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ABSTRACT: 

 

Convolutional neural networks (CNNs) effectively classify standard datasets in remote sensing (RS). Yet, real-world data are more 

difficult to classify using CNNs because these networks require relatively large amounts of training data. To reduce training data 

requirements, two approaches can be followed – either pretraining models on larger datasets or augmenting the available training data. 

However, these commonly used strategies do not fully resolve the lack of training data for land cover classification in RS. Our goal is 

to classify trees and shrubs from aerial orthoimages in the treeline ecotone of the Krkonoše Mountains, Czechia. Instead of training a 

model on a smaller, human-labelled dataset, we semiautomatically created training data using an ancillary normalised Digital Surface 

Model (nDSM) and image spectral information. This approach can complement existing techniques, trading accuracy for a larger 

labelled dataset while assuming that the classifier can handle the training data noise. Weakly supervised learning on a CNN led to 

68.99% mean Intersection over Union (IoU) and 81.65% mean F1-score for U-Net and 72.94% IoU and 84.35% mean F1-score for 

our modified U-Net on a test set comprising over 1000 manually labelled points. Notwithstanding the bias resulting from the noise in 

training data (especially in the least occurring tree class), our data show that standard semantic segmentation networks can be used for 

weakly supervised learning for local-scale land cover mapping. 

 

 

1. INTRODUCTION 

CNNs are currently one of the most commonly used classifiers in 

remote sensing, but their effective application requires large 

amounts of training data. Because acquiring more training data is 

not always feasible, many authors focus on approaches for 

reducing training data requirements. The most common 

strategies are transfer learning and data augmentation 

(Kattenborn et al., 2021). In this paper, we instead focus on a 

third approach – weakly supervised learning. To explain the 

rationale underlying our choice, we will describe these three 

approaches and their applications, discussing their advantages 

and disadvantages. 

 

Transfer learning involves pretraining the network or a part of it 

on a larger dataset. These datasets are often unrelated to the 

specific application, and most pretrained networks are based on 

three-band RGB images, for example ImageNet. As a result, 

remote sensing practitioners must either transform their data into 

three bands (Kattenborn et al., 2021) or use more than one 

encoder, as proposed by Audebert et al. (2018). Their approach 

can be utilised with multiple pretrained backbones, which can be 

particularly helpful when analysing multimodal data. Overall, 

this approach has been successful, but more significant 

advantages for remote sensing may derive from network 

backbones pretrained on large multispectral datasets, such as 

SEN12MS (Schmitt et al., 2019). 

 

Data augmentation is another effective technique that 

compensates for insufficient training data. This approach 

augments existing data by changing them slightly, which allows 

the network to generalise more successfully. The most common 

approaches to data augmentation consist of rotating the existing 

training data and introducing random noise into the imagery. This 

technique has been exceptionally successful; in fact, almost half 

of all recent studies on CNNs for vegetation remote sensing 

augment their training data (Kattenborn et al., 2021). 

 

Weakly supervised learning stands out among the less commonly 

used strategies for overcoming the lack of training data, such as 

synthetic data creation and semi-supervised learning (Kattenborn 

et al., 2021). Weakly supervised learning consists of training a 

network using low-quality labels (Kattenborn et al. (2021)). As 

noted by Schmitt et al. (2020), most remote sensing studies 

involving weak supervision learning have focused on object 

detection, whereas only a couple of studies have used this 

approach for semantic segmentation. These semantic 

segmentation studies trained models on sparse or image-level 

annotations, but Schmitt et al. (2020) worked with dense, noisy 

labels. More precisely, these authors attempted to classify global 

land cover from high resolution Sentinel-1/-2 data using CNNs 

trained on a MODIS-based land cover map. Despite highlighting 

that this complex classification scheme remains a challenge, they 

also indicated that weakly supervised learning may be useful in 

less complex scenarios. For example, Weinstein et al. (2019) 

successfully detected trees in RGB imagery by first training a 

network on a LiDAR-based unsupervised annotation and 

subsequently refining the model on a small number of hand-

annotated images. For this reason, we focus on weakly 

supervised learning for semantic segmentation in this 

contribution. 

 

Our goal is to discriminate Norway spruce (Picea abies) trees 

from dwarf pine (Pinus mugo) shrubs in multispectral (visible 

and near infrared) aerial images. Conventional machine learning 

approaches (support vector machine, random forest, etc.) were 
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first considered. However, preliminary data exploration using 

conventional machine learning and image segmentation has 

shown that these classifiers are unsuitable for the given dataset as 

was further confirmed by Dvorak (2020). The complex spatial 

structure of spruces, especially their shadows, and dwarf pines 

showed to be difficult to address using object based as well as 

pixelwise classification.  

