analysis of the
satellite image of a sentinel-2 image and a comparison with the
reference provided by the TerraClass Cerrado project for the
same period. In the quantitative approach, supervised and geo-
metric metrics were used to analyze the quality of the produced
segments. The following describes the qualitative and quantit-
ative results, respectively.

4.1 Visual analysis

At the first moment, a qualitative assessment compares the seg-
ments with a sentinel-2 image and the TerraClass Cerrado map
based on visual interpretation. TerraClass Cerrado project pro-
duces land use and land cover maps for the Cerrado biome in
Brazil with spatial resolution between 20 and 30 meters (Al-
meida et al., 2016). This project’s methodology for produ-
cing the land use and land cover map is based on several steps,
mainly visual analysis by remote sensing experts. The experts
use MODIS time series and high-resolution imagery to distin-
guish the different agricultural cycles in each Brazilian biome.
These data sets are available through the TerraClass portal2.

The unsupervised result for the entire scene is shown in Figure
4. In this Figure, we present the thematic map of the TerraClass
project for the 2020 year and the unsupervised maps with 4 and
12 clusters. Note that each map has its legend, and the colors
of the unsupervised maps do not correspond to the TerraClass
map classes.

In general, the two configurations were able to capture the main
features of the region, namely: urban area, native vegetation,

2 https://www.terraclass.gov.br/

Figure 5. Spatiotemporal segmentation results (red outlines).

and water bodies. In the configuration with 4 groups, it was pos-
sible to identify urban areas and waters more homogeneously.
However, regions with different vegetation types, cropland, and
pasture land obtained a greater integration but a good separation
from the other classes.

To support visual analysis and understand the dynamics of the
model with 4 groups, Figure 7 shows the dendrogram created
by the hierarchical clustering method, where 144 (12x12 SOM
grid) codebooks vectors were integrated into 4 final clusters
defined only by the time series distance. Figure 8 shows the
NDVI profiles for each codebook vector with the respective
colors assigned to each final cluster. Furthermore, Figure 5
presents the segments generated from this map. It is possible to
notice how the rivers and regions of dense vegetation are well
delineated.

In the model with 12 groups, it was observed that it was pos-
sible to detect more nuances in land use and land cover classes.
For example, the model captured different types of roofs, con-
tainers, and roads in the urban region. Another example is the
detected vegetation types, where it was possible to distinguish
between dense and shallow vegetation.

Figure 6. Reference Polygons in red used for quantitative
evaluation with a sentinel-2 agricultural composition.

4.2 Supervised accuracy assessment

In remote sensing image segmentation applications, determin-
ing the accuracy of segmentation undertaken quantitatively is
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Figure 7. Dendrogram Results.

Figure 8. NDVI Codebooks vector of SOM.

still at an early stage of maturation (Costa et al., 2018a). Since
much of the evaluated work uses a qualitative approach to meas-
ure the quality of its results, this paper used supervised met-
rics for quantitative analysis to determine segmentation accur-
acy to perform the quantitative analysis. Supervised metrics
measure the similarity of generated segments to reference poly-
gons by shape similarity. These metrics are divided into area-
based and location-based. The area-based metrics evaluate the
overlap region between the segmentation object and the refer-
ence polygon. The location-based metrics evaluate the distance
between the centroids of the segmentation objects and the ref-
erence polygon (Clinton et al., 2010).

Costa et al. (2018a) recommends the use of area-based metrics
for applications in which geometric representation is more im-
portant than the thematic information associated with segment

objects. Therefore, in this paper, we used the metrics Precision
(van Rijsbergen, 1979, Zhang, 1996), Recall (van Rijsbergen,
1979, Zhang, 1996), F measure (van Rijsbergen, 1979, Zhang,
1996), and Match (M) (Janssen and Molenaar, 1995, Feitosa
et al., 2010). The Precision metric measures the precision of
the segment object, with the reference polygon being sensit-
ive to under-segmentation. The Recall metric measures how
similar the reference polygon is to the segment object and is
more sensitive to over-segmentation. The M metric measures
the average match between polygons and segments, measuring
under- and over-segmentation. Finally, F measure is a com-
bined metric representing the balance between recall and preci-
sion, which also measures under- and over-segmentation. These
metrics range from 0 and 1, with the optimal value being 1.

The vegetation polygons were extracted based on the Terra-
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Class thematic map and compared with the 4 clusters map to
perform the quantitative assessments. Figure 6 shows the ref-
erence polygons extracted from the TerraClass Cerrado project
and used as reference polygons. The segmentation results com-
pared to the reference polygons can be seen in the same Figure,
where the red area represents the reference polygons, and the
white lines represent the segment’s object. To calculate the met-
rics, we used the R package segmetric (Simoes et al., 2021b).

Metric Value
Recall 0.87
Precision 0.83
F measure 0.85
M 0.64

Table 1. Quantitative results of the spatiotemporal segmentation.

The results of the metrics evaluated to determine the accuracy
of the generated segmentation are shown in Table 1. It can be
noted that the Recall metric presented the best result (0.87),
indicating a small over-segmentation error. The M metric ob-
tained the worst result since this metric calculates the average
between the match of the two geometries. This value is due to
some shapes that obtained a low value. The results obtained
were satisfactory and showed a good agreement with the refer-
ence polygons.

5. FINAL COMMENTS

This paper presents a spatiotemporal segmentation based on
two clustering algorithms. Two configurations were used to
present the model, and qualitative and quantitative evaluations
were made to analyze the segments generated by the algorithm.

Note that due to the nature of spatiotemporal segmentation,
some polygons represent land use and land cover classes that
are often difficult to evaluate with a single image. On the other
hand, land use and land cover types that have characteristic
temporal profiles, such as agriculture, deforestation, and forest
fires, can be represented by a segment. Thus, with the know-
ledge of experts, it is possible to generate segments of semantic
information analyzing these temporal profiles.

The model was run on a Google Collab virtual machine with the
following specifications: Intel(R) Xeon(R) CPU @ 2.20GHz
with 2 cores, 12GB ram and 25GB disk space, Nvidia K80 /
T4 GPU with 12GB/16GB GPU Memory, which obtained the
times of 15 to 20 seconds for training with 20 epochs and ap-
proximately 5 seconds for prediction for the SOM algorithm
which had the longest execution time. Further study will be
done to take into account neighboring pixels for contextual in-
formation and explore different spectral bands, temporal resol-
utions, and other spatial resolutions for different land use and
land cover applications.
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