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ABSTRACT: 

 

The empirical (regression-based) models have long been used for retrieving water quality parameters from optical imagery by training 

a model between image spectra and collocated in-situ data. However, a need clearly exists to examine and enhance the temporal 

transferability of models. The performance of a model trained in a specific period can deteriorate when applied at another time due to 

variations in the composition of constituents, atmospheric conditions, and sun glint. In this study, we propose a machine learning 

approach that trains a neural network using samples distributed in space and time, enabling the temporal robustness of the model. We 

explore the temporal transferability of the proposed neural network and standard band ratio models in retrieving total suspended matter 

(TSM) from Sentinel-2 imagery in San Francisco Bay. Multitemporal Sentinel-2 imagery and in-situ data are used to train the models. 

The transferability of models is then examined by estimating the TSM for imagery acquired after the training period. In addition, we 

assess the robustness of the models concerning the sun glint correction. The results imply that the neural network-based model is 

temporally transferable (R2 ≈ 0.75; RMSE ≈ 7 g/m3 for retrievals up to 70 g/m3) and is minimally impacted by the sun glint correction. 

Conversely, the ratio model showed relatively poor temporal robustness with high sensitivity to the glint correction. 

 

1. INTRODUCTION 

Earth observation has spurred significant advances in monitoring 

the quality of inland and coastal waters (Sagan et al., 2020). The 

undeniable role of remote sensing is mainly due to providing 

spatiotemporally explicit information on the status of in-water 

constituents contrary to field-based measurements limited in both 

space and time (Hansen et al., 2017; Ritchie et al., 2003). 

Remotely mapping constituents like chlorophyll-a (Chl-a) has a 

sound background in open oceans known as case-I waters 

(Groom et al., 2019; Vandermeulen et al., 2020). However, 

inland and nearshore waters (case-II) represent different bio-

optical conditions than oceanic ones. They are optically more 

complex as phytoplankton communities do not dominate the bio-

optical condition. So, other constituents like total suspended 

matter (TSM) and colored dissolved organic matter (CDOM) can 

also vary largely in inland and nearshore coastal waters, posing 

more complexities and spectral ambiguities (Defoin-Platel and 

Chami, 2007; Niroumand-Jadidi et al., 2021). There might also 

be confounding effects from the bottom-reflected radiance in 

shallow and clear waters (Niroumand-Jadidi et al., 2020a), 

further complicating constituent retrieval. On the other hand, the 

spatial resolution of the common ocean color sensors (e.g., 

Sentinel-3) is too coarse to capture most of the inland waters like 

lakes and rivers. With the launch of Operational Land Imager 

(OLI) and Multispectral Instrument (MSI) sensors, onboard 

Landsat-8 and Sentinel-2 satellites, retrieval of constituents in 

inland and nearshore coastal waters received increasing interest 

(Niroumand-Jadidi et al., 2019; Toming et al., 2016). These 

satellite sensors provide sufficient spatial resolution (10−30 m) 

and a radiometric resolution (12 bit) sensitive to the changes in 

the water-leaving radiance (Toming et al., 2016). Having a high 

radiometric resolution is of particular importance due to the low 

signal-to-noise ratio (< 15%) of water bodies (Jorge et al., 2017). 

Moreover, although OLI and MSI are not designed specifically 

for aquatic applications, the spectral resolutions of the sensors are 

suitable for accurate retrieval of water quality parameters 

(Bresciani et al., 2020; Niroumand-Jadidi et al., 2021). 

There are various methods developed to estimate water quality 

indicators from optical imagery that fall into three main 

approaches: (i) empirical (regression-based) models that 

establish a relation between image-derived spectral features and 

associated water quality parameters measured in the field 

(Gholizadeh et al., 2016; Niroumand-Jadidi et al., 2019); (ii) 

physics-based models that rely on a radiative transfer model to 

invert image spectra to inherent optical properties (IOPs) and 

concentration of constituents (Gege, 2004; Mobley, 1994; 

Niroumand-Jadidi et al., 2020c); (iii) semianalytical (quasi-

analytical) algorithms that are a blend of empirical relationships 

and radiative transfer theory (Lee et al., 2002; Pitarch and 

Vanhellemont, 2021). Although each modeling approach has 

pros and cons, empirical methods remain the most popular among 

others (Gholizadeh et al., 2016; Niroumand-Jadidi et al., 2019; 

Toming et al., 2016). The empirical methods are relatively 

straightforward and fast to apply with minimal need to adhere to 

the underlying physics (Niroumand-Jadidi et al., 2018).  