 

Thus, our approach is similar to that of Weinstein et al. (2019), 

albeit aimed at semantic segmentation of two vegetation classes 

while avoiding training on hand-annotated data. For this purpose, 

we trained two CNNs on a noisy classification, which was 

independently derived using an ancillary normalised Digital 

Surface Model (nDSM) and spectral information. The nDSM is 

available only for a part of our study area and, therefore, cannot 

be used as a classification feature. Despite the inherent training 

data noise, we hypothesize that CNNs can identify the spatial 

structure of trees in multispectral images. 

 

 

2. KRKONOŠE MOUNTAINS 

The Krkonoše Mountains in the Sudetes Mountain system form 

a natural border between Czechia and Poland. The area is 

designated as a UNESCO biosphere reserve and as a national 

park on both sides of the border – known as Krkonošský Národní 

Park (KRNAP) in Czechia and as Karkonoski Park Narodowy in 

Poland (UNESCO, 2016). This area contains an arctic-alpine 

tundra, a relict ecosystem unique for its flora. The Krkonoše 

tundra consists of two large, detached sections: Western (1 284 

ha) and Eastern (2284 ha). Connecting the tundra to Spruce-

dominated montane forests below is the treeline ecotone (Treml 

and Chuman, 2015). 

The alpine tree line ecotone is characterised by an extensive 

dwarf pine shrub cover and by spruce stands sparsening with 

altitude. Local dynamics of the ecotone were analysed by Treml 

and Chuman (2015), who found that the timberline has advanced 

upwards by 0.43 m per year since the 1930s. The authors noted 

that this process is comparatively slower in in the Sudetes 

Mountain system than in other European mountain ranges, 

possibly due to its high pine shrub cover. 

 

These and potential other changes in treeline ecotone dynamics 

are monitored by the KRNAP administration. In total, 13 

transects have been delineated for this purpose, as shown in 

Figure 1. The transects were defined with different spruce and 

dwarf pine densities and distributions throughout the area. In 

total, the transects cover 7.79 km2, with six of the transects 

located in the western tundra and the remaining seven in the 

eastern tundra. 

 

 

3. METHODOLOGY 

3.1 Data 

3.1.1 Aerial imagery: Our study uses multispectral aerial 

imagery captured on the 18th and 27th of June 2012. The imagery 

covers the whole study area and is divided into 2×2.5 km tiles 

with 8bit radiometric resolution. As is relatively common in real-

world tasks, we had no access to the original data, only to derived 

products – a Red, Green, Blue (RGB) and Near Infrared, Red, 

Green (CIR) orthorectified composites with ground sampling 

distance (GSD) of 0.2 m. 

 

These products share two spectral bands (Red and Green), but 

their simple combination into a four-band dataset (NIR, R, G, B) 

is impractical because both composites were radiometrically 

enhanced separately. Therefore, the red and green bands do not 

share values between products, so the two datasets were used 

separately. 

 

3.1.2 nDSM: A LiDAR-based surface model covering a part 

of the area of interest (training/validation area in Figure 1) forms 

Figure 1. Area of Interest in the treeline ecotone of Krkonoše mountains. Depicts both the western and eastern tundra. Made with 

Natural Earth data, © OpenStreetMap contributors 
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a basis for creating training and validation labels.  The data for 

this model were gathered with a point cloud density of 5 

points/m2 using a RIEGL LMS Q-680i full waveform scanner in 

spring of 2013 (Puchrik and Nýdrle, 2013). We had access to the 

nDSM as a preprocessed raster with a GSD of 0.125 m. This 

original raster was subsequently resampled using Nearest 

Neighbour interpolation to match the multispectral imagery (0.2 

m × 0.2 m). While both the datasets were captured a year apart, 

we don’t consider this to be an issue as there were no observable 

changes in the area. 

 

3.2 Experiment setup 

Our goal was to classify spruce trees and dwarf pine shrubs in the 

areas of interest of the Krkonoše treeline ecotone. Consequently, 

we defined three semantic classes for classification – spruce trees 

(picea abies), dwarf pines (pinus mugo) and background. The 

complex spatial structure of these classes is extractable using a 

deep Convolutional Encoder-Decoder network. Accordingly, we 

trained two deep models, as described in section 3.4. 

