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ABSTRACT:

With the availability of large amounts of satellite image time series (SITS), the identification of different materials of the Earth’s
surface is possible with a high temporal resolution. One of the basic tasks is the pixel-wise classification of land cover, i.e. the task of
identifying the physical material of the Earth’s surface in an image. Fully convolutional neural networks (FCN) are successfully used
for this task. In this paper, we investigate different FCN variants, using different methods for the computation of spatial, spectral, and
temporal features. We investigate the impact of 3D convolutions in the spatial-temporal as well as in the spatial-spectral dimensions
in comparison to 2D convolutions in the spatial dimensions only. Additionally, we introduce a new method to generate multi-
temporal input patches by using time intervals instead of fixed acquisition dates. We then choose the image that is closest in time
to the middle of the corresponding time interval, which makes our approach more flexible with respect to the requirements for the
acquisition of new data. Using these multi-temporal input patches, generated from Sentinel-2 images, we improve the classification
of land cover by 4% in the mean F1-score and 1.3% in the overall accuracy compared to a classification using mono-temporal input
patches. Furthermore, the usage of 3D convolutions instead of 2D convolutions improves the classification performance by a small
amount of 0.4% in the mean F1-score and 1.2% in the overall accuracy.

1. INTRODUCTION

Pixel-wise classification (also known as semantic segmenta-
tion) is the task of assigning a class label to each pixel in an
image. In remote sensing (RS), one common task is the classi-
fication of land cover, in which these classes correspond to dif-
ferent physical materials on the Earth’s surface, e.g. Water or
Forest. The current state-of-the-art methods to solve this task
in a supervised manner are based on deep learning (DL), espe-
cially on fully convolutional neural networks (FCNs) (Long et
al., 2015) such as U-Net (Ronneberger et al., 2015), which are
special variants of convolutional neural networks (CNN).

New satellite constellations such as Sentinel-2, provided by the
European Space Agency (ESA), acquire images with high tem-
poral resolution at global scale. Such satellite image time series
(SITS) enable a DL method to learn the spatial, spectral, and
temporal development of each land cover class and thus fur-
ther increase the classification accuracy (Pelletier et al., 2019;
Ji et al., 2018). There are different possibilities to integrate the
temporal and the spectral component into DL methods, for in-
stance using recurrent neural networks (RNNs) (Ho Tong Minh
et al., 2018; Mou et al., 2019) or convolutions in a CNN (Ge
et al., 2020; Ji et al., 2018). The former is designed to expli-
citly model the temporal dependencies of an input sequence,
e.g. time series data, and can provide one prediction for each
part of the sequence. The latter shifts a kernel with learn-
able weights in defined dimensions to compute features that
involve information from the local neighbourhood; such meth-
ods usually provide one output. In this work we will refer
to a CNN in which the kernels are shifted in d dimensions
∗ Corresponding author

as a d-dimensional CNN. A common 2D-CNN applies two-
dimensional convolutions to extract spatial features. This can
be extended, e.g. to 3D convolutions to extract spatial-spectral
information. Three-dimensional CNNs are successfully used in
video (Ji et al., 2013) and in crop classification (Ji et al., 2018).
However, the performance of 3D convolutions in the spatial-
spectral or the spatial-temporal dimensions for the application
of land cover classification remains to be investigated.

Another common characteristic in the classification of SITS is
that fixed acquisition dates are used during the training process.
As a consequence, data acquired at those dates should ideally
be available during inference. This requirement can be relaxed,
e.g. by an additional interpolation step to fill missing time steps
(Pelletier et al., 2019). In this paper, we introduce a more fle-
xible way to generate multi-temporal input patches for a CNN.
Instead of using individual acquisition dates we divide the year
into several time intervals, similar to binning in the generation
of a histogram, and use the image that is closest in time to the
center of the corresponding interval to create multi-temporal
patches. Using this type of multi-temporal input, we train dif-
ferent CNN architectures, including 2D-CNNs, 3D-CNNs, and
a mixture of both. We apply the 3D convolutions in the spatial-
temporal as well as in the spatial-spectral dimensions to inves-
tigate which dimensions are more suitable for land cover classi-
fication. As the baseline architecture we use a variant of U-Net
(Ronneberger et al., 2015).

The scientific contribution of this paper can be summarized as
follows:

• We investigate the impact of multi-temporal input data
generated by choosing images from different time epochs
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on the performance of a 2D-CNN for land cover classifi-
cation compared to mono-temporal input data.

• We investigate the impact of 3D convolutions in the
spatial-temporal as well as the spatial-spectral dimensions
in comparison to 2D convolutions in the spatial dimen-
sions in the application of land cover classification.

• We investigate the usage of 3D convolutions only in the
first convolutional block to reduce the number of unknown
network parameters and save training time and compare it
to a CNN with 3D convolutions in all convolutional layers.

The dataset used for evaluation consists of Sentinel-2 images
covering the entire German state of Lower Saxony (47600 km2)
for 2019 and 2020. The training labels are derived from a topo-
graphic database and differentiate nine land cover classes.

