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ABSTRACT: 
Pixel-wise land cover classification is a fundamental task in remote sensing image interpretation, aiming to identify planimetric features 
(e.g., trees, waters, buildings etc.) from earth's surface. Recently, deep learning methods based on fully convolutional neural networks 
(FCN) become the mainstream approach for land cover classification, thanks to their superior performance in the image context perception 
and features learning. However, for high-resolution remote sensing images with huge quantity of object details, some deep learning based 
methods often ignore many important details by nature, specially, in the procedure of pooling operation and stacking convolutions in 
conventional FCN, it can leads to ambiguous classification of adjacent objects. To refine lost details caused by the stacking convolutions, 
we propose a position-sensitive attention (PSA) based on skip connections for land cover classification with high-resolution remote sensing 
images, which designs to deliver a weight that is sensitive to the spatial details in remote sensing images, the PSA module is able to improve 
pixel-level details scattered across spatial positions. Experimental results demonstrate that our method can be feasible to existing FCN-
based models, 1% improvement in F1-score is obtained on 2021 "Shengteng Cup" competition dataset after using PSA, when comparing 
to several state-of-the-art methods, similar or even better performance is achieved on the ISPRS Vaihingen 2D dataset, but with less 
parameters. 

1. INTRODUCTION

Land cover classification aims to locate geographic objects at the 
pixel-level and assign them with feature category labels (Yang et 
al., 2019 and 2020), this is in principle identical with the goal of 
semantic segmentation in computer vision which explores dense 
pixel-wise classification. As some relevant technologies (such as 
sensors, electronics spacecraft etc.) develop, remote sensing 
images from various platforms such as satellites, airplanes and 
drones can observe large area with high resolution, and act as an 
important data source which is widely studied for land cover 
classification (Kussul et al., 2017; Zhan et al., 2020; Deng et al., 
2020). However, abundant details and large variations of objects in 
high-resolution images spawn new challenges for the extraction of 
features (Zheng et al., 2020a) for land cover classification. 
Recently, Convolutional Neural Networks (CNN) have been 
widely applied in land cover classification tasks, thanks to its 
outstanding performance in spatial feature extraction (Chen et al., 
2018a). Inspired by the superior achievement of the first end-to-
end fully convolutional neural networks (FCN), variants of relevant 
networks based on the encoder-decoder architecture outperform 
traditional machine learning algorithms, e.g., Wavelet Transform 
(Myint et al. 2004), SVM and MRF (Tarabalka et al. 2010; Camps-
Valls et al. 2014) etc., and become the mainstream approach for 
land cover classification (Long et al., 2015; Badrinarayanan et al., 
2017; Demir et al., 2018). 

Over the last years, image classification record has been 
continuously broken by various networks, for example, VGGNet 
(Simonyan et al., 2014), GoogleNet (Szegedy et al., 2015) and 
ResNet (He et al., 2016), the discriminability of the extracted 
features from these networks have been gradually increased, while 
one of remaining problems is the lost details during encoding 
procedure caused by the pooling operation and convolution 
operations across pixels (Yang et al., 2020). To cope with details 
lost by the pooling operation, dilated convolutions were suggested 
to replace the pooling layer for down-sampling (Yu et al., 2016), 
and the feature maps from encoder and the corresponding output of 

decoder are spliced on channel dimension, some details are 
reintroduced through skip connections (Ronneberger et al., 2016). 
However, dilated convolution is a sparse operation, i.e., stacking of 
dilated convolutions results in “gridding issue” (Wang et al., 2018) 
which appears as gridding shadow on the prediction results, and skip 
connections cannot transport sufficient semantic information from 
encoder, leading to misclassification of some pixels. Sun et al. (2019) 
proposed the advanced high-resolution networks (HRNet) which 
makes the pooling layer out of the model, but the structural 
complexity and the number of parameters increased. In addition, 
details are still not recovered somehow when stacking convolutions 
with stride of 2 for down-sampling in HRNet, thus, the problem of 
lost details caused by convolution operations across pixels remains 
unresolved. Recently, attention based methods are demonstrated to 
be effective for context information collection as a weighting 
mechanism (Wang et al., 2017; Fu et al., 2019; Tao et al., 2020), 
standing on these previous works, the corresponding weighting 
capability in spatial positions is investigated in this paper to refine 
details lost by convolution operations. 

Figure 1. A simple example of the high-resolution networks. There 
are four stages. The 1st stage consists of a high-resolution branch 
(branch one), each stage adds branches in order (branch two to 
four). More details can be found in Section 3 (Sun et al., 2019). 

