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ABSTRACT: 

 

Accurate prediction of PM2.5 concentration is the premise and guarantees to effectively control PM2.5 concentration and avoid the 

adverse effects of high PM2.5 concentration on human health. However, given the existing statistical models can only predict the 

pollutant concentration at the monitoring sites, the spatial distribution of PM2.5 concentration cannot be predicted, which greatly limits 

the application of the model in PM2.5 concentration prediction. This study combined the PM2.5 spatial distribution data predicted 

using the Moderate Resolution Imaging Spectroradiometer 3 km aerosol optical depth (AOD) and meteorological factors into a 

spatiotemporal autoregressive (STAR) model to predict the regional PM2.5 concentration and quantify the short-term spatial 

distribution change of PM2.5 in Beijing–Tianjin–Hebei region (JingJinJi) one day in advance. Five simulation functions were used to 

simulate the STAR model, and the 2014 data of JingJinJi were used to verify its accuracy. Results showed that the STAR model had 

the best prediction performance when gradient boosting decision tree was used as the simulation function compared with other 

simulation functions. The coefficient of determination (R2), root mean square prediction error (RMSE), index of agreement (IA), and 

mean absolute error (MAE) of the STAR model were 0.85, 27.08 µg/m3, 0.96, and 20 µg/m3, respectively. The spatial distribution 

prediction results of PM2.5 showed that the +1-day PM2.5 spatial distribution prediction results were in good agreement with the 

PM2.5 spatial distribution results predicted by AOD to provide accurate spatiotemporal distribution data for reducing air pollution and 

air pollution early warning. 

 

 

1. INTRODUCTION 

Air quality refers to the chemical state of the atmosphere at a 

specific time and place and reflects the degree of air pollution. 

The concentration of pollutants in the atmosphere will have 

adverse effects on human health, such as damage to immune and 

nervous systems and premature death, when it exceeds a certain 

boundary (Zhang et al., 2012). Among the many atmospheric 

pollutants, PM2.5 is the most harmful to human health because it 

contains toxic and harmful substances and can directly enter the 

alveoli (Belleudi et al., 2010; Crouse et al., 2012; Dominici et al., 

2006; Pope III et al., 2002). With the rapid economic 

development and intensified anthropogenic emissions annually, 

China has suffered from serious air pollution, especially in 

northern China (Wang et al., 2019; Zheng et al., 2016). To 

effectively control PM2.5 concentration and avoid its adverse 

effects on human health, the government should conduct 

precautionary measures in advance (such as closing the main 

emission sources and vehicle restrictions) to reduce air pollution 

and issue air pollution warning for providing guidance for public 

travel (Zhang et al., 2012). Therefore, real-time air quality 

information should be obtained and the temporal and spatial 

change trends of PM2.5 concentration should be predicted (Chen 

et al., 2013).  

 

                                                                 
*  Corresponding author 

Prediction methods of air pollution concentration can be mainly 

divided into two types, namely, statistical and deterministic 

models. Considering that meteorological and air pollutant 

concentration variables are statistically related, statistical models 

use different functions to simulate the relationship of measured 

pollutant variables and various selected predictors for predicting 

pollutant concentration (Hx, et al., 2021; Pak, et al., 2020; Wen 

et al., 2019; Cobourn 2007; Elangasinghe et al., 2014; Kurt and 

Oktay 2010; Nieto et al., 2013; Li et al., 2016; Sánchez et al., 

2013; Qi et al., 2019; Soh et al., 2018). Statistical models have 

better prediction accuracy. However, the existing statistical 

models can only predict the pollutant concentration at the 

monitoring site and cannot be extended to other regions with 

different meteorological conditions or without monitoring sites 

(Cortina Januchs et al., 2015; Elangasinghe et al., 2014; 

Hooyberghs et al., 2005), that is, the existing statistical models 

cannot predict the regional PM2.5 concentration. 

 

The deterministic model simulates pollutant discharge, diffusion, 

and disappearance in a model-driven manner (Li et al., 2016), 

thus enabling the prediction of pollutant concentration in areas 

without monitoring sites (Cortina Januchs et al., 2015). During 

simulation, pollutant discharge volume, chemical composition of 

pollution gas, and physical processes of the atmosphere should 

be fully understood, however, these key knowledge are often 

insufficient (Hrust et al., 2009). In addition, the model is 
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simplified during prediction because of its incomplete theoretical 

basis and calculation complexity, thereby leading to low 

prediction accuracy (Feng et al., 2015). 