2. RELATED WORK

In recent years, deep learning methods have been used in vari-
ous remote sensing applications, such as land cover classifica-
tion (Kussul et al., 2017; Stoian et al., 2019), change detection
(Ma et al., 2019; Mou et al., 2019), road extraction (Oehmcke et
al., 2019), wildfire monitoring (Zhang et al., 2021a), and agri-
cultural crop classification (Ji et al., 2018). One of the main
advantages of these networks is their superior performance in
comparison to more traditional methods using hand-crafted fea-
tures. With the advent of satellite sensors and the availability of
large amounts of SITS with a medium spatial and high temporal
resolution, e.g. from Sentinel-2, deep neural networks (DNNs)
can be used to extract spatial, spectral as well as temporal fea-
tures automatically.

Convolutional neural networks (CNNs) are a type of DNNs that
is successfully used for this task in remote sensing applica-
tions. These networks are capable of extracting spectral, spa-
tial, spatial-spectral, and spatial-temporal features. For pixel-
wise classification, fully convolutional neural networks (FCNs)
are commonly used as a special type of CNN, consisting of
an encoder-decoder structure in which the output resolution is
identical to the one of the input. While the most common mo-
dels for semantic segmentation, such as SegNet (Badrinaray-
anan et al., 2017) or U-Net (Ronneberger et al., 2015) use 2D
kernels and shift them in the two spatial dimensions, it is also
possible to use the kernel in the spectral or temporal dimension,
e.g. (Pelletier et al., 2019), or in a combination of both, e.g.
(Ji et al., 2018; Debella-Gilo and Gjertsen, 2021). Please refer
to section 3.1 for a detailed definition of the convolutional op-
eration. In the following, we focus on approaches to use the
convolutional operation in different dimensions.

In order to extract spectral or temporal features, Li et al. (2017a)
used a 1D-CNN to extract features from hyperspectral images.
Although their method improved the classification accuracy,
they only considered features in the temporal or spectral dimen-
sions. Pelletier et al. (2019) proposed a CNN to classify SITS.
They compared 1D convolutions in the spectral or temporal di-
mension, 2D convolutions in the temporal-spectral dimensions,
and RNNs and concluded that the use of 2D convolutions out-
performs the other approaches. Kussul et al. (2017) proposed
a multi-level CNN, including a 1D-CNN with convolutions in
the spectral dimension and a 2D-CNN with convolutions in the
spatial dimensions, for classifying agriculture crops and land
cover from optical and radar time series. Their results show

that the 2D-CNN outperforms the other methods. In order to
jointly extract features from more than two dimensions, Zhang
et al. (2017) proposed a dual-channel CNN to extract spectral
features with 1D convolutions in one branch and spatial fea-
tures with 2D convolutions in the other one. Afterwards, the
outputs of the two branches are combined to predict land cover
or agriculture crops, achieving promising results. What is not
covered in the introduced papers is a shift of the kernel in more
than two dimensions. In this regard, Li et al. (2017b) proposed
a 3D-CNN framework to extract deep spectral-spatial features
from hyperspectral images. They showed that the performance
of the 3D-CNN is better than the one of other methods, includ-
ing a 2D-CNN with the convolution computed in the spatial di-
mensions. Similarly, Han et al. (2020) as well as Sellami et al.
(2020) successfully used 3D-CNNs to extract spectral-spatial
features from hyperspectral images. While Han et al. (2020)
used a 3D-CNN with channel-wise attention for sea-ice detec-
tion, Sellami et al. (2020) proposed an unsupervised method for
spectral band clustering and used the 3D convolutions in each
group to classify different crop types. Spatial-temporal features
were extracted by Ji et al. (2018), who applied a 3D-CNN for
crop classification using SITS. The authors concluded that the
3D-CNN is especially suitable for modelling the dynamics of
crop growth. Fernandez-Beltran et al. (2021) showed that 3D-
CNNs can also be used in regression tasks. In order to estimate
rice yield, the authors used 3D convolutions to extract spatial-
temporal features from large-scale SITS and additional soil and
climate data and achieved better results than other traditional
and DL approaches.

One challenge when using convolutions with kernels having
more dimensions is an increase in the number of parameters
and, consequently, training time. To mitigate this effect, several
strategies have been proposed that use 3D convolutions only
in a part of a network architecture. Ge et al. (2020) proposed
a 2D-3D-CNN that uses multiple branches, each consisting of
a combination of 3D and 2D convolutions. The authors ap-
plied it to hyperspectral images and achieved promising results.
Zhang et al. (2020) used a 3D-2D-CNN to also extract spatial-
spectral features from hyperspectral images. They showed that
the proposed method can already learn the most discriminative
features when only a small number of training samples is avail-
able. Oehmcke et al. (2019) only used 3D convolutions in the
first convolutional block of a U-Net. They used the 3D con-
volutions to extract features from SITS that are partly covered
with clouds and achieved slightly better results than a 2D-CNN
model trained using single-epoch images without any clouds.
All the mentioned approaches indicate that the use of additional
dimensions in the convolutional operation improves the accur-
acy of a CNN. However, to the best of our knowledge none of
the existing approaches investigates the usage of 3D convolu-
tions in the spatial-temporal as well as in the spatial-spectral
dimensions for the application of land cover classification. We
analyse this question for multi-temporal remote sensing images
by comparing two variants of 3D-CNNs and a commonly used
2D-CNN.