In this paper, we investigate the feature maps extracted from 
different branches of HRNet at different stages by visualizing the 
corresponding response peaks on the channel dimension (Fig. 1 and 
Fig. 2). In general, it can be found that as the stage of network 
layers become deeper and the number of branches increases, richer 
semantic information can be contained by the corresponding 
feature map, and more detailed information will be lost as well. On ______________________ 
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the contrary, feature maps at earlier stages include more detailed 
information. In order to restore the lost details, we propose a 
position-sensitive attention (PSA) that can capture the spatial 
details from one of those feature maps which are from one early 
stage, and integrate it into later stages with skip pathways. Some 
feature maps extracted from other networks (such as ResNet) are 
also studied, basically, the same finding appears on corresponding 
visualization of the similar feature maps, and the experimental 
results demonstrate that our attention module can be applied to 
other networks as well. In addition, comparison experiments with 
several state-of-the-art methods on different remote sensing image 
datasets show that our method can achieve similar or better results 
with less parameters. The contributions of this work are as follows: 
1. We propose a simple yet effective PSA module which is designed
to take care of spatial details of remote sensing images.
2. The proposed attention can be easily applied to various models
that derived from FCN backbones by skip connection.
3. Comparable performance can be achieved after integrating with
our attention, but with less cost.

Figure 2. Example for feature map visualizations in HRNet (Fig. 
1). Each of them is from the last feature map of the corresponding 
stage and branch, and up-sampled to the same size as the input 
image (i.e., 512×512). 

The rest of this paper is organized as follows. Related works are 
reviewed in Section 2. The details of our attention are illustrated in 
Section 3. The performance of our works on different datasets and 
the corresponding ablation experiments are reported in Section 4. 
Finally, conclusions and an outlook are drawn in Section 5. 

2. RELATED WORK

Extensive works have been researched on land cover classification 
or semantic segmentation by employing the variants of FCN (Zhu 
et al., 2017, Chen et al., 2018a). In this section, we briefly review 
works on models based on FCN for semantic segmentation, 
architectures based on skip connection, and attention mechanism 
relevant to our works. 

2.1 FCN and relevant networks 
FCN removes the fully connected layers in CNN for image level 
classification, and replace it with up-sample and generate pixel-by-
pixel prediction to achieve end-to-end output (Long et al., 2015). 
By considering the relatively simple deconvolution procedure of 
FCN, Noh et al. (2015) proposed the deconvolution networks that 
is symmetric to the convolution network for up-sampling (i.e., 
unpooling to pooling, deconvolution to convolution). Similar 

symmetrical encoder-decoder architecture is applied in SegNet 
(Badrinarayanan et al., 2017), in which encoder is applied for 
down-sampling to expand the receptive field and feature extraction, 
while decoder is used for up-sampling and information fusion. As 
multi-scale analysis plays an important role in learning global 
information, pyramid architectures are deployed in Feature 
Pyramid Network (Lin et al., 2017) and Pyramid Scene Parsing 
Network (Zhao et al., 2017). Combining the feature pyramid and 
the dilated convolution (Yu et al., 2016), Deeplab (Chen et al., 
2018a) applied Atrous Spatial Pyramid Pooling (ASPP) module 
and achieved great performance. In order to improve the results of 
the semantic segmentation networks for better classification, 
HRNet (Sun et al., 2019) continuously performs down-sampling, 
feature extraction, up-sampling, and features are fused in sequence 
without encoder-decoder architecture and 3×3 convolutions with 
stride of 2 are applied for down-sampling as a replacement. 

Figure 3. A simple example of the high-resolution networks. 

2.2 Skip connection 
Skip connection is a universal architecture used in CNN to convey 
skip information, which has been proved to be effective in pixel-
wise classification. As shown in Fig. 3, FCN (Long et al., 2015) 
obtains feature maps with decreasing size and increasing number 
of channels by stacking convolutional layers and pooling layers, 
and feature maps are generated during down-sampling. In order to 
achieve end-to-end and pixel-by-pixel classification results, feature 
map from the bottom layer is up-sampled by zero-padded 
transposed convolution. Furthermore, element-wise addition is 
applied to merge multi-layer outputs by skip connections, so that 
FCN is able to recover the lost details caused by pooling layers to 
some extent. Different from element-wise addition in FCN, UNet 
(Ronneberger et al., 2015) combines feature maps from 
symmetrical positions of encoder and decoder on channel 
dimension to restore details through skip connections. Both of the 
two strategies have shown the skip connection is indeed helpful to 
improve land cover classification. In addition to the role of 
delivering details, skip connection is also considered as a shortcut 
in residual networks (ResNet, He et al., 2016) to keep gradient 
(feature map with small response value make gradient vanish). As 
shown in Fig. 4, if the convolution block is not helpful for 
improving the networks, it will be learned to become zero kernels, 
achieving the effect that its performance is at least not worse than 
the original block. As a consequence, ResNet makes the networks 
deeper by solving the problem of vanishing gradient. 

Figure 4. Example for Residual Block, where 𝑋𝑋, 𝑓𝑓, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑋𝑋′, ⊕
denote the input feature map, convolution operation, the Relu 
activation function, the output feature map and the element-wise 
addition. 