Moreover, when trained and applied on the same image, the 

regression-based models (e.g., band ratios) are proven to have 

less sensitivity to the quality of atmospheric correction. Even top-

of-atmosphere (TOA) data are employed successfully in some 

studies (Toming et al., 2016). In contrary, physics-based and 

semianalytical methods are largely impacted by the quality of 

remote sensing reflectance (Rrs) derived after atmospheric 

correction (Bernardo et al., 2017; Niroumand-Jadidi et al., 

2020b). 

Despite the widespread use of empirical methods in retrieving 

water quality parameters, the models' transferability in space and 

time remains a challenge (Ligi et al., 2017; Politi et al., 2015). 

The spatiotemporal variations of bio-optical conditions, 

atmospheric effects, and surface sun glint can degrade the 

robustness and reliability of regression-based models. This study 

focuses on TSM retrieval from Sentinel-2 imagery and pursues 

two main objectives: (i) propose a machine learning-based 

(neural network) model for an improved temporal transferability 

compared to standard ratio models. The neural network-based 

model incorporates visible and near-infrared (VNIR) bands and 
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trains based on samples distributed in space and time to enhance 

the temporal robustness; (ii) assess the impact of sun glint 

correction on the robustness of machine learning and ratio 

models. Sun glint is a confounding factor due to the specular 

reflection from the water surface that makes the spectra appear 

brighter than actual and varies spatiotemporally. 

The rest of the manuscript is structured as follows: Section 2 

describes the proposed machine learning model for TSM 

retrieval. The case study and the dataset are introduced in Section 

3. Section 4 presents the results of experiments and discussion. 

Finally, the paper concludes in Section 5 by summarizing the key 

findings and providing a perspective for future studies. 

  

2. METHODS 

The temporal transferability of empirical models can be hindered 

by variation in the range and composition of in-water constituents 

as well as atmospheric and surface sun glint effects. To overcome 

this issue, we propose a method based on neural networks 

leveraging training samples distributed in space and time. The 

aim of this spatiotemporal learning approach is to enhance the 

robustness of the model concerning the mentioned confounding 

factors when transferring the model to a time other than the 

training period. 

First, we apply an atmospheric correction to the multitemporal 

Sentinel-2 images to mitigate the differences in atmospheric 

effects. A dark spectrum fitting (DSF) method available in 

ACOLITE, developed specifically for aquatic applications, is 

employed for atmospheric correction (Vanhellemont, 2019). We 

obtain Sentinel-2 Rrs images at 10 m spatial resolution from the 

DSF correction. The atmospherically corrected data are at 11 

spectral bands, including nine visible near-infrared (VNIR) and 

two shortwave infrared (SWIR) bands. The central wavelengths 

of the DSF-corrected bands are listed for Sentinel-2A in Table 1. 

The same holds for the Sentinel-2B with slight differences in 

central wavelengths of some bands. The VNIR bands are 

considered for TSM retrieval, whereas SWIR bands are used only 

for the sun glint correction. 

 

Bands Central wavelengths [nm] 

VNIR 443, 492, 560, 665, 704, 740, 783, 833, 865 

SWIR 1614, 2202 

Table 1. The central wavelengths of Sentinel-2A bands in VNIR 

and SWIR portions of the spectrum as outputs of the 

DSF atmospheric correction. 

 

The average Rrs spectra are extracted considering 3×3 windows 

at the location of in-situ data. Then, we split the samples (in-situ 

TSM coupled with Rrs) into training and validation. The 

validation samples are not seen through the validation but are also 

temporally independent. In this context, the training is performed 

with spatiotemporal samples over a given period. Then, the 

validation is conducted for acquisitions after the training period. 

This validation scheme allows examining the temporal 

transferability of the proposed method. 

We train a neural network considering VNIR Rrs spectra (nine 

Sentinel-2 bands) as input features and the in-situ TSM values as 

the target parameter. The proposed neural network architecture 

involves two hidden layers with 15 neurons in each layer (Figure 

1). The number of hidden layers and neurons is defined in an 

optimization procedure by testing the model's performance by 

varying the parameters. We hypothesize that training based on 

the samples with spatiotemporal distribution can improve the 

robustness of the model due to: (i) increased number of samples 

when the samples are distributed in both space and time, and (ii) 

enhanced representativeness of the training data in terms of 

capturing the confounding effects (e.g., sun glint, atmospheric 

effects). 

 

 

Figure 1. A thematic representation of the proposed machine 

learning approach for retrieving TSM. 

 

We also train a ratio model, as a standard method, with the same 

training set considered for the neural network. Although ratio 

models are widely applied on Sentinel-2 images (Soomets et al., 

2020; Toming et al., 2016), the optimal pair of ratio bands to 

retrieve a given constituent can be variable according to the in-

water bio-optical conditions. Therefore, we perform optimal 

band ratio analysis (OBRA) to identify the bands automatically. 