 

Therefore, regional PM2.5 spatiotemporal distribution trend 

prediction with high precision should be explored to reduce the 

impacts of PM2.5 concentration on public health and provide 

guidance for public travel and government pollution prevention. 

The formation of PM2.5 is a dynamic system under the influence 

of meteorological and natural factors. The PM2.5 concentration 

at a certain location is related to its own and nearby PM2.5 

concentration and meteorological factors. Therefore, PM2.5 has 

a strong spatiotemporal autocorrelation. A spatiotemporal 

autoregressive (STAR) model considers the temporal evolution 

of adjacent spatial grid points. In the STAR model, each target 

pixel value is simulated as a weighted sum of neighboring 

available raster pixel values (Zhang et al., 2009), thus, the model 

is frequently used for remote sensing images prediction (Cheng 

et al., 2017; Crespo et al., 2007; Das and Ghosh 2016). This study 

introduced the daily complete PM2.5 spatial distribution (raster 

image) data obtained by Moderate Resolution Imaging 

Spectroradiometer (MODIS) AOD and meteorological factors 

into the STAR model to predict the one day ahead spatiotemporal 

distribution trend of PM2.5 and provide guidance for public 

travel and government pollution prevention. The rest of this paper 

is organized as follows. Section 2 introduces the study area, input 

data, and model structure. Section 3 presents the model’s 

validation results, PM2.5 spatiotemporal distribution, and 

feasibility analysis. Section 4 provides the conclusions. 

 

2. MATERIALS AND METHOD 

2.1 Study area 

The study area includes Beijing, Tianjin, and Hebei (JingJinJi) 

(Figure 1(a)). Excessive emissions, unfavorable terrain and 

meteorological conditions make JingJinJi a typical heavily 

polluted area in China. Therefore, this area is selected as the 

research area of this paper. 

 

 
 

Figure 1. Schematic diagram of study area. 

 

2.2  MODIS AOD Data 

The Dark Target algorithm Collection 6 MODIS Aqua AOD data 

of 2014 were downloaded from the NASA official website (Yang 

et al., 2019), and the AOD resolution used in this study was 3 km. 

 

2.3 Grounding Monitoring Data 

The hourly meteorological data (including wind speed, wind 

direction, pressure, sea level pressure, water vapor pressure, 

temperature, and humidity) and pollutant monitoring data of 

2014 were collected from the related official websites 

(http://113.108.142.147:20035/emcpublish/, 

http://zx.bjmemc.com.cn/). 

 

2.4 Data Processing and Integration 

The research results of Wang et al (2020) has showed that full-

coverage and high-precision PM2.5 spatial distribution data in 

JingJinJi can be generated based on AOD, gaseous pollutants and 

meteorological factors. Details can be found in related article 

(Wang et al., 2020)). Therefore, the data processing results were 

the 3 km resolution grid PM2.5 concentration values covering the 

entire JingJinJi obtained using MODIS 3 km Aqua AOD and the 

3 km resolution grid meteorological data generated through 

Kriging interpolation. 

 

During data integration, the grid PM2.5 concentration on day t 

was matched to the t-day grid meteorological data and t-1, t-2, t-

3…day grid PM2.5 concentrations. Day of year (DOY, range 1–

365) and grid position (GP, row number m and column number 

n of the 3 km resolution grid) were used as predictors to reflect 

the spatiotemporal heterogeneity.   

 

2.5 Method 

During prediction, the input variables of STAR model are the 

pixel values of the same and adjacent pixel positions, and the 

prediction result is the pixel values of each pixel (or window), as 

shown in Eq. (1). That is, the pixel value  𝑝(𝑥, 𝑦, 𝑡)  of at GP 
(𝑥, 𝑦)time t is the spatiotemporal function of the grid pixel value 

of the adjacent image.  

 

 𝑝(𝑥, 𝑦, 𝑡) = φ(𝑝(𝑥 ± ∆𝑥𝑖 , 𝑦 ± ∆𝑦𝑖 , 𝑡 − ∆𝑡𝑖)),         (1) 
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where (𝑥, 𝑦, 𝑡) is the location of raster cell at a given time, (∆𝑥𝑖 ,
∆𝑦𝑖 , ∆𝑡𝑖 ) denotes the spatiotemporal structure of the adjacent 

raster cells, and φ denotes an simulation function that can be 

linear or nonlinear. 