2.3 Attention mechanism 
Attention is essentially a weighting mechanism, networks can 
adaptively weight different features with learned attention, so that 
negative features will be suppressed and positive features will be 
enhanced. SENet (Hu et al., 2020) uses global pooling and fully 
connected layers for a feature map to calculate the relationship 
between different channel features, and then weights them 
regarding the channel dimension. To capture long-range 
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dependencies, the Non-local module (Wang et al., 2017) flattens 
two spatial dimensions of a feature map into one dimension, then 
multiplies the flat and its transposition as the global weight. As a 
combination of SENet and the Non-local module, the CBAM 
module (Woo et al., 2018) adds the results of global maximum 
pooling and global average pooling on each channel to implement 
channel attention, and splices the results of channel maximum 
pooling and channel average pooling on each pixel to capture 
spatial attention. Recently, attention mechanism has been applied 
to various feature maps, Mao et al. (2020) use attention from the 
deepest feature map to weight feature maps delivered by skip 
connections in UNet. Via analyzing the extracted feature map, in 
the work of Zheng et al. (2020b), foreground-aware attention is 
injected into feature maps from decoder to balance information 
between foreground and background. Being aware of the 
unbalanced information at different scales, Tao et al. (2020) 
explore the relationship between input images at different scales to 
build their attention, and Dai et al. (2021) apply multi-scale channel 
attention to weight feature maps at different scales. 

Different to the FCN based methods mentioned in section 2.1, we 
integrate a positive-sensitive attention which is based on selected 
feature maps extracted from the networks of FCN and the general 
idea of skip connection is applied. 

Figure 5. The visualizations of three selected feature maps (a, b, 
c) in HRNet with different two input images, one of which is the
same as Fig. 2.

3. METHODOLOGY

To restore the lost details during stacking convolutions, we 
visualize feature maps from the FCN-based networks to find the 
one that is most identical to human interpretation, and generate the 
position-sensitive attention (PSA) from it. With skip connections, 
we integrate PSA into feature maps which are insensitive to 
positional details. 

3.4 Visualization of feature map 
First of all, we visualize the feature map with pixel response peaks 
on the channel dimension and up-sample them to the size of input 
as a heatmap. In this paper, the feature maps of HRNet (Sun et al., 
2019) are selected as examples for visualization and investigation. 

HRNet applies 3×3 convolutions with stride of 2 for down-
sampling throughout the entire process, and there is no pooling 
operation, which avoids loss of detail and expands the receptive 
field to obtain more contextual information at the same time. After 
using convolutions to perform two consecutive double down-
sampling, it starts to enter the multi-resolution branches of HRNet. 
As shown in the Fig.1, HRNet uses four stages to extract features, 
while down-sampling is applied at the end of each stage. As a result, 
HRNet maintains a maximum of four branches to extract feature at 
various resolution in parallel. In the process of deep feature 

extraction, element-wise addition is used to integrate deep features 
form different resolution branches at the end of each stage (except 
the first stage), which make the final feature map be fused with 
high-level semantic information and low-level semantic 
information. With less lost details and fusion of multi-scale local 
information, HRNet can effectively improve the discriminability of 
the final feature map. 

3.2 Selection of the feature map 
Considering the requirement of relatively clear boundaries with 
less loss of detail, we pick three from those feature maps of HRNet 
(Fig. 5). In fact, we get similar heatmaps form other networks (e.g., 
ResNet, Fig. 6) with different input images. As the main 

segmentation process is performed on the feature map that is 
1

8
 the 

size of the input (same as branch one), and the visualization of the 
feature map is expected to contain relatively clear boundaries 
together with distinctive semantic information, we choose the 
middle one (b, Fig. 5) to generate our attention. Moreover, we 
conduct ablation experiments to verify our speculation. 

Figure 6. Similar visualizations of feature maps (a, b, c) in ResNet, 
the input image is the same as Fig. 2. 

3.3 Attention Generation 
Similar to the attention calculation of Tao et al. (2020), we use two 
3×3 convolutions without changing the number of channels to 
aggregate local information, and then use 1×1 convolution to 
compress the result to one channel. As shown in Fig. 7, the sigmoid 
activation function is used to range the value of attention between 
[0, 1], which acts as a weight tensor in the end. 

Figure 7. The workflow of our attention generation, i.e., the PSA 
module, where 𝑋𝑋 , 𝑓𝑓 , 𝑔𝑔 , 𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑊𝑊  denote the feature map, 3×3 
convolution, 1×1 convolution, the Sigmoid activation function and 
the attention. 

