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ABSTRACT: 

 

Air pollution, especially fine particulate matter (PM2.5), has attracted extensive attention due to its adverse impacts on public health. 

Although PM2.5 pollution was significantly reduced in China over time, while little is known how the spatial disparity of PM2.5 exposure 

has evolved, especially from both absolute and relative perspectives. Here, we estimate the long-term PM2.5 exposures in China based 

on satellite observations and convolutional neural network, and characterize the spatial disparity of PM2.5 exposure using Theil index 

and rank-rank relationship. The result shows that both PM2.5 exposure and absolute spatial disparity were substantially reduced between 

2010 and 2019. The nation-wide concentrations (Theil index) declined from 48.0μg/m3 (0.13) to 35.5μg/m3 (0.054). The inter-

provincial disparities dominate the overall disparity in 2010, while the intra-provincial disparity contributed the most in 2019. However, 

while absolute disparities have diminished, relative disparities persist. PM2.5 exposures in the least 20th percentile polluted cities have 

increased over time, while exposures in other regions declined. On average, the more (less) polluted cities in 2010 were still the more 

(less) polluted cities in 2019 (except for the very most 2 percentile polluted cities), indicating that the population in more polluted 

cities still experiences more air pollution than others. Spatial pattern of relative disparity changes was also observed. Overall, 

understanding not only absolute spatial disparity but also relative disparity is required to help formulate targeted policies for an 

equitable environment, leaving nobody behind. 

 

 

 

1. INTRODUCTION 

Suspended particulate matter with aerodynamic diameters less 

than 2.5 μm (PM2.5) exposure can increase the risk of death from 

respiratory disease, cardiopulmonary disease, and lung cancer, as 

these small particles can penetrate the respiratory tract, alveoli 

and even blood stream. The Global Burden of Disease (GBD) 

study reported that PM2.5 is the fourth leading risk factor for 

premature death in China, contributing to 11.1% of deaths in 

2016 (Cohen et al., 2017; Naghavi et al., 2017).  

 

Satellite remote sensing offers an effective approach to estimate 

large-scale ambient PM2.5 concentrations. Various empirical 

models have been established based on satellite observations, 

including regression models (such as land use regression, 

geographical weighted regression and generalized additivity 

models) and machine learning models (such as random forest and 

deep belief network) (Chen et al., 2018; Knibbs et al., 2018; Li et 

al., 2017; Liu et al., 2019b; Park et al., 2020; Xiao et al., 2018; 

Xue et al., 2020; Yan et al., 2021). These satellite-based models 

performed well in estimating PM2.5 concentrations, while 

“concentration” is not the best indicator to characterize the level 

of threat to public health. For example, although PM2.5 

concentrations in the Taklamakan Desert are much higher than in 

other regions, the corresponding population exposure are still at 

a low level due to the low population density. Therefore, given 

the vast size and uneven population distribution of China, 

quantifying and analysing large-scale PM2.5 exposure (rather than 
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"concentration") is fulfilling for applying remote sensing to 

public health. 

 

PM2.5 pollution is known to be heterogeneous because of 

disparities in climate, geographical conditions, population 

density, industrial and economic activities, posing environmental 

justice challenges (Han et al., 2021; He and Huang, 2018a; Liu et 

al., 2021). Although related scholarship provided long-term and 

large-scale PM2.5 concentrations (He et al., 2021; Liu et al., 

2019a; Xue et al., 2020; Zheng et al., 2015), we have limited 

information on how magnitude of spatial variation of PM2.5 

exposure has evolved in China (especially over recent decades 

that saw tremendous change in economic output and air 

pollution). As equity and justice are inherently comparative, not 

only absolute changes of disparity, but also relative changes 

deserve to explore to advance the environmental justice, leaving 

nobody behind (Colmer et al., 2020).  

 

Chinese government released the Ambient Air Quality Standards 

(GB3095-2012) in 2012, which updated the concentration limits 

of various air pollutants and included PM2.5 in the standards for 

the first time. The Action Plan for the Prevention and Control of 

Air Pollution was then issued in 2013, which aims to reduce air 

pollution by optimizing industrial and energy structures, 

expanding air quality ground monitoring network, and 

establishing targeted emission reduction and regional 

collaborative control strategies. Studies documented that air 

quality in China was significant improved since 2013(Li et al., 

2020; Ma et al., 2019; Wei et al., 2021). Despite this, the 14th 
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Five-Year Plan in 2021 still involves PM2.5 concentration as an 

important binding indicator to evaluate the effectiveness of air 

pollution policies, demonstrating the country has been attaching 

great importance to the prevention and control of air pollution.  