 

As shown in Figure 2, considering the PM2.5 concentration of 

the two previous days (T=2) adjacent to the (∆𝑥𝑖 = ∆𝑦𝑖 = 1) grid  

to predict PM2.5 concentration 𝑝(𝑚, 𝑛, 𝑡)  of m-row and n-

column grid at time t, Eq. (1) can be rewritten as follows: 

 

𝑝(𝑚, 𝑛, 𝑡) = ∑ [∑ ∑ (𝑊𝑥𝑦
𝑖𝑚+1

𝑥=𝑚−1
𝑛+1
𝑦=𝑛−1 𝑝(𝑥, 𝑦, 𝑡 − 𝑖)]2

i=1 +

𝑊𝑚𝑛
𝑡 𝑞(𝑚, 𝑛, 𝑡) + 𝜀(𝑚, 𝑛, 𝑡),                                                （2）

  

where 𝑝(𝑥, 𝑦, 𝑡 − ∆𝑡𝑖)  indicates the inversion results of Aqua 

AOD at position (𝑥, 𝑦)  and time 𝑡 − ∆𝑡𝑖 , 𝑞(𝑚, 𝑛, 𝑡)  is the 

meteorological variable at position (𝑚, 𝑛) and time 𝑡, 𝑊𝑥𝑦
𝑖  and 

𝑊𝑚𝑛
𝑡  are the corresponding weight coefficients, and 𝜀(𝑚, 𝑛, 𝑡) is 

the error term. 

 
 

Figure 2. Schematic of the STAR model considering the influence of meteorological factors. 

 

This study explored the effects of nonlinear functions, such as 

ANN, random forest (RF), deep NN (DNN), and gradient 

boosting decision tree (GBDT), on model accuracy. 

 

2.6 Model Validation 

During model validation, all the data were randomly divided into 

two groups, where 90% of the matching data were used for model 

fitting, and the remaining 10% were used for model validation. 

The coefficient of determination (R2), root mean square 

prediction error (RMSE), index of agreement (IA), and mean 

absolute error (MAE) were used to estimate model performance 

and were defined as follows: 

 

𝑅2 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂)2𝑁
𝑖=1

                                 (3) 

 

MAE =
1

𝑁
∑ |𝑂𝑖 − 𝑃𝑖|𝑁

𝑖=1                                (4) 

 

RMSE = √
1

𝑁
∑ (𝑂𝑖 − 𝑃𝑖)2𝑁

𝑖=1                            (5) 

 

                  IA = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑁

𝑖=1

∑ (|𝑂𝑖−�̅�|+|𝑃𝑖−�̅�|)2𝑁
𝑖=1

                         (6) 

 

where N is the number of samples, 𝑂𝑖 and 𝑃𝑖 are the observation 

and prediction results, respectively, and �̅� is the average of the 

observations. 

 

2.7 Parameters Settings 

The machine learning models used in this study were all built 

using the “Keras” model in Python 3.6.0. The main parameter 

settings of each model are shown in Table 1. 

 

Model Parameters Value 

 

ANN 

Activation function ‘relu’ 

Hidden layer size 12 

Learning rate ‘constant’ 

RF Max depth 8 

Random state 0 

 

DNN 

Activation function ‘relu’ 

Loss function ‘mse’ 

Hidden layers 6 

Hidden layers 

nodes 

200 

 

GBDT 

Loss function ‘ls’ 

Learning rate 0.1 

Boosting stages 

numbers 

3000 

Max depth 4 

Table 1. Parameter settings of machine learning models. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Model Validation Results 

Figure 3 shows the scatter plots of the STAR model with five 

simulation functions, namely, LR, ANN, DF, DNN, and GBDT. 
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(a1)–(e1) show the scatter plots comparing the predicted and 

