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ABSTRACT: 

 

Squatter structures have been a serious threat to human safety and health for a long time. And monitoring their changes is important to 

facilitate government management of squatters. However, existing methods are still not automatic, accurate and fast enough to meet 

the actual needs of practical applications. In this paper, we propose a novel deep learning-based method to detect squatter structure 

changes from bi-temporal remotely sensed (RS) images and digital surface models (DSMs). The proposed convolutional neural 

network (CNN) takes the advantages of the spectral information from high resolution image and the height information from the DSM, 

so as to detect changes more accurately in type and height of squatter structures. Moreover, we create a data set for deep learning 

model training, covering a variety of squatter structures in Hong Kong. Compared with three existing representative methods, Our 

model performs the best, with Kappa of 0.6786 and 0.6458 in the detection results of the two test regions, respectively, which indicates 

that it has application potential. 

 

 

1. INTRODUCTION 

 

The squatter problem is a socialization problem caused by the 

inability of cities to meet the needs of rapid population growth. It 

usually occurs on the outskirts of fast-developing cities. In Hong 

Kong, squatter structures generally refer to illegally occupied 

structures or temporary residences on government or private 

land. Since 1940, a large number of immigrants from the 

mainland have poured into Hong Kong, and the population living 

in squatter areas once reached a quarter of the total (Wong, 1978). 

The ensuing public health and public safety issues have seriously 

hindered the development of Hong Kong. Most memorably, the 

Shek Kip Mei fire in 1953 caused the displacement of more than 

58,000 people. After the fire, the Hong Kong government 

fundamentally changed its housing policy and began to build 

public housing to provide housing benefits for the lower class, 

aiming to reduce squatter settlements. 

 

In recent years, the government has strengthened squatter control 

measures, but the survey of squatter structures has always been a 

difficult problem to solve in the management of squatters. There 

are two commonly used methods, i.e., field survey and visual 

interpretation based on remotely sensed (RS) images (Smart, 

2001). The former requires staff to go to the squatter area and 

take photos for evidence, while the latter requires staff to identify 

new squatter structures and monitor the ones that need to be 

demolished from multi-period RS images. These methods 

usually achieve good accuracy but require a great deal of times, 

manpower, and material resources, and it is difficult to monitor 

squatter structures in a large area, especially in a timely manner. 

Therefore, developing automatic methods to identify squatter 

structures from RS images can help improve efficiency, but 

unfortunately, there is currently a lack of research on this issue. 

 

The squatter structure can be regarded as a kind of building, and 
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to some extent, existing building extraction method have the 

potential to identify it. But unlike ordinary buildings, squatter 

structure is simple in components and small in size, mostly made 

of iron sheets, wooden boards, and containers. Moreover, its 

various styles and textures make it difficult to distinguish it from 

ordinary buildings. To address this problem, a deep learning-

based method is proposed in this paper to detect squatter structure 

changes from bi-temporal RS images and digital surface models 

(DSMs). And our experiments shows that the proposed method 

achieves better performance than several representative deep 

learning-based change detection methods. 

 

Generally, the changes of buildings can be divided into three 

categories, i.e., changes in building height, changes in building 

into other land cover, and vice versa, and the same is true for the 

changes of squatter structure. Existing building extraction and 

change detection methods mainly focus on ordinary buildings. To 

detect changes in building height, the DSM is the key component, 

which can usually be generated by satellite stereo images, oblique 

aerial photographs, and airborne lidar point cloud data. For 

example, Tian et al. (Tian et al., 2013) proposed a building 

change detection method based on satellite stereo images and 

DSMs, which improved the accuracy by removing non-building 

areas such as vegetation and shadows. Experiments show that the 

method has good performance but is limited by the quality of 

DSM.  Huang et al. (Huang et al., 2020) developed an automated 

method to monitoring newly constructed building areas from 

multi-view Ziyuan-3 satellite images. The method extracted 

various features of the building, including planar features, i.e., 

MBI (Huang and Zhang, 2011b), HARRIS (Harris and Stephens, 

1988), and PENTAX (Pesaresi et al., 2008), and vertical features, 

i.e., MSI (Huang and Zhang, 2011a), nDSM (Qin and Fang, 

2014), and MABI (Liu et al., 2019). It achieved good results in 

Shanghai and Beijing test areas, but not good for reconstructed 

buildings, mainly because some complex changes, such as 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-289-2022 | © Author(s) 2022. CC BY 4.0 License.