One common characteristic of methods for classifying crops
or land cover from SITS is to use fixed acquisition dates dur-
ing training, e.g. (Ji et al., 2018; Kussul et al., 2017). Con-
sequently, ideally images from the same dates should be avail-
able for inference, too. However, this requirement can hardly be
fulfilled, e.g. due to cloud coverage or different satellite revisit
times. Several ways to mitigate this problem have been sug-
gested. Hagolle et al. (2015) used cloud and shadow masks to
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find images with missing information and filled these gaps, e.g.
by linear interpolation from images acquired at neighbouring
time steps (Pelletier et al., 2019). To avoid such additional pre-
processing we propose a more flexible way to generate multi-
temporal input patches for a CNN. Instead of using fixed ac-
quisition dates, we divide the year into several time intervals
and use the image that is closest in time to the center of the cor-
responding time interval to generate training data, resulting in
equi-distant sampling in time.

3. METHODOLOGY

3.1 The Convolutional Operation in 2D and 3D

The convolutional operation is the main component of a CNN.
It is a linear operation that can be represented by y = w ∗x+ b.
The output tensor y is computed based on the input tensor x,
the kernel w, and a bias b, with w and b being the parameters
that are determined in training.

We refer to a convolution as d-dimensional if w is shifted in
d dimensions of the input x. This operation results in a d-
dimensional output tensor y. In many CNN architectures the
input x has at least one dimension more than d; for instance
2D-CNNs are often used for image data having three dimen-
sions (two spatial, one spectral) and the filter matrix is shifted
in the two spatial dimensions. In this work, we assume that in
the case of a d-dimensional convolution, i.e. if the kernel is
shifted in d dimensions, the input of a convolutional layer l has
one additional dimension. We refer to the size in this additional
dimension as the number of input channels P . For each input
channel p a different kernel wp is used to compute the con-
volution. This results in P d-dimensional outputs, which are
then added up to obtain one d-dimensional output tensor y. An-
other parameter for a layer l is the number of output channels
O, which indicates the number of times the whole process is
repeated with different kernels w, resulting in O d-dimensional
output tensors y, which are then stacked and provide the input
channels for layer l + 1. In the following, we introduce the
computation of 2D- and 3D-convolutions for one of the output
channels O.

The convolution in 2D is the one most widely used in CNNs
for image processing. Here, the kernel is shifted in the two
spatial dimensions. Of course, this operation is not restricted to
be used in these dimensions. For a 2D-convolution in layer l
a 2D-kernel wp is used to slide over the p-th channel of input
xl−1 and the results are summed to compute the output yl for
each individual pixel (for simplicity we omit the layer index l):

yrs = b+

P∑
p=1

I−1∑
i=0

J−1∑
j=0

wij,p · x(r−i),(s−j),p, (1)

where wij,p is the shared weight at position (i, j) in the kernel
of size I x J for the p-th input channel and P is the total number
of input channels from the previous layer. xrs,p is the input at
location (r, s) from input channel p and yrs is the output at
location (r, s), with r and s indicating the index of the current
pixel in the two dimensions in which w is shifted.

In contrast to the 2D convolution, the 3D convolution shifts the
3D kernel in three dimensions:

yurs = b+

P∑
p=1

K−1∑
k=0

I−1∑
i=0

J−1∑
j=0

wkij,p · x(u−k),(r−i),(s−j),p, (2)

where wkij,p is the shared weight at position (k, i, j) in the ker-
nel of size K x I x J for the p-th input channel, P is the total
number of input channels from the previous layer, xurs,p is the
input at location (u, r, s) from input channel p and yurs denotes
the output at location (u, r, s), with u, r and s denoting the in-
dex of the current pixel in the three dimensions in which w is
shifted. Note that r and s are spatial indices like in equation 1,
whereas the interpretation of k and u depends on the specific
way in which the 3D convolution is applied. In the following
section, the different FCN variants based on 2D (equation 1)
and 3D convolutions (equation 2) that are used in this work are
introduced.

3.2 Network Architecture

3.2.1 Mono-temporal 2D-U-Net: The baseline network ar-
chitecture used in this paper is a variant of U-Net (Ronneberger
et al., 2015) designed for monotemporal Sentinel-2 imagery; it
is shown in figure 1. The input layer has a size of B×(H×W),
where H and W are the image height and width, respectively,
and B indicates the number of spectral bands. We use the brack-
ets to show in which dimensions the filter matrix is shifted,
which means that P = B and r and s from equation 1 are the
row and column indices of the input. The encoder is composed
of four convolutional blocks, each consisting of two convolu-
tional layers with I = J = 3 followed by batch normalization
(Ioffe and Szegedy, 2015) and a rectified linear unit (ReLU) as
the activation function. We use zero-padding and to reduce the
spatial dimensions by a factor of 2, we add a max-pooling layer
at the end of each encoder block with a window size of 2×2 and
a stride of 2. The black numbers in figure 1 indicate the num-
ber of output channels O in the convolutional blocks, which is
doubled whenever the spatial resolution is reduced. The en-
coder is linked to the decoder by another convolutional block
without a downsampling layer. The decoder consists of four
upsampling layers that use bilinear interpolation, each followed
by another convolutional block. Similar to U-Net, there are skip
connections between corresponding layers of the encoder and
the decoder; the corresponding features are concatenated be-
fore further processing. Finally, a 1×1 convolution maps the
feature vectors to raw class scores, which are normalized by a
softmax layer. In this paper, we refer to this variant as 2D-Unet.