Figure 8. The workflow of PSA module applied in HRNet 

Figure 9. The workflow of PSA module applied in ResNet 

3.4 Attention Integration 
As information exchanging between different branches of HRNet 
leads to incomplete detailed information on the branch one, we 
apply our attention with skip connections after each exchange to 
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______________________ 
 1More details related to RSIPAC can be found at: http://rsipac.whu.edu.cn/subject_one 

refine details that belong to the branch one (Fig. 8). 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜑𝜑�𝑥𝑥°� = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑥𝑥° ⊗𝑓𝑓⊗ 𝑓𝑓⊗𝑔𝑔�      (1) 

𝑥𝑥′ = 𝜔𝜔�𝑥𝑥, 𝑥𝑥°� = 𝑥𝑥 + 𝑥𝑥 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥 + 𝑥𝑥 ∙ 𝜑𝜑�𝑥𝑥°�      (2) 
where 𝑥𝑥°, 𝑥𝑥′, 𝑥𝑥 represent the feature map for attention generation, 
the output feature map and the input feature map respectively, 
while 𝑓𝑓 , 𝑔𝑔 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , φ , 𝜔𝜔  denote 3×3 convolution, 1×1 
convolution, the Sigmoid activation function, the attention 
generation and the attention integration ⊗  and ∙  denote the 
convolution operation and the element-wise multiplication. As a 
result, the number of parameters are related to 𝑥𝑥°  caused by the 
three convolutions, the corresponding computation relates to 𝑥𝑥° 
and 𝑥𝑥′ . Note that UNet applies skip connection for delivering 
details and ResNet uses it for delivering gradient, both of them 
connect two feature maps, our strategy of skip connection actually 
delivers weights by connecting the attention and corresponding 
feature maps. As a consequence, our attention is not supposed to 
restore the lost details caused by the pooling operation because it 
carries no feature information such as UNet. Instead, our method 
can in principle make an improvement in refining details lost by 
convolutions. With skip connection, our attention is able to weight 
feature maps with severe lost details instead of being calculated to 
weight its own feature map (similar to  𝑥𝑥 = 𝑥𝑥°) for incorporating 
context information (such as Non-local, CBAM, etc). In addition, 
different from channel-based foreground-aware attention, our 
method is a spatial attention, we are able to weight spatial details 
while foreground-aware attention weights features that are 
beneficial to the representation of the foreground. While 
Transformer (Vaswani et al., 2017; Zheng et al., 2020c) applies 
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 , 𝑘𝑘𝑘𝑘𝑘𝑘 ,  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  for attention generation and attention 
integration, we use convolutions to directly calculate weights and 
weight feature maps 𝑥𝑥 (similar to 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 in attention integration) 
by element-wise multiplication. 

3.5 Loss Function 
We use the conventional Categorical Cross-Entropy Loss to 
measure the distance between learning results and labels. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = − 1
𝑁𝑁
∑ ∑ 𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖)𝐶𝐶

𝑖𝑖=1
𝑁𝑁
𝑝𝑝∈𝐼𝐼                       (3)

where 𝑝𝑝 = [𝑝𝑝1,⋯ , 𝑝𝑝𝐶𝐶] is a probability distribution of each pixel, 𝑝𝑝𝑖𝑖 
represents the probability that the pixel belongs to class 𝑖𝑖 ,  𝑦𝑦 =
[𝑦𝑦1,⋯ ,𝑦𝑦𝐶𝐶] is the onehot label of corresponding pixel, when the 
pixel belongs to class 𝑖𝑖, 𝑦𝑦𝑖𝑖 = 1, otherwise 𝑦𝑦𝑖𝑖 = 0, 𝐶𝐶 is the number 
of classes,  𝐼𝐼 represents the input image and  𝑁𝑁 is the number of 
pixels. 

From the introduced interpretation, we can apply the proposed PSA 
module in different backbones (e.g., ResNet, HRNet) as they have 
similar architectures and feature maps, relevant experiments are 
given in next section 4. 

4. EXPERIMENTS

The proposed method was tested on two remote sensing image 
datasets, including a satellite imagery dataset from 2021 
"Shengteng Cup" Remote Sensing Image Intelligent Processing 
Algorithm Competition Fine-grained Semantic Segmentation 
Track (RSIPAC), and a relatively large-scale aerial image dataset, 
i.e., ISPRS Vaihingen 2D (Wegner et al., 2017). In order to
comprehensively verify the weighting capacity and generalizability 
of our attention model, extensive studies were conducted for
different backbones (i.e., HRNet, ResNet, Deeplab v3+ and UNet)
on the RSIPAC preliminary dataset. In the following subsections,
we will give more details in regard to the dataset, experimental
settings and our experimental results.

4.1 Dataset and implementation details 
4.1.1 RSIPAC Dataset: The RSIPAC preliminary dataset is a 

satellite imagery benchmark for pixel-level remote sensing feature 
classification competition1, which contains 35000 RGB images 
collected from satellites of China, with spatial resolution of 0.8 to 
2 meters. Each image is with 512 × 512 pixels and 8 high quality 
annotated semantic classes and background. We randomly divide 
this dataset into two parts: 34000 images for training, 1000 images 
for both validation and test as we don’t apply validation set for 
adjusting training procession. The corresponding 9 land cover 
classes in this dataset are Background (B. g.), Plantation (Plan.), 
Forest and Grass (F&G.), Building (build.), Highway and Railway 
(H&R.), Structure (Str.), Artificial Surface of Accumulation and 
Excavation (Art. Surf.), Desert and Bare Soil (Soil.), Waters. 