 
289



 

changes caused by vegetation around buildings and on top of 

buildings, are not well considered. 

 

Compared with traditional change detection methods mentioned 

above, deep learning-based methods can effectively eliminate the 

dependence of detection results on the difference map. 

Advantageously, it can process RS data obtained by multiple 

sensors with strong robustness and applicability. Zhu et al. (Zhu 

et al., 2018) innovatively introduced the SegNet into building 

change detection and Liu et al. (Liu et al., 2020) employed a dual 

attention module (DAM) to improve feature recognition 

capabilities and implemented a change detection loss to solve the 

problem of sample imbalance. It has good detection accuracy on 

the WHU building change detection data set. To achieve fine-

grained building change detection, Sun et al. (Sun et al., 2020) 

proposed a multi-task learning framework (MTL-CD) from high-

resolution RS image captured by unmanned aerial vehicle 

(UAV). And it benefits two semantic segmentation tasks in the 

framework, the model has good detection results on the 

Guangzhou dataset their proposed. Besides, to update the Serbian 

cadastral information system and detect illegal buildings, an 

object-based and pixel-based change detection method was 

proposed to detect newly built, modified or demolished buildings 

(Jovanović et al., 2021).  

 

These deep learning-based methods can achieve good 

performance in the corresponding building change detection 

tasks, but their use in squatter structure change detection is 

mainly limited by the low performance of small object 

recognition and low learning ability of complex features of 

squatter structures. In other words, none of these methods are 

optimized for squatter structure detection. To detect squatter 

structure changes from RS images more accurately and 

automatically, a new deep learning-based method is proposed in 

this paper. The main contributions are as follows:  

 

(i) We employ deep learning techniques to address this issue for 

the first time, and subsequently, produce a data set with diverse 

changes of squatter structures. 

(ii) A new CNN-based model is proposed, which uses an 

adaptive attention fusion module (AAFM) and an ensemble 

channel attention module (ECAM) to enhance the extraction of 

 

Figure 1. The schematic workflow of proposed method for 

squatter structure change detection. 

 

 

Figure 2. The proposed network architecture. Part (a) is the backbone of the model; Part (b) is the ResBlock; Part (c) is the CAM 

block used in Part (e), the ECAM; Part (d) illustrates the adaptive attention fusion module. 
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spatial and channel information, thereby suppressing useless 

information and speeding up the convergence of the model.  

Finally, the experiments were conducted in a typical squatter area 

in Yuen Long, Hong Kong, and the results show that the 

proposed method achieves good performance.  

 

2. METHOD 

 

The schematic workflow of proposed method for squatter 

structure change detection is shown in Figure 1. Two period RS 

images and DSMs are used to generate a data set for all deep 

learning model training. With data augmentation, the model is 

trained and verified in a loop to find the best model parameters. 

Finally, the trained model will be deployed for the practical 

application. In general, well-designed network architecture is the 

key to good performance of the proposed method. 

 

2.1 Network architecture 

 

The schematic diagram of the proposed network architecture is 

presented in Figure 2, where part (a) shows the backbone of the 

model. It consists of two branches with a shared weight, which is 

made up of residual blocks (ResBlocks), as shown in part (b). 

Between each ResBlock of the feature encoder A (i.e., A00-A40) 

and B (i.e., B00-B40), a max pooling layer is used for down-

sampling. After each down-sampling, the number of input 

channels will be doubled, and the image size will be half of the 

previous ResBlock. The overall structure is inspired by UNet++ 

(Zhou et al., 2018), which uses a lot of dense skip connections. 

The backbone of our model as a feature extractor needs to learn 

multiscale and different semantic information. In addition, many 

differencing operations are used in up-sampling stage to detect 

changes, so that the model can learn the differential information 

of height and spectral information easily and directly. 