AOD-based PM2.5 inversion results. (a2)–(e2) show the scatter 

plots comparing the predicted results and monitoring station 

PM2.5 concentration. As shown in (a1)–(e1), the STAR model 

had the best predictive performance when GBDT was used as the 

simulation function. The values of R2, RMSE, IA, and MAE were 

0.85, 27.08 µg/m3, 0.96, and 20 µg/m3, respectively. The R2 using 

DNN reduced from 0.78 to 0.07 compared with GBDT. The 

model performance was the worst when the simulation function 

was LR. The R2 and IA values were 0.68 and 0.88, respectively, 

and the RMSE and MAE values were 39.57 and 29.56 µg/m3, 

respectively, which may be because of the complex nonlinear 

relationship of PM2.5 and meteorological factors (Wang and Sun 

2019; Elangasinghe et al., 2014; Kukkonen et al., 2003). As 

shown in (a2)–(e2), the model performance in terms of the 

prediction results of monitoring site PM2.5 was inferior to that 

compared with the AOD-based PM2.5 inversion results. In this 

case, the simulation function of the STAR model with the best 

performance was GBDT, and its R2, RMSE, IA, and MAE values 

were 0.75, 40.30 µg/m3, 0.92, and 30.04 µg/m3, respectively. 

Compared with the predicted performance of the model shown in 

Figure 1(e1), the R2 and IA values decreased by 0.1 and 0.04, 

respectively, whereas the RMSE and MAE values increased by 

13.22 and 10.04 µg/m3, respectively. The model performance 

decreased the most when DNN was used as the simulation 

function. The R2 and IA values decreased by 0.15 and 0.06, 

respectively, whereas the RMSE and MAE values increased by 

15.89 and 12.05 µg/m3, respectively. The performance 

degradation of the model was mainly because our data for +1-day  

PM2.5 prediction were the AOD-based PM2.5 inversion results. 

The inversion results had certain errors compared with the station 

monitoring results. Therefore, error propagation occurred during 

the +1-day PM2.5 spatial distribution prediction, resulting in 

degraded model performance. 

 

 
 

Figure 3. Scatter plots of the STAR model with five different functions. (a1)–(e1) show the scatter plots comparing the predicted and 

AOD-based PM2.5 inversion results. (a2)–(e2) show the scatter plots comparing the predicted results and monitoring station PM2.5 

concentration. 

 

Table 2 shows the STAR model performance statistics using 

different simulation functions and predictors. The STAR model 

under five simulation functions had similar prediction 

performance when the PM2.5 spatial distribution data of the 

previous day were used as predictors. This condition may be 

because the relationship of PM2.5 presented a linear relationship 

rather than a complex nonlinear relationship (Wang et al., 2019). 

The comparison experiments demonstrated that the introduction 

of DOY and GP immensely improve the performance of the 

STAR model using a nonlinear simulation function. The model 

performance immensely improved with the introduction of DOY 

and GP as predictors and GBDT as the simulation function. The 

R2 and IA values decreased by 0.14 and 0.05, respectively, 

whereas the RMSE and MAE values increased by 10.46 and 7.79 

µg/m3, respectively, indicating that +1-day PM2.5 spatial 

distribution prediction results were immensely affected by time 

and location factors. 

 

Model Variables R2 RMSE(µg/m3) IA MAE(µg/m3) 

 

LR 

PM 0.62 42.91 0.85 31.02 

PM+MET 0.68 39.28 0.89 29.48 

PM+MET+GP 0.68 39.57 0.88 29.56 

 

ANN 

PM 0.62 42.9 0.85 31.02 

PM+MET 0.69 38.76 0.89 28.96 
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PM+MET+GP 0.73 35.98 0.91 26.80 

 

RF 

PM 0.63 42.30 0.86 30.17 

PM+MET 0.68 39.18 0.9 28.32 

PM+MET+GP 0.74 35.85 0.92 26.16 

 

 

DNN 

PM 0.61 43.31 0.85 30.57 

PM+MET 0.60 43.95 0.89 31.62 

PM+MET+GP 0.78 32.66 0.94 23.13 

 

GBDT 

PM 0.63 42.32 0.86 30.13 

PM+MET 0.71 37.54 0.91 27.79 

PM+MET+GP 0.85 27.08 0.96 20.00 

Table 2. Performance statistics of the STAR model under different simulation functions and predictors. 