 

Therefore, the decade of 2010-2019 were adopted as study period 

to verify the effectiveness of air pollution control policies by 

evaluating the changes of spatial disparity in PM2.5 exposure, 

seeking to help answer the following questions: (1) whether 

spatial disparity of exposure have diminished over time or 

persist? (2) which spatial dimension contributes the most to the 

spatial disparities? (3) Have the most polluted regions changed in 

China change over time? To do this, we first estimated satellite-

derived PM2.5 exposures using convolutional neural network, and 

then quantified the spatial disparities of PM2.5 exposures between 

2010 and 2019 using the Theil decomposable method and rank-

rank relationship from both absolute and relative perspectives.  

 

2. DATA COLLECTION 

2.1 Ground-level PM2.5 observations 

The study domain in this study is defined as the Mainland China. 

The measured PM2.5 surface concentration data obtained from the 

National Environmental Monitoring Centre 

(http://www.cnemc.cn/), with more than 1,450 monitoring 

stations available.  The daily concentration values were averaged 

from hourly observations for each station. 

 

2.2 Explanatory variables 

We adopted Moderate Resolution Imaging Spectroradiometer 

(MODIS) Collection 6 aerosol optical depth (AOD) from Terra 

and Aqua as part of our predictors for PM2.5 estimation. Products 

from both “Dark Target (DT)” and the “Deep Blue (DB)” were 

used to fill the missing AOD values using inverse variance 

weighting method, which were also calibrated by the AERONET 

level 2.0 AOD measurements. 

 

Additional variables involve meteorological data, surface 

information and categorical variables. Specifically, 

meteorological data include relative humidity, air temperature, 

wind speed, precipitation, visibility, surface pressure, and 

planetary boundary layer height, downloaded from NCEP 

GDAS/FNL 0.25 Degree Global Tropospheric Analyses and 

Forecast Grids (https://rda.ucar.edu/datasets/ds083.3/) and 

NCEP ADP Global Surface Observational Weather Data 

(http://rda.ucar.edu/datasets/ds461.0/); surface information 

includes plant cover quantified by normalized difference 

vegetation index (NDVI), and digital earth model (DEM) from 

Resources and Environmental Science Data Centre; categorical 

variables include coordinates and day of year reflecting spatial 

and temporal variations. All explanatory variables were unified 

with spatial resolution of 1 km and assigned to each PM2.5 

monitoring stations using nearest neighbour algorithm for 

modelling. 

 

2.3 Population data 

The national population gridded data were obtained from 

LandScan Global Vital Statistics database 

(https://landscan.ornl.gov), with a resolution of 1 km(Bright et 

al., 2011; Rose et al., 2020). This dataset integrates census data 

and remote sensing information (such land cover and nighttime 

lights) to grid the population data, which has been widely used in 

various fields of research. We also calibrate the gridded 

population data based sixth and seventh census data using the 

least squares method. 

  

3. METHODS 

3.1 Exposure estimation 

Considering the spatial autocorrelation of the PM2.5 and its 

predictors, the convolutional neural networks (CNN) was 

adopted in this study to estimate PM2.5 exposures, which shows 

good performances on spatial feature extraction nonlinear 

relationship characterization. As shown in Figure 1, PM2.5 

concentration at a given pixel is estimated by all the predictors of 

adjacent N*N grids centred around this pixel. For each given 

N*N input, CNN conducted by stacking a convolution layer and 

a fully-connected (FC) layer. A convolution layer consists of 

multiple convolution filters and an activation function. The 

convolutional filters run over the sample and calculate inner 

products, allowing adjacent information to be extracted into 

features. Each filter extracts distinct features from the input. We 

adopted 48 filters with dimension of 3*3. The activation function 

(ReLU in this study) allows the model to learn complex nonlinear 

relationship between the inputs and outputs. The zero-padding 

method was adopted to remain the dimension unchanged. The FC 

layer with 128 nodes was embedded after convolutional layers to 

estimate PM2.5 at the final stage. The dropout was used in our 

study to prevent overfitting. The standard mean-squared error 

(MSE) between the observed and estimated PM2.5 concentrations 

were employed as the loss function to test the model accuracy.  

𝐽(𝑊) = 𝑀𝑆𝐸 =
1

𝑁
∑|𝑌𝑖 − 𝑃𝑖|2

𝑁

𝑖=1

 (1) 

where N refers to the number of training samples；𝑌𝑖  and 𝑃𝑖 

refers to the observed and predicted PM2.5 concentrations at 

location i. 