 

The spectral and texture information of the squatter structures are 

diverse, and the background environment are very complex, 

especially in high-resolution aerial images, with many noises 

caused by shadows, occlusion, or illumination differences. To 

identify the key features and suppress unimportant features from 

the large amount of extracted features, an attention mechanism is 

adopted. Specifically, two types of attention modules are 

embedded into the proposed model: i) adaptive attention fusion 

module (AAFM), used in the up-sampling process, and ii) 

ensemble channel attention module (ECAM), used in feature 

fusion. They are explained separately in the following sections. 

 

2.2 Adaptive attention fusion module 

 

The diagram of the AAFM is shown in Figure 2 (d), which is 

proposed by (Wang et al., 2021). Since the input of the model is 

the concatenation of RS image and DSM, the extraction of 

information between channels is particularly important. On the 

other hand, many squatter structures are small in size, it is very 

crucial to distinguish their features from those of the background 

environment, which means that richer information needs to be 

extracted both spectrally and spatially. Thus, AAFM is designed 

to solve this issue, which allows the model to pay more attention 

to the important features and suppress redundant information. 

 

In our implementation, an AAFM consists of two sub-modules, 

i.e., channel attention module and spatial attention module. The 

kernel size of the convolution layer in the two attention modules 

is changed based on the number of channels to achieve multi-

scale and multilevel information extraction. The channel 

attention module assigns different weights to each channel by 

training. Its output is the channel attention feature map, and can 

be calculated by: 

 

𝑦1 = 𝜎 (𝐶𝑜𝑛𝑣1(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑥))) ⊗ 𝑥 (1) 

 

where 𝑥  is the input feature map, 𝜎  is the sigmoid activation 

function, ⊗ means element-wise multiplication. The kernel size 

of the convolution Conv1 is calculated by the number of input 

channels. The formula can be written as: 

 

kernel 1 = |
𝑙𝑜𝑔2( 𝐶) + 𝑏

𝑎
|

odd
 (2) 

 

where C is the number of channels of the input feature map. Here 

a and b are hyper parameters and set to 2 and 1 respectively in 

our experiments. Unlike the channel attention module, spatial 

attention module is used to learn the importance of each pixel. 

The output spatial attention feature map can be calculated by: 

 

𝑦2 = 𝜎 (𝐶𝑜𝑛𝑣2(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑥))) ⊗ 𝑥 (3) 

 

Similarly, the kernel size of the convolution of Conv2 is 

calculated by the number of input channels, that is: 

 

kernel2 = |
𝑙𝑜𝑔2( 𝐶) + 𝑏

𝑎
|

odd
 (4) 

 

here, a and b are set to 2 and 3 respectively. Finally, the generated 

channel feature maps and spatial feature maps are concatenated 

by channels and then output as the attention fusion maps. 

 

2.3 Ensemble channel attention module 

 

In the last part of the model, four sets of output feature maps (i.e., 

C01-C04), which have the same size, but different semantic and 

spatial representations, are input to the ECAM module, as it is 

shown in Figure 2 (e). This is inspired by (Fang et al., 2021). 

Features derived from shallow layers contain fine-grained 

features and more accurate position information, while features 

obtained from deep layers have coarse-grained features and more 

semantic information. Therefore, the fusion of multi-feature 

maps requires a module to identify useful information from such 

feature maps, and ECAM can do this well.   

 

As shown in Figure 2 (c), ECAM is a fusion module based on the 

traditional CAM (Woo et al., 2018), and its basic idea is deep 

supervision and ensemble learning. It can be formulated as: 

 

𝑋 = 𝐶𝐴𝑀(𝐶01 + 𝐶02 + 𝐶03 + 𝐶04) (5) 

 

𝑌 = 𝐶𝐴𝑀(𝐶01 ⊕ 𝐶02 ⊕ 𝐶03 ⊕ 𝐶04) (6) 

 

𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣2𝑑 (𝑋 ⊗ (𝑌 + 𝑟𝑒𝑝𝑒𝑎𝑡(4)(𝑌))) (7) 

 

where C01, C02, C03, C04 are the output of feature maps, 

𝑟𝑒𝑝𝑒𝑎𝑡(4)(𝑌) represents the operation of repeating the attention 

map Y 4 times and then concatenating them in channel. 