 

To confirm the results, we generated 1086 points in the 13 

evaluated transects by stratified random sampling; 543 points for 

the eastern and 543 points for the western part of the territory. 

The number of points was derived according to (Foody, 2009) for 

a two-sided confidence interval α = 2%. The points were 

consequently labelled based on visual interpretation of the 

multispectral imagery, essentially creating a testing dataset. 

 

As the available nDSM covered only a portion of the treeline 

ecotone, we generated a semiautomatic annotation in the area 

where imagery and nDSM overlap. This semiautomatically 

labelled region was subsequently used for training and validating 

our Encoder-Decoder networks. Five of the eastern transects 

were also selected to validate our training / validation area. The 

Encoder-Decoder results found in these five transects were also 

compared with results in the remaining transects using the 

aforementioned hand-labelled validation points. This comparison 

allows us to gauge the generalizability of our models. 

 

All Encoder-Decoders were trained on a Windows workstation 

equipped with an Intel i9-7940X CPU, 64 GB of RAM and a 

Nvidia GeForce GTX 1070 GPU (8GB VRAM). The models 

were written for PyTorch 1.4 with CUDA 10.2. 

 

3.3 Semiautomatic annotation 

Creating training data for our task manually is impractical given 

the overall size of the study area. To simplify this task, we took 

advantage of spruce tree and pine shrub aboveground heights in 

the area. As we were operating in the Krkonoše tundra, the only 

other objects with similar heights were either manmade structures 

or dead vegetation (Treml and Chuman, 2015). This fact allowed 

us to use aboveground heights (where nDSM is available) as a 

feature to create the training and validation dataset. 

 

Thus, when creating our labels, we assumed that: 

    1) green trees and shrubs have normalised difference 

vegetation index (NDVI) higher than zero  

    2) trees and shrubs can be identified from their height 

 

We computed NDVI from CIR imagery and assigned all pixels 

with NDVI below 0 to the background class. To differentiate 

vegetation types, we assigned pixels with nDSM value above 2 

m as spruce trees and pixels with nDSM value between 0.12 m 

and 2 m as dwarf pine shrubs. These arbitrary values were 

selected after visual comparison of multiple potential height 

values. 

 

Our semiautomatic annotation considerably reduced the time 

required to create enough training data. However, this method 

introduces a degree of uncertainty. For this reason, we only used 

the labels for model training and validation, whereas the reported 

accuracy of the test set was based on visual interpretation of the 

original imagery. 

 

3.4 Encoder-Decoder networks 

A family of CNNs sometimes known as Convolutional Encoder-

Decoders includes networks such as SegNet or U-Net, which are 

well suited to pixelwise classification/semantic segmentation. U-

Net was selected as the basis for this task, given its recent 

popularity for solving comparable remote sensing tasks (Brandt 

et al., 2020; Huang et al., 2018; Kattenborn et al., 2019).  

 

We performed no data augmentation as it may not be needed 

given the relatively large size of our training and validation 

dataset. Rotating the input patches may even have been harmful 

to the classification, given that this would rotate tree shadows, 

while their location in relation to the trees is a potentially 

valuable feature for classification. 

 

Spruce trees cover a relatively small area in comparison to the 

other two classes. We therefore assign weights when computing 

the loss function with relation to the individual classes, a similar 

scheme was previously used by Audebert et al. (2018). The 

weights were assigned as: background – 0.1, pine shrubs – 0.2 

and spruce trees – 0.7. This setup will likely improve the results 

for spruce trees at the expense of overall accuracy. 

 

Data is fed into the networks in the form of 512×512-pixel tiles 

with 50% overlap and six-band inputs. Using these relatively 

large tiles results in 1005 tiles for training and 252 tiles for 

validation. Both networks were trained using Adam (Kingma and 

Ba, 2015) as the optimiser and cross entropy as the loss function. 

While training, batch size of 2 was selected for both our models, 

due to memory constraints of our GPU. Suitable values for other 

hyperparameters were identified using three-fold cross 

validation, and they are detailed in Table 1. 

 
 # of 

epochs 

Initial 

learning rate 

Learning rate 

halved after epochs 

# 

U-Net 80 1.25e-5 50, 70 

KrakonosNet 100 1e-3 60, 80, 95 

Table 1. Hyperparameter settings for training 

 

3.4.1 U-Net: Our U-Net implementation pads convolutions, 

similarly to Kattenborn et al. (2019) and Wagner et al. (2019). 