 

Figure 4 shows the statistics of IA and MAE values of the STAR 

model under five simulation functions at different monitoring 

sites. As shown in Figure 4, the spatial distribution of MAE at 

each monitoring was regional. The areas with small MAE were 

mainly distributed in the northern areas, such as Chengde, 

Qinhuangdao, and Zhangjiakou, whereas the areas with large 

MAE were mainly concentrated in southern Beijing, Baoding, 

Shijiazhuang, Handan, and Tangshan. The two main reasons for 

this phenomenon were provided as follows: First, the PM2.5 

concentration in different regions was different. MAE was high 

in areas with high PM2.5 concentration, whereas MAE was 

relatively low in areas with low PM2.5 concentration. Figure 5(a) 

shows the PM2.5 annual average concentration of each 

monitoring station in JingJinJi in 2014. The areas with high 

annual average PM2.5 concentration were concentrated in the 

south of Beijing, Baoding, Shijiazhuang, Handan, and Tangshan, 

which was consistent with high MAE areas of the prediction 

results. As shown in the scatter plot in Figure 3, underestimation 

was serious when the PM2.5 concentration was high, resulting in 

high MAE. Second, the regional MAE spatial distribution may 

be related to the AOD-based PM2.5 inversion performance. 

Figure 5(b) shows the AOD-based PM2.5 inversion performance 

statistics for each monitoring site. The areas with large RMSE 

were consistent with high MAE areas of the prediction results. 

As shown in Figure 4, the MAE of each monitoring site was 

significantly lower than those of the four other simulation 

functions when GBDT was used as the simulation function. From 

a regional perspective, the areas with large MAE improvement of 

GBDT were mainly the south of Beijing, Baoding, and 

Shijiazhuang. In the southern part of Beijing, the MAE of GBDT 

reduced by approximately 30 µg/m3 compared with the other 

simulation functions. The above comparison experiments 

showed that the STAR model had the best predictive 

performance when GBDT was used to simulate the STAR model 

during the +1-day PM2.5 spatial distribution prediction. The 

experimental results based on GBDT are shown as follows.  

 

 

 

Figure 4. Spatial distribution of MAE of the STAR model at 

different monitoring sites using different simulation functions. 

(a)–(e) is LR, ANN, RF, DNN, and GBDT, respectively. 

 

 
 

Figure 5. (a) PM2.5 annual average concentration of the  

monitoring sites in JingJinJi in 2014; (b) PM2.5 inversion 

performance statistics of each monitoring site. 

 

3.2 Model Parameters Determination 

Table 3 shows the performance statistics of the STAR model 

under different parameters using GBDT as the simulation 

function. As shown in Table 3, the model performance slightly 

changed with the increase in ∆𝑥𝑖 and T. This condition may be 

because many prediction variables were introduced into the 

model with the increase in ∆𝑥𝑖  or T. These variables were far 

from the destination grid and did not contribute to the model 

performance. Variables ∆𝑥𝑖 and T were set to one for reducing 

the model complexity. 

 

 

 

 ∆𝑥𝑖=1  ∆𝑥𝑖=2  ∆𝑥𝑖=3 

 R2 RMSE IA MAE  R2 RMSE IA MAE  R2 RMSE IA MAE 

T=1 0.85 27.08 0.96 20.00  0.84 27.88 0.96 20.51  0.85 27.29 0.96 20.22 

T=2 0.85 27.24 0.96 20.25  0.85 27.09 0.96 19.95  0.85 27.13 0.96 20.08 
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T=3 0.85 27.18 0.96 20.22  0.85 27.10 0.96 19.98  0.85 27.01 0.96 19.90 

Table 3. Performance statistics of the STAR model under different parameters 

 

3.3 Prediction Maps of PM2.5 Spatial Distribution 

Figure 6 shows the prediction results of +1-day PM2.5 spatial 

distribution during heavy pollution from October 6, 2014 to 

October 12, 2014. The prediction results of the STAR model 

were consistent with the PM2.5 spatial distribution inversion and 

site monitoring results, thereby accurately reflecting the 

emergence, diffusion, and disappearance of PM2.5 during heavy 

pollution and providing spatiotemporal distribution data for 

reducing air pollution and air pollution early warning. The PM2.5 

spatial distribution prediction results in this study produced high-

value underestimation (Figure 6(b1) and (b2)) and low-value 

overestimation (Figure 6(g1) and (g2)) with the change of PM2.5. 

Underestimation occurred when the pollution was serious (Figure 

6(d1) and (d2)). 

 

 
 

Figure 6. +1-day PM2.5 prediction results from October 6, 2014 to October 12, 2014. (a1)–(g1) show the +1-day PM2.5 prediction 

results; (a2)–(g2) show the PM2.5 inversion results and the site monitoring PM2.5 concentration. 