 

2.4 Loss function 

 

Generally, there is a low probability of squatter structure changes, 

that is, the unchanged pixels are far more than changed. Thus, a 

hybrid loss function combining dice loss and BCE loss is used in 

this task. Dice loss performs very well in scenes with serious 
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imbalance of positive and negative samples, while BCE loss 

helps the training to be more stable. The hybrid loss is defined as: 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐷𝑖𝑐𝑒 + 𝐿𝑜𝑠𝑠𝐵𝐶𝐸  (8) 

 

where dice loss can be written as: 

 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 (9) 

 

where |𝑋| and |𝑌| are the detected change result and ground truth 

respectively, |𝑋 ∩ 𝑌|  denotes the intersection of |𝑋|  and |𝑌| , 

representing the area located in both X and Y. And BCE loss is 

written as: 

 

𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔( 𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖)]

𝑁

𝑖=1

 (10) 

 

where N is the total number of samples, 𝑦𝑖 is the ground truth 

value of the i-th sample, 𝑝𝑖  is the predicted value of the i-th 

sample.  

 

3. EXPERIMENTS 

 

3.1 Experimental area 

 

The experiment area is in Yuen Long, Hong Kong, with an area 

of 874,398 m2. It can be seen from Figure 3, there are many 

squatters in this area, which has attracted the attention of the 

government for a long time. Two period DSMs and aerial photos 

with 4 bands (i.e., red, green, blue, and infer red) are used in our 

study, collected in 2016 and 2020 respectively. The ground truth 

map is manually labeled. As shown in Figure 3 (a), the region in 

red rectangle is selected as the training set, and the rest is used to 

generate the validation set. For better performance analysis, two 

test sites with typical squatter structure changes are selected, see 

the region in the yellow rectangle in Figure 3 (a). 

 

3.2 Data set generation 

 

In our experiment, the input RS image and DSM size of the 

model are both 256×256 pixels. Thus, the selected training area 

are cropped to this size with a 50% horizontal and vertical 

overlap. Consider the varying sizes of squatter structures, we 

down-sample the original image by two scales, and then crop the 

same, the spatial resolution is 2 times and 4 times that of the 

original image. For the validation area, there is no overlap used 

when cropping. Finally, 9565 samples for training and 1536 for 

validation are generated. For each training sample, it consists of 

two RS images, two DSMs and a binary map reflecting the 

squatter structures changes. 

 

3.3 Implementation detail 

 

The proposed method is implemented by Pytorch with python 3.6 

and trained by a workstation with two NVIDIA Quadro GV100 

GPUs. AdamW optimizer with an initial learning rate of 0.001 is 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. The experimental area. (a) The first period RS image. (b) The second period RS image. (c) The first period DSM. (d)  The 

second period DSM. (e) The difference DSM. (f) Ground truth. 
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adopted in the training process and the learning rate decays to 

half of the previous one after every 20 iterations. The training 

process is terminated after 150 epochs. The batch size is set to 32. 

Online data augmentation is also applied during training, 

including random rotation, random cropping, random scaling, 

and flipping horizontally and vertically.  

 

We selected three representative change detection models for 

comparative experiments. They are i) CDnet (Wang et al., 2014), 

a classical model for change detection, which is a combination of 

FCN and Siamese network; ii) FC-Siam-diff (Daudt et al., 2018), 

a combination of UNet and Siamese network; and iii) MFPNet 

(Lei et al., 2021), the latest state-of-the-art (SOTA) model with 

various novel modules. In the experiments, the training data and 

training strategies of all methods are the same for fairness.  

 

To quantitatively compare the performance of change maps 

generated by the different models, four accuracy evaluation 

metrics are used, i.e., precision, recall, F1-score, and Kappa. F1-

score is the harmonic mean of precision and recall. It considers 

both precision and recall. Kappa coefficient can detect whether 

the model prediction results are consistent with the true value. 

Thus, the overall performance of the model can be reflected by 

the F1-Score and Kappa coefficients.  

 

3.4 Result 

 

As we can see from the Table 1, the proposed model achieves 

optimal values in the recall, F1-score and kappa coefficient. 