4.1.2 ISPRS Vaihingen Challenge Dataset: This is an ISPRS 
2D semantic labeling challenge benchmark dataset, including 33 
very high-resolution true orthophoto (TOP) images (GSD ~ 9 cm) 
with size of 2500 × 2000 pixels. In addition, NIR, Red, Green 
bands, and two sets of auxiliary data, namely, the Digital Surface 
Model (DSM) and Normalized Digital Surface Model data 
(NDSM) are also available. This dataset was officially split into 
16 areas for training and 17 areas for testing. In our experiments, 
we crop training areas into images with size of 512 × 512 pixels 
and obtained 4326 training images and 111 validation images 
through augmentation methods such as rotation, flip, etc. We also 
use the validation set to evaluate the test accuracy, and only TOP 
images are used in our experiments. The 6 land cover classes in 
this dataset are Impervious Surface (Imp. Surf.), Building (Build.), 
Low Vegetation (Low Veg.), Tree, Car and Clutter (Wegner et al., 
2017). 

4.1.3 Experimental settings: Our method is implemented with 
the Pytorch framework. The base learning rate is set to 0.001. A 
poly learning rate policy is employed, in which the initial learning 

rate is multiplied by �1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ

�
1.0

 during each epoch. All
models in the experiments are trained with the SGD optimizer on 
NVIDIA GTX 3090ti GPUs. The momentum value is 0.9 and the 
weight decay value is 1e-4. For each experiment, the training 
procedure is with 100 epochs and validation is applied every 5 
epochs. During each training epoch, we use all training images in 
the ISPRS Vaihingen Dataset and randomly take half for training 
in the RSIPAC Dataset, and total iteration numbers is determined 
by the batch size which is chosen according to each method, more 
training information is introduced in the following subsections. 
And in all experiments, we use corresponding pre-trained models 
on ImageNet dataset (Russakovsky et al. 2015).  

4.1.4 Evaluation metrics: The performance of models on 
different datasets is assessed by intersection over union (IOU), 
precision, recall, F1-score, and overall accuracy (OA). The 
evaluation was based on an accumulated confusion matrix, from 
which IOU, precision, recall, F1-score, and overall accuracy can be 
derived: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑘𝑘
𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘

  (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 =  𝑇𝑇𝑇𝑇𝑘𝑘
𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘

;𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑘𝑘
𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘

 (6) 

𝐹𝐹1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 = 2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

   (7) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = ∑ 𝑇𝑇𝑇𝑇𝑘𝑘𝑁𝑁
𝑘𝑘=1

∑ 𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘+𝑇𝑇𝑇𝑇𝑘𝑘+𝐹𝐹𝐹𝐹𝑘𝑘𝑁𝑁
𝑘𝑘=1

  (8) 

where 𝑇𝑇𝑇𝑇𝑘𝑘 ,𝐹𝐹𝐹𝐹𝑘𝑘,𝑇𝑇𝑇𝑇𝑘𝑘 ,𝐹𝐹𝐹𝐹𝑘𝑘 denote the true positive, false positive, 
true negative and false negative pixels, respectively, k is the class 
index. We use mean intersection over union (mIOU) and average 
F1-score (avg. F1) to represent mean results for all classes. 

4.2 Ablation study for attention generation 
All experiments in this section are conducted on the RSIPAC 
dataset. The contribution of the feature maps for attention
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Networks 
F1 [%] mIOU 

[%] avg.F1 [%] OA B.g. Plan. F&G. Build. H&R. Str. Art. Surf. Soil. Waters 

HRNet 67.76 87.95 93.26 81.18 62.48 56.13 55.52 80.41 90.02 61.93 74.97 89.55 
PSA+HRNet 70.67 87.99 93.38 81.22 62.55 55.36 62.86 80.03 90.08 63.05 76.02 89.67 
ResNet152 72.82 87.68 93.30 80.18 55.22 59.60 63.57 81.12 90.89 63.16 76.04 89.65 

PSA+ResNet152 75.70 88.05 93.54 80.13 58.43 58.35 62.47 83.44 91.06 64.15 76.80 90.02 
UNet 74.68 87.92 93.44 80.90 61.99 55.17 56.97 81.40 89.76 62.95 75.80 89.81 

PSA+UNet 73.76 87.71 93.43 80.95 61.51 51.59 59.61 83.48 89.99 63.03 75.78 89.78 
Deeplab v3+ 77.51 88.08 93.44 81.43 61.63 58.52 60.18 81.12 90.97 64.33 76.99 89.93 

PSA+Deeplab v3+ 76.07 88.37 93.33 81.12 61.47 59.44 65.06 80.31 90.78 64.60 77.33 89.91 

Table 2. Results of land cover classification for ablation experiments on the RSIPAC dataset. Best scores are in bold font. 

generation is demonstrated by the final accuracy, this is to confirm 
our speculation in section 4.2, and a, b, c (same as in Fig. 5) is used 
to test corresponding experiments. The training batch size is set to 
8 for HRNet (2126 iterations per epoch) and other settings follow 
the description in section 4.1.2. The results are listed in Tab. 1.  