This adjustment results in network outputs with the same spatial 

resolution as inputs. As in the original U-Net (Ronneberger et al., 

2015) the weights and biases of the network were randomly 

initialized from a Gaussian distribution. 

 

3.4.2 KrakonosNet: A modification of U-Net was introduced 

by (Dvorak, 2020). Its goal is to reduce overfitting of the network 

for tree classification in aerial imagery. The author proposes four 

modifications to the original U-Net structure: 

1) Halving the number of feature maps in each 

convolution layer – inspired by (Wagner et al., 2019). 

2) Batch normalization after each convolution – inspired 

by Zhao et al., (2019) 
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3) Dropout after the last convolutional layer (50 % 

probability) 

4) Parametric Rectified Linear Unit (ReLU) activation 

function instead of traditional ReLU – inspired by 

Nwankpa et al. (2018). 

Other implementation specifics are the same as for our U-Net. 

 

 

4. RESULTS 

To evaluate our noisy training data, we created a confusion 

matrix which compares the training data to 382 overlapping 

hand-labelled points (Figure 2). This analysis showed a relatively 

high confusion between the background and pine shrubs, 

especially for pines, which were misclassified as background. 

Even more notable is the underrepresentation of spruce trees, 

with only over a third (38%) of spruces being correctly 

represented in the weak training labels. 

 

Figure 3 shows patches from the five training / validation 

transects, highlighting the underrepresentation of spruce trees. 

The automatically labelled patches also show a characteristic 

“salt and pepper” effect, which is especially apparent in a 

confusion between the background and dwarf pines. The 

resulting classifications have however filtered out most of this 

noise. Differences between individual results obtained with U-

Net and KrakonosNet appear minor based on visual 

interpretation, but the importance of these slight differences may 

show during quantitative analysis. 

 

 
Figure 2. Confusion matrix describing the agreement between 

our noisy labels and the hand-labelled points 

Analysis of confusion matrices presented in Figure 4 reveals that 

both models performed quite similarly, with KrakonosNet 

slightly outperforming U-Net. However, both models 

significantly underestimate spruce trees, and the producers’ 

accuracy for this class was only 55.46% (U-Net) and 63.03% 

(KrakonosNet). This result is nevertheless considerably better 

than that of the original training data (38%). In other words, the 

networks learned some properties of trees from noisy annotations 

and delineated the trees more accurately than the training data. A 

notable improvement over the noisy labels has also been 

achieved in confusion between pine shrubs and the background. 

 

Figure 3. Comparison of noisy training labels and resulting classifications, grey: background, orange: dwarf pine, green: spruce 
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Figure 4. Confusion matrices for the test set. 

Estimations of how well a given model generalised are shown in 

Table 2. A lower difference between values for the test and 

training/validation set indicates that the model has learned truly 

valuable features for the given task, while a larger difference 

means that the model is potentially overfitted. 

 
 Test set (8 transects) Train/val set (5 transects) 

 U-Net KrakonosNet U-Net KrakonosNet 

Background     

F1 87.10 89.27 88.16 87.72 

IoU 77.16 80.62 78.83 78.13 

Pine shrubs     

F1 76.73 79.39 86.03 86.45 

IoU 62.24 65.82 75.48 76.13 

Spruce trees     

F1 68.39 74.26 82.11 80.43 

IoU 51.97 59.06 69.64 67.27 

Overall     

OA 81.65 84.35 86.65 86.39 

Mean F1 77.41 80.97 85.43 84.87 

Mean IoU 63.79 68.50 74.65 73.84 

Table 2. Results validated on hand-labelled points [%]. 

Comparison of values obtained within the eight test set transects 

and the five transects that overlap the training / validation set.    

F1: F1 score, IoU: intersection over union, OA: overall accuracy 

Both our models had more than 8% difference in F1 score and 

IoU for pine shrubs and spruce trees. This difference is especially 

notable given the relatively low agreement between noisy labels 

and our validation points (Figure 2). KrakonosNet also has lower 

differences between results for the training/validation and test 

dataset than U-Net across all classes and metrics while reaching 

better overall results on the test set. 

 

 

5. DISCUSSION 

Our results show that our Encoder-Decoders have learned useful 

features of spruce trees and pine shrubs from aerial imagery while 

being trained on noisy labels. Learning these features allows both 

models to outperform original labels by filtering out the noise.  