In the following the different modifications to this baseline are
described that are used to integrate multi-temporal images.

3.2.2 Multi-temporal 2D-U-Net: To integrate multi-tem-
poral images into 2D-Unet, the spectral bands of the different
timesteps are stacked by iteratively placing all spectral bands
from the next timestep on top of the stack from the previous
timestep. This is done to again obtain a 3-dimensional input
tensor, resulting in an input of size B · T×(H × W ) with T
being the number of used timesteps (P = B · T in equation
1). Again, r and s are the row and column indices of the input,
indicating the dimensions in which the 2D kernel is shifted. We
refer to this variant as 2D-Unet-ext in the remainder of this pa-
per.

3.2.3 3D-2D-U-Net: Following Oehmcke et al. (2019), who
used a combination of 3D and 2D convolutions, we create an
architecture with 3D convolutions in the first encoder block and
2D convolutions in all others. We create two variants of this
architecture: In the first one the input is of size B×(T × H ×
W ), which means that the 3D kernel shifts in the spatial and
temporal dimensions (the former corresponding to the indices
r and s and the latter to u in equation 2), while the index p is
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Input Max-poolingConv. block Concatenate 1x1 Conv. Softmax Bil. upsampling

64 / 32
128 / 64

256 / 128
512 / 256 512 / 256

256 / 128
128 / 64

64 / 32
64 / 32

Figure 1. The network architecture. Black numbers at the convolutional blocks indicate the number of feature maps for 2D-U-Net,
3D-2D-Unet or 3D-U-Net. Green numbers indicate the number of feature maps for 3-D-U-Net-light.

related to the spectral bands, thus P = B. We refer to this
variant as 3D-2D-Unett. In the second variant, the input is of
size T×(B × H ×W ) and the 3D kernel shifts in the spatial
and spectral dimensions; the index u corresponds to the spectral
dimension and p is the index of the temporal dimension, thus,
P = T . We will refer to this variant as 3D-2D-Unetb.

The 3D kernel has a size of K = I = J = 3. After the 3D con-
volutions the tensor needs to be reshaped for all following con-
volutional blocks, which are based on 2D convolutions (equa-
tion 1). This is done by stacking all the individual 3D-feature
maps that are obtained when iterating in the first dimension (P
in equation 2). The feature maps of the first and second di-
mension (T and B) are stacked, retaining the size in the two
spatial dimensions H and W , which results in a tensor of size
B1 · T 1×(H1 ×W 1), where the superscript indicates that the
values correspond to the size of the feature maps in layer 1.
This is followed by a 1 x 1 convolution to reduce the number
of feature maps to 64; these maps are passed on to the second
convolutional layer (note that we use the same number of out-
put channels O as for 2D-Unet, see black numbers in figure 1).

3.2.4 3D-U-Net: For 3D-U-Net, we replace every 2D-con-
volution from the baseline architecture by a 3D-convolution.
As for the 3D-2D-Unet we create two variants: 3D-Unett for
an input of size B×(T ×H ×W ) with the 3D kernel shifting
in the spatial-temporal dimensions and 3D-Unetb for an input
of size T×(B × H × W ) with the 3D kernel shifting in the
spatial-spectral dimensions. When we use the same number of
output channels O as for the other variants the number of para-
meters increases significantly, namely from 13.5M (2D-Unet)
to 40.2M. Therefore, we reduce the number of output channels
by half (green numbers in figure 1), which results in 10.1M
trainable parameters. We refer to the variant with half the num-
ber of output channels as 3D-Unet-light and to the full one as
3D-Unet. In the experiments, we focus on 3D-Unet-light for a
comparison with the other variants, as the number of trainable
parameters is approximately equal.

3.3 Training

During the training process, the parameters of the network are
iteratively updated using the ADAM optimizer (Kingma and
Ba, 2015), which minimizes a loss function that measures the
discrepancy between the reference and the predictions of the
network using the current parameters. To counteract any imbal-
ance of the class distribution of the training samples, we mini-
mize the weighted cross entropy loss, considering class weights

based on the degree of difficulty of the current classifier to pre-
dict the class labels correctly (Wittich and Rottensteiner, 2021).
The weighted cross-entropy lossLCrEn is based on the softmax
predictions ycn for a sample n to belong to class c:

LCrEn = − 1

N

∑
n

∑
c

Ccn · ln(ycn) · cwc. (3)

In equation 3, Ccn = 1 if the nth sample (i.e., the nth pixel
in a minibatch) belongs to class c, otherwise Ccn = 0. N is
the total number of pixels in the minibatch for which the loss is
computed. The class weights cwc are set to 1 for all classes dur-
ing the first epoch, which corresponds to using an unweighted
loss. After the first training epoch, the last training minibatch
is classified using the current network parameters and the result
is used to compute the intersection over union (IoUc) for every
class c, which is then used to adjust the class weights:

IoUc =
TPc

TPc + FPc + FNc
(4)