OBRA examines all the possible band ratios to identify the one 

providing the strongest determination coefficient (R2) for the 

training data (Legleiter et al., 2009; Niroumand-Jadidi et al., 

2019; Niroumand-Jadidi and Vitti, 2016). Different forms of ratio 

models (e.g., linear and second-order polynomials) can be 

applied. In this study, an exponential model is chosen as it 

performed better than other forms: 

 

 𝑋 = 𝑙𝑛 [
𝑅𝑟𝑠(𝜆1)

𝑅𝑟𝑠(𝜆2)
] , 𝑇𝑆𝑀 = 𝑎𝑒𝑏𝑋 ,   (1) 

 

where  X = log-transformed band ratio feature 

 𝑅𝑟𝑠(𝜆1) = Rrs of numerator band 

 𝑅𝑟𝑠(𝜆2) = Rrs of denominator band 

 a, b = constant coefficients 

 

Besides atmospheric effects, sun glint (i.e., the specular reflection 

of light from water surfaces) is another confounding factor that 

can vary spatiotemporally. It can introduce additional noise in 

retrieving constituents, particularly in a multitemporal context. 

To investigate the impact of sun glint correction, we train the 

models (either neural network or band ratio) with spectra 

corrected for sun glint and once without such correction. We 

consider a simple sun glint correction by subtracting a SWIR 

band from all the other bands. This correction is based on the 

negligible water-leaving radiance over SWIR bands, even for 

turbid waters. Thus, the signal observed in the SWIR bands is 

associated with the sun glint effect (Overstreet and Legleiter, 

2017; Vanhellemont and Ruddick, 2015). We consider the SWIR 

band of Sentinel-2 centered at around 2200 nm for the glint 

correction: 

 

 𝑅𝑟𝑠
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝜆) = 𝑅𝑟𝑠(𝜆)  −  𝑅𝑟𝑠(𝑆𝑊𝐼𝑅) ,   (2) 
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where  𝑅𝑟𝑠
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝜆) = Sun glint corrected Rrs at 𝜆 

 𝑅𝑟𝑠(𝜆) = Rrs at 𝜆 
 𝑅𝑟𝑠(𝑆𝑊𝐼𝑅) = Rrs at ~ 2200 nm 

 

The temporal transferability of both ratio and neural network-

based models with and without the sun glint correction is 

examined by performing a matchup analysis between the 

predicted and measured TSM values for validation samples. We 

consider a set of metrics for validation, including R2, root mean 

square error (RMSE), bias, and mean absolute error (Seegers et 

al., 2018): 

  

𝑅2 =
∑ (𝐸𝑖−�̅�)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

,   �̅� =
1

𝑛
∑ 𝑀𝑖

𝑛
𝑖=1    (3)  

 

𝑅𝑀𝑆𝐸 = (
∑ (𝐸𝑖−𝑀𝑖)2𝑛

𝑖=1

𝑛
)

1 2⁄

    (4)  

 

𝑏𝑖𝑎𝑠 = 10
∑ 𝑙𝑜𝑔10(𝐸𝑖/𝑀𝑖)𝑛

𝑖=1
𝑛     (5)  

 

𝑀𝐴𝐸 = 10
∑ |𝑙𝑜𝑔10(𝐸𝑖/𝑀𝑖)|𝑛

𝑖=1
𝑛     (6)  

 

where  n = number of validation samples 

 𝐸𝑖 = estimated TSM for the ith sample 

 𝑀𝑖 = measured TSM for the ith sample 

 

3. CASE STUDY AND DATASET 

San Francisco Bay is selected as our case study as it represents a 

relatively wide range of TSM variations spatiotemporally. The 

in-situ data used in this study are acquired at 30 fixed sampling 

locations along a transect longer than 100 km. Figure 2 shows the 

study area captured by Sentinel-2 images (atmospherically 

corrected by the DSF) on 16 December 2019, along with the 

location of field stations. The sediment plumes are evident on the 

upper and lower parts of the bay. The water samples are collected 

at near-surface (~ 1 m depth) and analyzed in the laboratory to 

derive the TSM concentration (Cloern et al., 2020; Schraga and 

Cloern, 2017). 

 

 
Figure 2. Sentinel-2 images (2019/12/16) over San Francisco 

Bay processed by ACOLITE atmospheric correction. 

In-situ measurement stations are shown in red circles. 

Twelve in-situ acquisition dates spanned over different seasons 

of 2019 were identified with close (≤ 3 days) Sentinel-2 

overpasses. Two Sentinel-2 tiles were required to cover the study 

area at a given time (thus, 24 images were processed in total). 262 

spatiotemporal samples were extracted after atmospheric 

correction and excluding the samples affected by cloud or haze. 

The samples associated with the latest three images (70 samples) 

were reserved for validation to assess the temporal transferability 

of the models. The TSM concentration of in-situ samples varies 

from ~2 g/m3 to ~120 g/m3, with an average of ~25 g/m3. 