 

3.4 Feasibility and Uncertainty Analysis  

Previous studies have improved PM2.5 prediction accuracy by 

introducing the PM2.5 concentration from adjacent monitoring 

sites (Zheng et al., 2015; Kukkonen et al., 2003; Li et al., 2015; 

Wen et al., 2019), indicating that PM2.5 has a strong spatial–

temporal autocorrelation. Based on this, we established the 

STAR model to realize the +1-day region PM2.5 spatial 

distribution prediction. The pollutant concentrations were 

cyclical because of the influence of time factors (Zhang et al., 

2012). Therefore, day of week and DOY were frequently used as 

predictors to improve the pollutant prediction performance 

ADDIN(Kurt and Oktay 2010; Qi et al., 2019; Feng et al., 2015). 

The PM2.5 spatial distribution maps showed that the PM2.5 

spatial distribution was regional. Therefore, the introduction of 

DOY and GP improved the prediction accuracy of the model. 

 

Scholars have conducted numerous studies on the prediction of 

PM2.5 in JingJinJi using statistical models (Soh et al., 2018; Feng 

et al., 2015; Li et al., 2016; Qi et al., 2019). Although these 
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studies have achieved high prediction accuracy, some limitations 

are found because they only predicted the PM2.5 concentration 

of monitoring sites. First, air quality is affected by complex 

factors, such as meteorological factors, transportation, and land 

use types, and immensely varies with time and location (Zheng 

et al., 2013). Therefore, single-site pollutant concentration 

prediction cannot effectively help people to make decisions. 

Different models are required in predicting the pollutant 

concentration at different stations (Zheng et al., 2015). Second, 

these studies can only predict the PM2.5 concentration in areas 

with monitoring stations. Taking the study area as an example, 

JingJinJi has few monitoring stations that are mainly 

concentrated in urban areas. Therefore, statistical models in 

previous studies cannot be used to predict the pollutant 

concentration in vast areas without monitoring sites. Other 

scholars used the deterministic models to simulate the PM2.5 

concentration in eastern China (Zhou et al., 2017; Zheng et al., 

2015). Although the regional PM2.5 concentration prediction can 

be achieved, the model accuracy is low with R2 are 0.45 and 0.64, 

respectively. The model used in this study fully considered the 

spatial–temporal autocorrelation of PM2.5, not only extended the 

PM2.5 concentration prediction to other areas without 

monitoring sites, but also achieve regional PM2.5 concentration 

prediction with high accuracy, thereby overcoming the 

limitations of statistical models and deterministic models to some 

extent.  

 

The model prediction results in this study had underestimation 

problems. This condition was because the AOD-based PM2.5 

inversion results had certain errors, thereby resulting in error 

propagation. Therefore, the accuracy of the STAR model can be 

enhanced to some extent by improving the AOD-based inversion 

accuracy. At the same time, some advanced statistical models, 

such as long-short memory DNN (Li et al., 2017), can be used to 

solve the underestimation of the model. 

 

4. CONCLUSION 

Statistical models can only predict the pollutant concentration at 

the monitoring sites and cannot be extended to other regions with 

different meteorological conditions and without monitoring sites. 

This study establish a STAR model based on the spatial 

distribution of PM2.5 predicted using MODIS AOD for 

predicting the one day ahead PM2.5 spatial distribution in 

JingJinJi. The results showed that the performance of the STAR 

model was relatively different compared with different 

simulation functions. The model performance was the best when 

GBDT was used as the simulation function. The R2, RMSE, IA, 

and MAE values were 0.85, 27.08 µg/m3, 0.96, and 20 µg/m3, 

respectively. The introduction of DOY and GP immensely 

improved the model performance, and R2 and IA decreased by 

0.14 and 0.05, respectively, whereas RMSE and MAE increased 

by 10.46 and 7.79 µg/m3, respectively, indicating that the PM2.5 

spatial distribution prediction results were immensely affected by 

time and location factors. The performance statistics of each 

monitoring station showed that the model performance 

distribution was regional. The regions with low PM2.5 

concentration had better performance, whereas the regions with 

high PM2.5 concentration had poor performance. The PM2.5 

prediction results of heavily polluted weather indicated that the 

model can accurately reflect the emergence, diffusion, and 

disappearance of PM2.5 during heavy pollution and provide 

spatiotemporal distribution data for reducing air pollution and air 

pollution early warning. 
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