In equation 4, TPc, FPc and FNc refer to the number of pixels
that are true positives, false positives and false negatives, re-
spectively, with respect to class c. As these results highly de-
pend on the minibatch used for the calculation (it may even
happen that a class is not present in that minibatch), we aver-
age the IoUs from the last 10 epochs (or from all available ones
before epoch 11). Following (Wittich and Rottensteiner, 2021),
these IoU scores are then used to determine the class weights
cwc for the next epoch:

cwc = (1 − ∆IoUc)
κ = [1 − (IoUc −

1

l

l∑
h=0

IoUh)]κ, (5)

where ∆IoUc is the difference between the mean IoU of all
classes and the IoU of class c, and the hyperparameter κ is
used to scale the influence of classes with a lower IoU on the
results. These class weights are used in the loss (equation 3)
during the following epoch.

4. EXPERIMENTS

4.1 Dataset

The test site covers the whole area of the German federal
state of Lower Saxony (47600 km2). The dataset comprises
Sentinel-2 images acquired between January 2019 and Decem-
ber 2020. We use Sentinel-2 Level-2A data, which con-
tain georeferenced bottom-of-atmosphere reflectance and cloud
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masks from the top-of-atmosphere reflectance of every pixel
(Bertini et al., 2012). We use the four spectral bands with a
ground sampling distance (GSD) of 10 m (red, green, blue, near
infrared) and the six bands having 20 m GSD. The latter are
upsampled to 10 m using bilinear interpolation. All bands are
normalized to zero-mean and unit standard deviation by using
v′i,b = (vi,b − µb)/σb, where µb and σb denote the mean and
standard deviation of band b, respectively, which are computed
for a part of the dataset that covers approximately 15% of the
test site. The cloud mask is used to exclude parts of the im-
ages that contain more than 5% cloud coverage, which results
in a different number of available images for different regions,
with a number varying between 14 and 105 for the chosen time
period of two years.

To obtain the class labels to be used in training, informa-
tion from the official German landscape model ATKIS is used
(AdV, 2008). This database contains information about 104 dif-
ferent land use classes, which is too detailed for automatic clas-
sification. To define a suitable class structure for land cover, se-
veral land use classes from the database are merged, so that in
the end, nine classes are differentiated: Settlement (stl.), Sealed
area (sld.), Agriculture (agr.), Greenland (grl.), Forest (for.),
Flowing water (fwt.), Standing water (swt.), Sea (sea) and Bar-
ren land (bar.). In addition, the class others is used for areas
without label information that occur due to errors in the data-
base or in areas outside the state borders. This information is
used to disregard samples of this class in training and evaluati-
on. The database is updated at irregular intervals that can vary
between a few days and three years. For the experiments re-
ported in this paper, one reference label image at the geometric
resolution of the satellite imagery is created for each of the two
years, and each Sentinel-2 image is combined with the label im-
age corresponding to the year of its acquisition. This procedure
leads to some label noise, as some more recent changes visible
in the images are not yet contained in the database.

For computational reasons, the available data is split into tiles
of 8×8 km2 (800 × 800 pixels, we refer to them as BE8 tiles
in the following), which leads to a total number of 950 tiles co-
vering Lower Saxony (cf. figure 2). For three tiles (shown in
red in figure 2), the corresponding reference label image was
corrected manually for 2019 and 2020 to obtain a reference for
the evaluation that is not affected by label noise. In this process,
about 18% of the pixels were changed, which gives an indica-
tion to the amount of label noise to be expected in the remain-
ing data. Most changes occur between the classes Greenland
and Agriculture. Figure 3 shows the Sentinel-2 image for two
acquisition dates for one of the corrected tiles and the corres-
ponding corrected reference.

To create mono-temporal input data the training patches are ran-
domly chosen from all available dates over the time period. To
generate multi-temporal patches we split every year (January to
December) into four time intervals. This results in the following
time intervals: January - March, April - June, July - September
and October - December. For each interval, the Sentinel-2 im-
age acquired most closely in time to the middle of the interval
is selected, e.g. the one acquired most closely to February 15th
is selected for the first time interval. Thus, for each area in the
dataset it is possible to create a multi-temporal input patch for
2019 or 2020 consisting of four images (one per interval). To
be able to compare the FCNs trained on mono-temporal images
with the FCNs trained on multi-temporal images, we use the
BE8 tiles with the same acquisition dates during the evaluation

Figure 2. Overview of the available BE-8 tiles of 8×8 km2 each.
Grey / green: potential training / validation tiles. Red: test tiles
with manually corrected reference (dataset R1). Black: test tiles

without corrected reference (dataset R2).

Figure 3. A Sentinel-2 tile of size 8×8 km2 for April 2019
(left), September 2020 (middle), and the corrected reference for
2020 (right). The colours correspond to: red - bld., grey - sld.,

yellow - agr., light green - grl., dark green - for., dark blue - fwt.,
light blue - swt, turquoise - sea, brown - bar.

of all experiments, which results in four times as many classi-
fied test tiles for the mono-temporal network variant as for the
multi-temporal ones.