 

KrakonosNet slightly outperformed U-Net across all metrics in 

the test set. One notable difference between the networks lies in 

the producers’ accuracy for spruce trees, which also led to the 

higher F1 and IoU scores for KrakonosNet for this class. We can 

therefore confirm that the network structure adaptations prove 

useful for this task, but a more in-depth analysis of the usefulness 

of individual network adaptations should be conducted in further 

studies. KrakonosNet is also considerably faster to train because 

it only has half of the convolutional filters of U-Net. A 

considerable improvement in classification accuracy may have 

been achieved by using a state-of-the-art Encoder-Decoder, but 

we believe that there is value in first experimenting with a 

relatively well-understood architecture. 

 

Contrary to Schmitt et al. (2020), we conclude that standard 

models such as U-Net (perhaps with a few simple adaptations) 

may be sufficient for our task given that mapping two vegetation 

classes on a local scale is considerably easier than the global land 

cover mapping presented in their contribution. 

 

Although our overall results were satisfactory, a more careful 

analysis of accuracy metrics and the visualised results identifies 

several shortcomings of this approach. Firstly, shadows are 

difficult to successfully classify in this context as the appropriate 

label cannot always be assigned even based on a visual 

interpretation. We observe (as illustrated in Figure 3) that lower 

parts of the spruce trees are often misclassified as dwarf pine 

shrubs, especially on the shadowed half of the trees. This 

misclassification is likely caused by a systemic issue within our 

algorithm for generating training data.  

 

Our training data generation technique assigns parts of spruce 

trees below two meters to the pine shrub class, thus 

misclassifying tree edges. This height restriction also taught the 

network to mistake newly planted forests for dwarf pine shrubs. 

To correct this issue, the existing training data may be improved 

by a simple procedure. For example, the existing labels for spruce 

trees could be extended by a buffer of 50 cm in all directions, 

which would help to properly cover the spruce trees. However, 

this systematic error may also be resolved by creating training 

data through a different strategy. 

 

One such strategy for automatically creating an annotation 

includes finding local maxima of the nDSM raster and creating 

circular buffers with a set radius around them, thus delineating 

the spruce tree canopies in the process. The radius of buffers may 

even be tied to the treetop height, thereby creating larger buffers 

for higher trees. This relationship between tree height and width 

would however need to be calibrated each time when using 

imagery captured by different sensors due to differences 

commonly found between aerial orthoimages caused by the 

image geometry and rectification process. These strategies for 

generating training data should be considered as part of a 

sensitivity study. Such study should also consider introducing 

shaded classes. 

 

Our goal was to assess Convolutional Encoder-Decoders for 

weakly supervised learning, and the results show that these 

networks can overcome the noise present in the training imagery. 

However, we believe that a production-focused solution should 

also involve data augmentation, transfer learning or a small 

amount of precisely labelled training data. In particular, data 

augmentation through patch rotation or the introduction of 

random noise can be easily implemented, while typically 

improving the generalization capabilities of models. Transfer 

learning with remote sensing data is often challenging due to the 

high dimensionality of the data, but Audebert et al. (2018) have 

presented a potential avenue for transfer learning in the context 

of our data. We could essentially run both our three-band datasets 

through separate pretrained encoders and then combine both 

signals for the decoder part of our network. 

 

Besides already mentioned directions for future research in the 

context of this task, we aim to adapt weakly supervised learning 

in the same area to data captured in different time periods and 

using different sensors. For example, a land cover map created 

based on 2012 imagery may be used as training data for models 

training on 2001 imagery to assess historical changes in the area. 

To achieve satisfactory results, a model must consider specifics 

related to tree growth and the quality of available aerial imagery. 
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In summary, the weak labels proved sufficient to teach useful 

classification features to standard Encoder-Decoder networks, 

but the labels contain a systematic error which ultimately limited 

the performance of the model. Nevertheless, the limitations of 

our results may be overcome by creating training data in a 

different manner and by improving the training process with data 

augmentation or transfer learning. 

 

 

6. CONCLUSIONS 

Weakly supervised learning proved viable on our task of 

classifying land cover in the treeline ecotone using labels based 

on an ancillary nDSM. The networks could overcome noise 

present in the training data and learn better representations than 

the labels. Our results still reflect systematic errors introduced 

when creating training data, but we show that standard semantic 

segmentation networks may be sufficient for weakly supervised 

learning for local-scale land cover mapping. 
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