Compared with the result of CDNet and MFPNet, the Kappa 

reaches 67.82% in test area 1. And in test area 2, our method 

shows similar advantages. Both Kappa and F1-score are higher 

than the remaining three methods. FC-Siam-diff gets the best 

precision in test area 1, but the recall rate is the lowest. It can be 

seen clearly from the Figure 4 that the change map of the 

proposed model has the best performance. According to visual 

interpretation, there are four missing objects in the result of our 

model in terms of object-level accuracy. However, the CDNet, 

which has the closest recall rate to the proposed model, also has 

9 changed objects undetected.  

 

Since the geometric and spectral characteristics of containers, the 

fronts of large trucks, and large vans are very similar to those of 

squatters in RS images, the models are prone to misdetecting 

these changes as squatter changes. As shown in Figure 5, there is 

an area where quite a few super-long trucks are parked. Unlike 

the other three models that have a large number of false positives, 

the proposed model has almost none. In addition, the attention 

module enables the proposed model to detect edges better than 

the other three models. Thanks to better use of differential 

information, the proposed model can detect many changed areas 

that CDNet and MFPNet fail to detect. Moreover, compared with 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4. Squatter structures change detection results in test 

area 2. (a) The first period RS image. (b) The second period RS 

image. (c) The first period DSM. (d)  The second period DSM. 

(e) Ground truth. The change maps of (f) ours, (g) CDNet, (h) 

MFPNet, and (i) FC-Siam-diff. 

 

Method 
Test area 1 Test area 2  

Precision Recall F1-Score  Kappa Precision Recall F1-Score Kappa 

FC-Siam-diff 78.4565 33.0358 0.4624 0.4399 71.1353 29.715 0.4173 0.3951 

CDNet 77.2666 62.1839 0.6885 0.6684 73.2972 58.8555 0.6524 0.6321 

MFPNet 80.831 58.9604 0.6813 0.6619 75.559 55.4034 0.6389 0.6189 

Ours 77.6685 63.7139 0.6982 0.6786 75.3145 59.8831 0.6652 0.6458 

w/o AAFM 82.5631 43.5269 0.5691 0.5479 82.1488 44.1121 0.5732 0.5521 

w/o ECAM 82.9638 53.4904 0.6502 0.6304 82.8532 53.4223 0.6494 0.6299 

Table 1. Quantitative results of experimental comparison methods in the two test areas. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. The results in a parking lot. (a)-(d) The input data. (e) 

Ground truth. The change maps of (f) ours, (g) CDNet, (h) 

MFPNet, and (i) FC-Siam-diff. 
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FC-Siam-diff, our results are better due to the use of AAFM.  

 

Ablation studies were also performed on the ECAM and AAFM 

modules for the proposed method. The results show that the 

ECAM module improves the Kappa value of the method on the 

test area A by 0.04, while the AAFM module can improve it by 

0.13. Furthermore, with the help of ECAM, the proposed method 

performs better on the detection of small changes and edges of 

the changed area.  

 

Overall, the proposed model can detect most of the changes of 

squatter structures and achieve good edge extraction for 

independent ones. Due to the variety of squatter structure 

changes, it is difficult for training sets to cover all types of 

changes. Changes that occur in the test areas may not be similar 

to any changes in the training set. This is one of the reasons why 

the recall is not very high. Although the proposed model 

performs better than others in our experiment, there is still room 

for improvement in the detection of some small changes.  

 

4. CONCLUSION 

Changes in squatter structures generally involve legal issues, 

such as unauthorized construction on government or private land. 

And these unpredictable changes pose problems for the 

government’s management. Therefore, we propose an efficient 

and time-saving method to solve this problem. This method is 

based on the latest deep learning techniques and able to detect 

squatter structure changes from RS images and DSM 

automatically. Compared with other deep learning models, our 

well-designed model achieves the highest F1-score and kappa 

coefficients in both test regions, the F1-score is at least 1.5% 

higher than the second best model. That means it has good 

practical value. In our future work, considering the 

incompleteness of extracting changed objects, we will improve 

the recall rate of the method by using morphological operations 

and random field models, and design an new loss function for 

edge detection to improve the boundary accuracy. 
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