 

 
Figure 1. The structure of a CNN model for PM2.5 estimation 

 

The hyperparameters in our model, such as the number of filters, 

layers and nodes of FC layers, were determined by the 

experiment according to the model accuracy. The estimation 

model was then established after the convolutional filters and 

weights of FC layers were learned by the standard gradient 

descent algorithm based on training dataset. Considering the 

limited number of measurements before 2013, two models (i.e. 

annual and daily model) were employed to estimate annual 

concentrations in 2010 and 2019. The annual concentrations after 

2013 were averaged by daily PM2.5 estimates using the model 

trained by daily-mean inputs in the corresponding year. The 

concentrations before 2013 (including 2013) were estimated 

using the model trained by annual-mean inputs. The model 

performance was validated by 10-fold cross-validation (CV) and 

test data using determination coefficient (R2), root mean square 

error (RMSE) and mean predictive error (MPE). 
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Integrating ambient estimated PM2.5 concentrations with 

population, the PM2.5 exposures can be calculated by the 

following equations: 

𝐸𝑥𝑝𝑜 =
∑ (𝑃𝑀𝑖 × 𝑃𝑜𝑝𝑖)𝑛

𝑖=1

∑ 𝑃𝑜𝑝𝑖
𝑛
𝑖=1

 (2) 

where 𝐸𝑥𝑝𝑜  refers to PM2.5 exposure; 𝑃𝑀𝑖  refers to ambient 

PM2.5 concentrations at grid i; 𝑃𝑜𝑝𝑖 refers the population at grid 

i; n refers to the number of grids within the city corresponding to 

grid i. 

 

3.2 Absolute disparity assessment 

Theil Index was adopted to quantify the spatial disparity, which 

is a statistical measure of inequality proposed by econometrician 

Henry Theil (Theil, 1972) based on the concept of information 

entropy in information theory. It has been used to measure 

regional and social differences (Azimi et al., 2018; Kang et al., 

2019; Sitepu et al., 2018). Theil index can be decomposed to 

measure the contribution of intra-group and inter-group 

differences to the total difference. Therefore, we divided the 

whole country into seven regions, i.e. East China, Central China, 

South China, North China, Northwest China, Southwest China 

and Northeast China, to calculate the overall differences of PM2.5 

exposure among regions, among provinces and within provinces. 

The greater the Theil index, the greater the regional variation. 

The calculation formula is as follows: 

 

𝑇 =
1

𝑛
∑

𝐸𝑖

𝐸

𝑛

𝑗=1

ln (
𝐸𝑖

𝐸
) = 𝑇R+𝑇𝑃+𝑇C (3) 

𝑇R = ∑
𝑛𝑘

𝑛

𝐸𝑘

𝐸

7

𝑗=1

ln (
𝐸𝑘

𝐸
) (4) 

𝑇𝑃 = ∑
𝐸𝑘

𝐸
∑

𝑛𝑗

𝑛

𝑛𝑘

𝑗=1

𝐸𝑗

𝐸𝑘

7

𝑘=1

ln (
𝐸𝑗

𝐸𝑘
) (5) 

𝑇C = ∑
𝐸𝑘

𝐸
∑

𝐸𝑗

𝐸𝑘

𝑛𝑘

𝑗=1

∑
1

𝑛

𝐸𝑖

𝐸𝑗

𝑛𝑗

𝑖=1

7

𝑘=1

ln (
𝐸𝑖

𝐸𝑗
) (6) 

 

where 𝑇 refers to the national Theil index, quantifying the spatial 

disparity across China;  𝑇R  refers to the Theil index among 

regions; 𝑇𝑃 refers to the Theil index among provinces; 𝑇C refers 

to the Theil index within provinces (namely among cities); 𝐸𝑘 

refers to the average exposure in region k; 𝐸𝑗 refers to the average 

exposure in province j within region k; 𝐸𝑖 refers to the average 

exposure in city i within province j;𝑛 refers to the number of 

cities in the country; 𝑛𝑘  refers to the number of cities in the 

corresponding region; 𝑛𝑗  refers to the number of cities in the 

corresponding province. 

 

3.3 Relative disparity assessment 

We used rank-rank relationship to characterize the relative 

changes of spatial disparity (Colmer et al., 2020). We build on 

this concept to explore whether the population living in the 

most/least polluted regions still exposed to the most/least severe 

PM2.5 pollution over 2010-2019? To do this, the percentile rank 

(PR) of PM2.5 exposure in each city were first calculated in 2010 

and 2019. The higher the rank (one is the highest rank), the lower 

the PM2.5 exposure, the better the air quality. The rank-rank 

relationship was then plotted with x-axis of rank in 2010 and y-

axis of rank in 2019. The 1:1 line indicates there was no change 

in PM2.5 rank, i.e. cities at the 10th percentile of PM2.5 distribution 

in 2010 are also at the 10th percentile of PM2.5 distribution in 

2019.The larger the deviations from the 1:1 line, the bigger the 

average changes in PM2.5 rank between 2010 and 2019. Points 

above the line represent the rank in 2019 lower than 2010, 

indicating that air quality decreased relatively compared with 

other cities. Points below the line represent rank increased from 

2010 to 2019, indicating the improvements in relative air quality.   