4.2 Experimental protocol

4.2.1 Experimental setup: For all experiments, we split
our dataset into a set of 875 BE-8 tiles for training, 36 BE8-
tiles for validation (green tiles in figure 2) and 39 BE-8 tiles
for testing (black and red tiles in figure 2). Training is based
on the method described in section 3.3. To create the input
patches, we randomly crop windows of 256×256 pixels from
the available training tiles. We apply random data augmenta-
tion, including rotations by 90◦, 180◦, 270◦ and horizontal and
vertical flipping, which results in a large variety of available
training patches. Training is carried out in epochs, where one
epoch consists of a series of iterations, each considering a small
minibatch of input patches. The number of iterations per epoch
is set so that in each epoch, 10.000 patches are used to update
the parameters. Training continues for a maximum number of
100 epochs, but is stopped earlier if the validation accuracy does
not increase for 10 epochs. The minibatch size is set to 8 and
is reduced to 6 for 3D-Unet-light and to 2 for 3D-Unet. During
training the ADAM optimizer (Kingma and Ba, 2015) is used
with the parameters β1 = 0.9 and β2 = 0.999 and a learning
rate of 0.01 that decreases by a factor of 0.7 every 10 epochs.
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The parameter κ is set to 3, as this value resulted in a good
trade-off between the accuracies of the over- and underrepres-
ented classes. The learning rate and κ were tuned by using 2D-
Unet with mono-temporal images by choosing the parameter
values with the highest mean F1-score on the validation dataset
and these values were confirmed by a smaller set of experiments
with the other architectures.

4.2.2 Evaluation protocol: For evaluation, the results of
the FCNs achieved for the test tiles are compared to the avail-
able reference. As these tiles are larger than the input size to
the network, the evaluation is done with a sliding window ap-
proach with a horizontal and vertical shift of 128 pixels. This
results in four predictions per pixel, except at the edges of the
BE8 tiles. The resulting softmax scores for each class are av-
eraged to obtain the final predictions. Quality indicators are
determined based on a per-pixel comparison between the pre-
dicted labels and the reference. We report the overall accuracy
(OA), i.e. the percentage of pixels with correctly predicted class
labels, the F1-scores per class, i.e. the harmonic mean of pre-
cision and recall, and the mean F1-score (m-F1), i.e. the mean
of the F1-scores of the individual classes. While the OA can
be biased by imbalanced class distributions, the m-F1 averages
the F1-scores of all classes, so that the impact of a class with
few samples on this metric is equal to the one of a class with
many samples. These indicators are determined based on the
three corrected test tiles (referred to as set R1) as well as on
the 39 non-corrected test tiles (referred to as set R2). While
the former is based on a small set of samples that is not af-
fected by the errors in the reference, the latter forms a larger
set of samples which, however, may be effected by label noise,
i.e. errors in the reference labels. The distribution of class
labels in the training and test datasets is shown in table 1. It
can be seen that classes like Agriculture, Greenland and Forest
clearly dominate the label distribution, while the classes Bar-
ren land, Flowing water, Standing water and Sealed area are
clearly under-represented.

Set Percentage of samples for each class [%]
stl. sld. agr. grl. for. fwt. swt. sea bar.

Train 7.3 0.2 31.0 17.3 16.4 1.4 0.6 9.9 0.6
R2 9.0 0.3 44.1 19.5 18.8 0.2 0.8 4.0 0.6
R1 7.9 2.2 56.5 12.0 9.0 1.2 1.6 9.0 0.6

Table 1. Class label distribution for the training and test datasets

4.2.3 Test setup: The evaluation is split into two parts. In
a first set of experiments, we compare mono-temporal to multi-
temporal classification. This is done using the architectures de-
scribed in sections 3.2.1 and 3.2.2. 2D-Unet is trained with an
input size of 10×(256× 256), and for the multi-temporal 2D-
Unet-ext architecture, the four time steps per year are stacked
to generate an input patch of size 40×(256× 256). For both
architectures, the 2D kernels are shifted in the two spatial di-
mensions.

In the second set of experiments, we investigate how the clas-
sification performance is influenced by the application of a 3D
convolution and by the way in which the it is performed. Ac-
cordingly, we use the 3D-2D-Unet, 3D-Unet-light and 3D-Unet
architectures described in sections 3.2.3 and 3.2.4. The in-
put patches are of size 10×(4×256×256) when the kernel is
shifted in the spatial-temporal dimensions and of size 4×(10×
256×256) when it is shifted in the spatial-spectral dimensions.
All variants and the corresponding numbers of parameters are
shown in table 2. For 3D-2D-Unet the number of parameters

only increases by a small amount compared to 2D-Unet. Com-
pared to the 2D variants, the number of parameters is about 18%
smaller for 3D-Unet-light. For the full 3D-Unet architecture,
however, the number is four times larger than the one for 3D-
Unet-light. This also has an effect on the training time, which
is three to four times longer than that for 3D-Unet-light. For
this reason, in the discussion, we will focus on 3D-Unet-light
for the comparison.

Variant convolution # Par.
2D-Unet spatial 13.4M
2D-Unet-ext spatial 13.4M
3D-2D-Unett spatial, temporal 13.5M
3D-2D-Unetb spatial, spectral 13.5M
3D-Unet-lightt spatial, temporal 10.1M
3D-Unet-lightb spatial, spectral 10.1M
3D-Unett spatial, temporal 40.2M
3D-Unetb spatial, spectral 40.2M

Table 2. Different network variants, dimensions in which the
convolutional kernels are shifted (convolution) and

corresponding number of trainable parameters (# Par.).