In Tab. 1, we can find that the numerical results are basically 
consistent with the mentioned qualitative discussion of the feature 
maps (in Fig. 5 and 6), and we visualize our attention as heatmaps 
in Fig. 10, the heatmap b is visually the best match as human 
interpretation. Quantitatively, the HRNet+PSA(b) outperforms the 
other two by 0.52% and 0.85% in mIOU, 0.51% and 0.98% in 
avg.F1, respectively. Compared to the baseline (HRNet), the mIOU 
and F1-score are improved by 1.12% and 1.05% when using the 
HRNet+PSA(b), and the other two (using PSA with a, c) also have 
few improvements, this shows the feasibility of the proposed 
attention. In general, the feature map b (Fig. 5) is obviously the best 
choice for our PSA module with both relatively clear boundaries 
and rich sematic information, and it is advocated to generate 
attention as our method in the following experiments. 

Networks mIOU 
[%] avg.F1 [%] OA [%] 

HRNet 61.93 74.97 89.55 
HRNet+PSA(a) 62.53 75.51 89.53 
HRNet+PSA(b) 63.05 76.02 89.67 
HRNet+PSA(c) 62.20 75.04 89.79 

Table 1. Results of ablation experiments for the PSA generation on 
the RSIPAC dataset. Best scores are in bold font. 

Figure 10. Visualization of the attentions generated from feature 
maps a, b, c (the same as in Tab. 1) in the bottom. 

4.3 General study for the PSA module on various networks 
This general experiment on the RSIPAC dataset is to validate the 
applicability of the PSA module into different backbones, i.e., 
HRNet (Sun et al., 2019), ResNet152 (He et al., 2016), UNet 
(Ronneberger et al.,2015), and Deeplab v3+ (Chen et al., 2018a). 
Apart from the evaluation metrics in section 4.1.4, the amount of 
calculations, parameters and inference time are also explored in 
this section. The training batch size is set to 8 for HRNet and 
Deeplab v3+ (2126 iterations per epoch), 12 for others (1417 
iterations per epoch), and other settings follow section 4.1.2. The 
results of experiments are listed in Tab. 2, and the cost of each 
method is reported in Tab. 4. Result visualizations is shown in Fig. 
11, and Tab. 3 provides the label colors for each land cover class. 

In Tab. 2, the results show that the PSA module improve 0.27%-
1.12% in mIOU, 0.34%-1.05% in F1-score on HRNet, ResNet152 

and Deeplab v3+, especially the first two models, achieving about 
1% improvement in both mIOU and F1-score. However, our 
method can hardly improve the performance based on UNet, and 
barely improves on Deeplab v3+. This could be due to the fact that 
skip connections are already applied in both UNet and Deeplab v3+, 
which leads to the channel concatenation of feature maps from 
encoder and decoder, the incomplete semantic information from 
encoder presumably is considered to stem the PSA module from 
refining details in decoder. In addition, skip connection in the PSA 
module works between the same feature maps as in UNet, which 
means skip connections reused on the same architecture probably 
result in negative influence, even though they provide different 
functions. In general, the PSA module can make improvement over 
most backbones in our experiments, but the results of H&R., Str. 
and Art. Surf. remains poor, the possible reason is the relatively 
small coverage of these categories. Furthermore, the spectral 
response of Str. is close to Build., and the inter-class discrimination 
between  Art. Surf. and Soil. is not clearly defined. 

Class B. g. Plan. F&G. 

Color  
(255, 255, 0) (255, 0, 255) (0, 255, 0) 

Class Build. H&R. Str. 

Color 
(255, 255, 0) (255, 0, 0) (255, 124, 128) 

Class Art. Surf. Soil. Waters 

Color 
(165, 165, 165) (102, 51, 0) (0, 0, 255) 

Table 3. The land cover classes and corresponding colors on labels 
of RSIPAC dataset 

Figure 11. Examples for classification results of general study on 
the RSIPAC dataset, images marked with a are the input images, 
and with b, c, d, e, f, g, h, i, j denote the ground truth labels and 
corresponding results of HRNet, PSA + HRNet, ResNet152, PSA + 
ResNet152, UNet, PSA + UNet, Deeplab v3+, PSA + Deeplab v3+. 
Corresponding colors for land cover classes are listed in Tab. 3. 