 

4. RESULTS AND DISCUSSION 

4.1 Patterns of PM2.5 exposure  

 
R2 

RMSE 

(μg/m3) 

MPE 

(μg/m3) 

Daily 

Model 

CV 0.82 13.8 10.0 

Model fitting 0.84 12.2 9.1 

Test accuracy 0.62 20.0 16.4 

Annual 

Model 

CV 0.83 12.5 9.8 

Model fitting 0.85 10.7 8.4 

Test accuracy 0.65 17.9 14.0 

Table 1. Performance of PM2.5 estimation models 

 

The PM2.5 estimates were evaluated using 10-fold CV method. 

Table 1 shows the average accuracy of the CNN-based estimation 

models in various years. The annual models performed better 

than daily models with CV R2 more than 0.8. We also validated 

daily and annual model using test data (which is independent with 

training dataset) to reveal the predictive capability of the models, 

with R2 >0.6 and RMSE <20 μg/m3. The result demonstrates a 

comparable accuracy with other studies(He and Huang, 2018b; 

Ma et al., 2016; You et al., 2016), suggesting the effectiveness of 

our estimation method. 

 
Figure 2. PM2.5 concentration and population exposure 

distribution in China in 2010 and 2019 

 

The spatial distribution of PM2.5 concentration and population 

exposure in China in 2010 and 2019 are shown in Figure 2. As 

can be seen in 2010, PM2.5 concentration and population 

exposure in the east were higher than values in the west, and the 

dividing line was consistent with Heihe-Tengchong line. The 

PM2.5 hotspots in eastern China are distributed in North China 

Plain, Sichuan Basin and Fenwei Plain. The high values were 

prevalent in the regions with intense population and 

anthropogenic activities (such as in the North China Plain, Hunan 

and Hubei region), fossil fuel combustion associated with rapid 

industrialization (such as in the Fenwei Plain where possess 

abundant coal-fired facilities and coal industry), and 

unfavourable meteorological and topographic conditions (such as 
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Sichuan Basin where surrounded by mountains with low altitude). 

Different from eastern China, the high PM2.5 concentration in 

Tarim Basin in the northwest is mainly affected by natural factors 

such as sand and dust. After the State Council issued the “Action 

Plan of Air Pollution Prevention and Control” measures, air 

quality has been significantly improved across the country, 

especially in eastern China where industrial emissions and human 

activities dominate. PM2.5 exposures reduced from 47.99μg/m3 to 

35.52μg/m3 by 2019, with a decrease of 38.2% in central China 

and 31.5% in southwest China.  

 

4.2 Changes of absolute spatial disparity 

 
Figure 3. Changes in PM2.5 exposures from 2010 to 2019 

 

We compute the average, 10th and 90th percentiles of PM2.5 

provincial exposures using demographic data to accurately 

reflect the variations of exposures. As shown in Figure 3, not only 

the substantial reduction in PM2.5 exposures, but also the gap 

between 10th and 90th percentiles have reduced. The difference 

between 10th and 90th percentiles was 22.6 μg/m3 in 2019, 

decreasing from 51.4 μg/m3 in 2010. The narrowed gap in PM2.5 

exposures indicate the absolute disparity in China has been 

diminished between 2010 and 2019, which was owing to the 

general improvement of air quality.  

 
Figure 4 Contributions of spatial disparities in PM2.5 exposure 

from three dimensions  

 

Despite this, we still need more information on where the spatial 

disparity is from to help formulate targeted policies for an 

equitable environment. Therefore, the absolute disparity of PM2.5 

population exposure was quantified and decomposed using the 

Theil index, which allows the overall disparity to be decomposed 

into inter-regional differences, inter-provincial and intra-

provincial differences in China. The results in Figure 4 show that 

the spatial disparity of PM2.5 exposure was significantly 

decreased between 2010 and 2019, with the Theil index 

decreasing from 0.132 in 2010 to 0.054 in 2019. We found that 

the regional differences in PM2.5 exposure in 2010 were 

dominated by inter-provincial differences with a contribution rate 

of 38.9%. The contribution rates of inter-regional and intra-

provincial differences were similar, with respective value of 

31.1% and 30.0%. Unlike patterns in 2010, the spatial disparity 

in 2019 were mainly contributed by intra-provincial differences, 

followed by inter-provincial and inter-regional differences. The 

results demonstrate that Chinese population not only were 

exposed to lower PM2.5 concentrations, but also share a more 

equitable atmospheric environment after the implementation of 

air pollution control policies. 