4.3 Evaluation of the networks based on 2D convolutions

To assess the impact of integrating multi-temporal input data on
the classification performance of a 2D-U-Net, we carried out
experiments based on mono-temporal images (2D-Unet) and
compare the results to those with multi-temporal input images
(2D-Unet-ext) as described in section 4.2. Table 3 shows the
results for both test datasets (R1 and R2). Examples for predic-
tions on R1 are shown in figure 4.

(a) reference (b) 2D-Unet (c) 2D-Unet-ext

Figure 4. Exemplary prediction results for one tile in R1 using
2D-Unet and 2D-Unet-ext. Colour code: cf. figure 3.

The results show an increase of 4% in the m-F1 and 1.3% in
OA on R1, and an increase of 5% in m-F1 and 2% in OA on R2

when multi-temporal images are used. For a comparison of the
F1-scores of the individual classes, we use dataset R1, as the
manually corrected tiles are not affected by label noise. As ex-
pected, when using multi-temporal image data, the classes that
contain vegetation (Agriculture, Greenland and Forest) show
an increase in the F1-score; it is 3.5% for Forest and 2.4%
for Greenland. The F1-score for Agriculture only increases by
0.4%, which could be due to the fact that the F1-score for this
class is already high when using mono-temporal images. An
inspection of the confusion matrix shows that the low F1-score
of 51% for Greenland is mainly due to areas that are classified
as Greenland but labelled as Agriculture in the reference (cf.
the centre of the upper part of figure 4 for an example). This
effect was also observed during the manual correction of R1:
in some areas, it was very difficult to distinguish between grass
and young crops, and the usage of multi-temporal images seems
to compensate this ambiguity only to a small amount. Surpris-
ingly, the different classes of water show the largest improve-
ment (14% for Flowing water, 7% for Standing water and 2%
for Sea). The main reason for this effect seems to be a reduction
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in the confusions between the classes Flowing water and Stand-
ing water. For instance, in the result of mono-temporal classi-
fication shown in figure 4(b), the river is predicted as Standing
water instead of Flowing water in some areas that are close
to lakes. These errors are completely eliminated when multi-
temporal images are used to train the network (figure 4(c)). The
class Sealed area, mostly corresponding to streets, has the worst
results in all the experiments. In the results in figure 4, none of
the streets are predicted correctly by any of the trained models.
This is probably due to the small amount of training data (0.2%
in the training dataset) and the low GSD of the data which res-
ults in a loss of fine structures corresponding to streets.

Overall, the usage of multi-temporal input data created in the
way described in section 4.1 clearly improves the performance
of the networks based on 2D convolution for all classes without
requiring more trainable parameters.

4.4 Evaluation of the networks based on 3D convolutions

The experiments using the FCN variants based on 3D convolu-
tions are designed to investigate if the performance of the mod-
els can be further improved in this way. Furthermore, we com-
pare the two variants 3D-2D-Unet and 3D-Unet-light to find out
how the performance varies depending on whether the 3D con-
volutions are only used in the first convolutional block or in the
entire network. The results for all variants are shown in table 4.

4.4.1 3D-2D-U-Net: Both variants of 3D-2D-Unet show a
slight improvement in m-F1 and OA on R1 compared to 2D-
Unet-ext. For 3D-2D-Unett this improvement amounts to 0.4%
in m-F1 and to 0.6% in OA; for 3D-2D-Unetb there is an im-
provement of 0.5% in m-F1 and 0.5% in OA. The class Bar-
ren land, which is also one of the under-represented classes,
has the largest improvement of 5% and 7% for 3D-2D-Unett

and 3D-2D-Unetb, respectively. There is also a small improve-
ment for Greenland (+1%) and Agriculture (+0.4%) for both
variants. A slight decrease is observed for the classes Forest,
Flowing water and Sealed area. These results are generally
confirmed on R2, where Barren land is again the class with the
largest improvement (+5% for 3D-2D-Unett and +4% for 3D-
2D-Unetb) and small improvements for Greenland, Agriculture
and Settlement can be achieved. There is a slight increase in
OA for both variants but a slight decrease in m-F1. This is due
to a larger drop in accuracy for Flowing water on R2, which
is mainly caused by confusion between areas corresponding to
Sea that are classified as Flowing water. The results show that
it barely matters whether the kernel is shifted in the spatial-
temporal and the spatial-spectral dimensions: the correspond-
ing network variants perform equally well and deliver slightly
better results than 2D-Unet-ext, in particular leading to a large
increase of the accuracy for Barren land.