In Fig. 11, it can be seen that the PSA module improve the 
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prediction of Waters and H&R., where the lost details in original 
models result in incomplete classification. Especially, the 
improvement is pretty clear when our method is applied in HRNet 
and ResNet152. The prediction of Build. is also more consistent 
with the ground truth when the PSA module is applied. However, 
the classification of Str. remains a problem as the reason is due to 
the imbalance of training samples caused by the small coverage of 
Str., and the distribution of Str. is similar to Build. in the feature 
space, which leads to the ambiguity when classification is 
conducted between these two categories. 

In Tab. 4, the Float-Point Operations Per Second (FLOPS) which 
measures the computing power of a computer, and the GFLOPS 
means 1 billion floating-point operations per second are provided. 
The Params., Time in Tab. 4 denote parameters in models and the 
time for a single image (batch size set to one) to be predicted on 
the GPU (NVIDIA GTX 3090ti GPUs). These constitute the cost 
of all models, smaller is better. 

Networks GFLOPS[G] Params.[M] Time[ms] 
HRNet 93.63 65.85 76.17 

PSA+HRNet 94.86 65.93 76.30 
ResNet152 61.74 63.46 32.54 

PSA+ResNet152 148.62 63.53 36.03 
UNet 215.29 104.89 24.94 

PSA+UNet 216.51 104.97 27.80 
Deeplab v3+ 262.48 59.35 41.89 

PSA+ Deeplab v3+ 274.58 60.09 44.51 

Table 4. The cost of all models. 

From Tab. 4, it can be seen that the PSA module barely increases 
the cost of parameters as we only apply three convolution kernels 
for the attention generation, and other parts have no contribution to 
the additional parameters. The GFLOPS is relevant to the number 
of channels in the feature maps where we integrate our attention, 
and the corresponding number is 2048 in ResNet152, leading to a 
surge in the cost of computation when the PSA module is applied 
in ResNet152. The increment in the inference time caused by the 
PSA module is also acceptable. 

Figure 12. Example for classification results on the RSIPAC 
dataset, the image marked with a is the input image, and b, c, d, e, 
f, g, denote the ground truth label, result of the baseline 
(ResNet152), and corresponding results applied with PSA, LKPP, 
SENet, Non-local, respectively. Corresponding colors for land 
cover classes are listed in Tab. 3. 

4.4 Comparison to the state-of-art 
Several state-of-art methods are compared on the RSIPAC dataset 
and the ISPRS Vaihingen dataset. We use ResNet152 (He et al., 
2016) as the baseline, and apply LKPP (Zheng et al., 2020a), SENet 
(Hu et al., 2020), Non-local (Wang et al., 2017) and the proposed 
PSA on it, the cost of computation and parameters are also explored 
in this section. In addition, the up-sampling strategy of the baseline 
applied with LKPP follows the EaNet (Zheng et al., 2020a), which 
reduces the number of channels and up-sampling layer-by-layer 
together with convolutions, while others remain the same linear 
interpolation up-sampling as the baseline. The training batch size 
is set to 12 for each method (1417 iterations per epoch), and other 

settings follow the section 4.1.2. The results of experiments are 
evaluated in Tab. 7, and the cost of each method is reported in Tab. 
6. Visualization of one example in the results on the two datasets
is shown in Fig. 12 and Fig. 13, respectively, corresponding colors
for each class on the RSIPAC dataset is same as section 4.3, and
colors on the ISPRS Vaihingen dataset are listed in Tab. 5.

Figure 13. Examples for classification results on the ISPRS 
Vaihingen dataset, images marked with a are the input images, and 
b, c, d, e, f, g, denote the ground truth labels, results of the baseline 
(ResNet152), and corresponding results applied with PSA, LKPP, 
SENet, Non-local, respectively. Corresponding colors for land 
cover classes are listed in Tab. 5. 

Class Imp. Surf. Build. Low Veg. 

Color  
(0, 0, 255) (255, 255, 0) (255, 0, 255) 

Class Tree Car Clutter 

Color 
(0, 255, 0) (255, 0, 0) (0, 0, 0) 

Table 5. The land cover classes and the corresponding colors on 
labels of  the ISPRS Vaihingen dataset. 

From Tab. 7, it is clear that the PSA module achieves the highest 
prediction scores in terms of the mIOU, F1-score and OA metrics 
on the RSIPAC dataset while the other methods can hardly improve 
the performance of the baseline. Compared to the baseline on the 
ISPRS Vaihingen dataset, the PSA module improve 4.8% in mIOU, 
4.07 % in F1-score and 1.62% in OA. However, the performance 
is clearly better when LKPP is applied into the baseline, this is due 
to its different strategy for up-sampling, which also explains the 
corresponding GFLOPS doesn’t grow as the same as the cost of 
parameters does (Tab. 6). In contrast to LKPP, for all the other 
methods including ours, the GFLOPS is doubled while the cost of 
parameters barely increases. We want to remind that the PSA 
module still has the smallest increment regarding inference time 
among all methods in Tab. 6. 