 

4.3 Changes of relative spatial disparity 

 
Figure 5 Rank-rank relationship between PM2.5 percentile rank in 

2010 and in 2019 

 

Though absolute spatial disparity in China was diminished from 

2010 to 2019, as illustrated in Figures 3-4, how magnitude the 

relative disparity of exposure has changed over time remain 

obscure. Hence, to explore whether population in the most or 

least polluted regions was still exposed to the most or least severe 

pollution over time, we assigned each city to a percentile 

following the exposure distribution in 2010 and computed the 

corresponding mean PR in 2019. The correlation coefficient 

between PR in 2010 and 2019 is 0.96, demonstrating PR in 2010 

can explain 92.4 % of PR in 2019. As shown in Figure 5, PM2.5 

ranks in 2010 were similar with the ranks in 2019 as 80% of the 

percentile pairs were distributed within the ±10% range of the 

1:1 line, indicating that the most/least polluted cities in 2010 were 

still the most/least polluted cities on average in 2019. For the 

points that fall outside the ±10% range, we observed that the 

points below the range dominate and are distributed at the lower 

ranks, indicating relative air quality improvements in these cities, 

especially in the very most 2 percentile polluted cities (99th and 

100th). 

 
Figure 6. Changes in PM2.5 exposure between 2010 and 2019 for 

each percentile bin in 2010 
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Therefore, it is plausible to suppose that the persistence in 

relative spatial disparity is that PM2.5 reductions were 

proportional across most cities. The changes of PM2.5 exposure 

was plotted in Figure 6. We observed that PM2.5 in less polluted 

cities (below 20th percentile of PM2.5 distribution) in 2010 

increased, while air quality in more polluted regions were getting 

better. While the baseline values in these regions are higher, the 

blue line in Figure 6 illustrates that PM2.5 exposure has fallen 

more in the more polluted regions in 2010. Despite this, the trend 

of purple line illustrates that the percentage changes of PM2.5 

exposure remain almost stable in the above-median regions, 

demonstrating the most polluted areas have not experienced 

disproportional declines between 2010 and 2019. 

 

The spatial distribution of changes in PM2.5 PR in Figure 7 shows 

that PR in most cities remain unchanged (coloured by yellow). 

Nevertheless, the local variation presents a certain pattern. 

Sichuan Basin, southern Shaanxi and eastern Gansu became 

relatively less polluted, while air quality in the south-eastern 

coast and northeast cities were relatively declined. The possible 

reasons may include regional environmental policies and 

industrial structure. 

 

 
Figure 7. Spatial distribution of changes in PM2.5 PR between 

2010 and 2019 

 

5. CONCLUSTIONS 

This study investigates the changes of spatial disparity in PM2.5 

exposures between 2010 and 2019 using satellite data in China 

from both absolute and relative perspectives. The PM2.5 

exposures were first estimated by CNN-based models, with 

average CV R2 of 0.82 and RMSE (MPE) of 13.1 (9.9) μg/m3. 

Substantial declines of PM2.5 exposures were observed from 

47.99μg/m3 in 2010 to 35.52μg/m3 in 2019. The absolute 

disparity was then quantified and decomposed by Theil method. 

We found that the absolute difference in PM2.5 exposure across 

China are shrinking over time, with Theil index decreased from 

0.132 to 0.054. The spatial disparity in 2019 were mainly 

contributed by intra-provincial differences, which differs from 

disparity in 2010 that inter-provincial disparity dominates. 

Though absolute spatial disparities have diminished, relative 

disparities persist. PM2.5 exposures in the least 20th percentile 

polluted cities have increased over time, while air quality in other 

regions were getting better. On average, the more/less polluted 

cities in 2010 were still the more/less polluted cities in 2019, 

except for the very most 2 percentile polluted cities. The result 

indicates the population in more polluted cities still experiences 

more air pollution than others. Spatially, compared with other 

regions, Sichuan Basin, southern Shaanxi and eastern Gansu 

became relatively less polluted, while south-eastern coast and 

northeast cities became "relatively more polluted. Therefore, the 

study suggests that more targeted intervention should be 

warranted to address these exposure spatial disparities. 
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