4.4.2 3D-U-Net: Using 3D-Unett-light leads to a small in-
crease in accuracy on both test datasets compared to 2D-Unet-
ext (0.4% in m-F1 and 1.2% in OA on R1). Again the class
Barren land is improved by the largest margin (+3.2% in F1,
followed by Greenland (+1.2%) and Agriculture (+0.9%). We
also observe a slight decrease in performance for the classes
Flowing water and Forest. Overall, 3D-Unett-light is the best
performing variant of all our experiments with the highest F1-
score for four of the nine classes. The model 3D-Unetb-light,
which shifts the 3D kernel in the spatial-spectral dimensions
shows a decrease of 0.1% in m-F1 but an improvement of 0.4%
in OA compared to 2D-Unet-ext. The decrease of the F1-score
for 3D-Unetb is mainly due to the low F1-score for Sealed area,

which is lower than for 2D-Unet-ext. The F1-score of the class
Barren land improves by 3.8% again, and there are slight im-
provements for Settlement, Agriculture, Greenland and Flow-
ing water. Regarding 3D-Unet-light, the usage of the 3D kernel
in the spatial-temporal dimension outperforms the model with
the shift in the spatial-spectral dimension, which is confirmed
by similar results on R2. To see whether the performance of
3D-Unet-light can further be improved by using more trainable
parameters, we also tested version 3D-Unet. The results show
very similar performance but no improvement, which indicates
that the capacity of 3D-Unet-light and 2D-Unet as expressed in
the number of trainable parameters of these networks is already
sufficient for our classification task.

In comparison to 3D-2D-Unet the variant 3D-Unett slightly im-
proves the performance for most classes. In contrast, the per-
formance of 3D-Unetb is lower than both variants of 3D-2D-
Unet. The results show that the usage of 3D convolutions can
indeed improve the accuracy for land cover classification, in
our results especially for the class Barren land, but they are
not needed in all convolutional layers of the network to achieve
good performance.

Overall, the multi-temporal 2D-Unet-ext already provides a
good baseline with competitive performance compared to all
the variants with 3D convolutions, which only improve the res-
ults by a small amount. The larger improvement between the
mono-temporal and multi-temporal 2D-FCN indicates that the
2D-Unet-ext is already able to extract the most important tem-
poral and spectral features.

5. CONCLUSION

In this paper, we introduced a flexible way to generate multi-
temporal input data for land cover classification based on time
intervals. We investigated how the usage of these multi-
temporal input data improves the performance of 2D-CNNs
with a shift of the kernel in the spatial dimensions only and
we also evaluated the impact of using different variants of 3D-
CNNs, in which a 3D kernel is shifted in the spatial-spectral
or the spatial-temporal dimensions. Our results show that the
variant 2D-CNN with multi-temporal images as input already
achieves competitive performance, outperforming the mono-
temporal variant by 4% in m-F1 and 1.3% in OA. These res-
ults can be slightly improved when 3D convolutions are used in
the first convolutional block or the entire network. All investig-
ated variants based on 3D convolutions achieve relatively sim-
ilar results, with a slightly higher performance of the 3D-Unet-
light using 3D convolutions in the spatial-temporal dimensions.
A further increase in the number of trainable parameters, on the
other hand, did not lead to an improvement of the results. We
conclude that the 2D-U-Net trained with multi-temporal images
learns the temporal and spectral features very well and should
be sufficient for most practical applications.

In future research, we plan to investigate the performance of
the suggested models when more time steps are used. This
would allow to experiment with kernels of different sizes on
the one hand and also to model time-dependent changes on the
other hand. For the latter, the CNN needs to be adapted in a
way that multiple outputs are possible, e.g. for every time step.
Additionally, it would be interesting to see if the usage of all
available image data during a time interval can further increase
the classification performance. To achieve this goal, a selection
step, e.g. based on an attention model, has to be integrated to
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Variant F1-scores on R1 [%] R1 [%] R2 [%]
stl. sld. agr. grl. for. fwt. swt. sea bar. m F1 OA m F1 OA

2D-Unet 86.8 23.7 88.4 48.6 81.8 65.3 80.9 94.8 40.4 67.8 81.2 74.9 85.7
2D-Unet-ext 87.2 25.2 88.8 50.9 85.3 79.5 88.0 97.2 44.9 71.9 82.5 79.9 87.7

Table 3. Evaluation of land cover classification with mono-temporal and multi-temporal input data based on 2D convolutions.

Variant F1-scores on R1 [%] R1 [%] R2 [%]
stl. sld. agr. grl. for. fwt. swt. sea bar. m F1 OA m F1 OA

2D-Unet-ext 87.2 25.2 88.8 50.9 85.3 79.5 88.0 97.2 44.9 71.9 82.5 79.9 87.7
3D-2D-Unett 87.1 22.2 89.2 52.0 84.8 78.0 89.6 97.2 50.1 72.2 83.1 78.7 87.8
3D-2D-Unetb 87.3 22.8 89.2 52.0 85.1 77.8 88.0 97.0 52.3 72.4 83.0 79.7 88.1
3D-Unett 87.0 25.6 89.7 52.1 84.5 78.3 88.1 97.3 48.1 72.3 83.7 80.6 87.9
3D-Unetb 87.5 20.6 89.1 51.5 84.9 78.3 88.4 97.0 48.7 71.8 82.9 78.6 87.9

Table 4. Evaluation of land cover classification with multi-temporal input data based on different network architectures (cf. table 2).

obtain an input for the CNN with equal size for every patch.
To improve the performance of classes with fine structures like
streets we finally plan to integrate class labels with a finer res-
olution than the 10 m GSD from the Sentinel-2 images.
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