Networks GFLOPS[G] Params.[M] Time[ms] 
Baseline 61.74 63.46 32.54 

PSA 148.62 63.53 36.03 
LKPP 83.30 116.16 50.74 
SENet 147.41 63.98 36.28 

Non-local 148.61 68.18 36.53 

Table 6. The cost of computation and parameters compared to the 
state-of-art methods. The baseline is ResNet152.
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Dataset Methods 
F1 [%] mIOU 

[%] avg.F1 [%] OA B.g. Plan. F&G. Build. H&R. Str. Art. Surf. Soil. Waters 

RSIPAC 

Baseline 72.82 87.68 93.30 80.18 55.22 59.60 63.57 81.12 90.89 63.16 76.04 89.65 
PSA 75.70 88.05 93.54 80.13 58.43 58.35 62.47 83.44 91.06 64.15 76.80 90.02 

LKPP 74.41 87.87 93.37 80.38 58.64 54.89 60.71 82.45 90.18 63.06 75.88 89.70 
SENet 76.25 87.94 93.49 79.65 52.92 55.63 62.87 84.19 89.57 63.24 75.95 89.83 

Non-local 77.23 87.55 93.22 79.42 51.69 55.64 60.96 81.64 89.35 62.32 75.19 89.49 
Imp. Surf. Build. Low Veg. Tree Car 

ISPRS 
Vaihingen 

Baseline 85.80 92.06 73.30 82.93 53.70 65.16 77.56 83.52 
PSA 87.44 92.78 74.76 84.93 68.26 69.90 81.63 85.14 

LKPP 88.57 93.57 76.06 84.86 76.97 73.63 84.01 85.94 
SENet 87.39 92.97 75.19 84.48 68.48 70.67 81.70 85.10 

Non-local 86.66 92.31 74.02 83.85 62.90 70.98 79.95 84.32 

Table 7. Results of land cover classification using PSA and the state-of-art methods on the RSIPAC dataset and the ISPRS 
Vaihingen dataset. The baseline is ResNet152. Best scores are in bold font. 

An example for classification results on the RSIPAC dataset is 
given in Fig. 12, it can be seen that all the four methods improve 
the prediction of H&R. and Build., while the baseline fails to 
identify them due to the loss of detail. In particular, the 
performance is inspiring when the PSA module or the LKPP 
module is applied in the baseline. It is puzzling that the 
visualization results of methods with LKPP, SENet, Non-local 
outperform the results of the baseline, whereas quantitative the 
evaluations barely show the identical improvement in Tab. 7. We 
consider that the low coverage of land cover classes (i.e., H&R., 
Str., Art. Surf.) pose difficulty in classification, and the baseline 
tend to ignore classification errors in these categories in order to 
maintain the accuracy of others (e.g., Plan., F&G.). In addition, 
due to the similarity of spectral response to H&R. and Soil., all the 
methods fail to identify Soil. in Fig. 12. As for the visualization 
results given in Fig. 13, it is clearly shown that the PSA module is 
helpful for refining the details, and the LKPP module actually 
performs better, especially on Car. 

5. CONCLUSION

In this paper, we have proposed a position-sensitive attention (PSA) to 
refine the lost details caused by stacking convolutions in FCN models 
for land cover classification. We investigated the performance of the 
PSA module and applied it in different backbones, the experimental 
results show that our method is able to improve mIOU by 0.27%-1.12% 
and average F1-score by 0.34%-1.05% on the RSIPAC dataset with 
just very small additional increasing in parameters and computations. 
Compared to the existing methods, i.e., LKPP (Zheng et al., 2020a), 
SENet (Hu et al., 2020), Non-local (Wang et al., 2017), the PSA module  
works well on the RSIPAC dataset while the others barely improve the 
baseline (ResNet, He et al., 2016), and the additional parameters and 
inference time of our PSA is the lowest as well. Furthermore, after 
integrating ResNet152 with PSA, the performance on the aerial 
imagery dataset (i.e., the ISPRS Vaihingen Dataset) is also promising, 
specifically, the improvement is 4.8% in mIOU, 4.07% in average F1-
score and 1.62% in OA. Although it is unexpectedly mundane when 
comparing to other methods applied in ResNet152, this probably 
resulted from the fact that these two datasets are with different 
resolution, which needs further detailed investigation. 

In general, our method of the PSA module performs well on the 
RSIPAC dataset and the ISPRS Vaihingen Dataset, but there are still 
several issues to be further considered: First, only visual effect is 
studied to select the feature maps for the attention generation, which is 
a subjective choice and can be affected by various factors, it will be 
helpful to explore a feasible criterion for the feature map selection. 
Second, we would like to explore the manually experimental settings 
(e.g., hyper-parameters) for better performance and extensively refer to 
other works such as EaNet (Zheng et al., 2020a) in the future. 
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