 

4. RESULTS AND DISCUSSION 

The OBRA of training data with and without the sun glint 

correction is illustrated in Figure 3. The R2 for all the possible 

band ratios is shown as a colored matrix. The optimal numerator 

band changes from a blue band (443 nm) for the case without 

glint correction (Figure 3a) to a green band (560 nm) for the glint-

corrected OBRA (Figure 3b). However, the denominator band 

remains the same (665 nm). The change in the optimal pair of 

bands indicates the sensitivity of OBRA to the glint correction to 

be taken into account when transferring the model temporally. 

The sun glint correction led to training improvements in R2 and 

RMSE on the order of 0.07 and 1.5 g/m3, respectively. Figure 4 

shows the fit curves and associated exponential models for both 

cases, i.e., with and without the glint correction.  

 

 
(a) without sun glint correction 

 
(b) with sun glint correction 

Figure 3. Optimal band ratio analysis (OBRA) of training data 

(a) without and (b) with sun glint correction. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-339-2022 | © Author(s) 2022. CC BY 4.0 License.

 
341



 

 
(a) without sun glint correction 

 
(b) with sun glint correction 

Figure 4. Exponential models for TSM estimation derived from 

OBRA (a) without and (b) with sun glint correction. 

 

The trained OBRA models (Figure 4) have major differences in 

terms of the constant parameters a and b for the cases with and 

without the glint correction. Thus, validation using independent 

samples can give insights into the reliability and robustness of the 

models. 

Figure 5 shows the in-situ vs. image-derived TSM matchups 

based on OBRA for the validation samples. The performance of 

the ratio model is poor without sun glint correction (R2 = 0.33; 

RMSE= 12.3 g/m3). The retrievals improve significantly using 

the glint corrected model. This finding indicates the sensitivity of 

OBRA to sun glint variations. Thus, the transferability of OBRA 

to a time other than the training period requires very accurate Rrs 

data corrected for any temporally induced noise. 

The validation matchups are illustrated in Figure 6 for the 

proposed neural network-based TSM retrieval with and without 

performing the glint correction. The results convey that accurate 

TSM retrieval (R2 ≈ 0.75; RMSE ≈ 7 g/m3) is achieved when 

applying the trained network to images acquired after the training 

period. The retrievals are minimally affected by the sun glint 

correction indicating the robustness of the machine learning 

approach. The neural network-based model takes advantage of 

all the spectral information (9 Rrs bands), unlike OBRA that relies 

only on a single band ratio. Furthermore, the neural networks are 

proven to be capable of learning informative and robust features 

from the original data without a need for prior extraction of the 

features. The outperformance of the neural network model 

compared to the OBRA can be attributed to these characteristics. 

The extensive accuracy metrics for validation samples are 

reported in Table 2 for both neural network and OBRA models. 

The bias of the neural network-based model, either with or 

without the glint correction, is minimal as it is close to one. On 

the other hand, the OBRA-based retrievals resulted in a bias 

significantly smaller than one, indicating underestimated TSM, 

particularly for the model without glint correction (bias = 0.71; 

i.e., the estimated TSM is on average ~30% smaller than the 

actual values). The glint correction improves the results for both 

neural network and OBRA models. However, the improvements 

are more pronounced for the OBRA. In the case of OBRA, the 

glint correction yielded an improvement in R2 and RMSE of 0.36 

and 4.23 g/m3, respectively. The MAE of OBRA also improves 

about 20% by applying the glint correction. However, the neural 

network-based model provided the most accurate retrieval with 

an R2 of 0.76 and an RMSE of 6.3 g/m3 when the glint correction 

is applied. The machine learning results without glint correction 

are also comparable to those derived with the correction.  

 

 
(a) without sun glint correction 

 
(b) with sun glint correction 

Figure 5. Matchup validation of OBRA-based TSM retrieval to 

assess the temporal transferability of the model (a) 

without and (b) with sun glint correction. 
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(a) without sun glint correction 

 
(b) with sun glint correction 

Figure 6. Matchup validation of neural network-based TSM 

retrieval to assess the temporal transferability of the 

model (a) without and (b) with sun glint correction. 

 

 Neural Network OBRA 

Without 

GC 

With 

GC 

Without 

GC 

With 

GC 

R2 0.73 0.76 0.33 0.69 

RMSE [g/m3] 7.5 6.3 12.3 8.07 

Bias 1.1 1.06 0.71 0.83 

MAE 1.34 1.22 1.63 1.31 

Table 2. Accuracy statistics of TSM retrieval based on neural 

network and OBRA models without and with the glint 

correction (GC). 

 

We apply the trained models on entire image pixels to produce 

the TSM map. The TSM maps based on OBRA with and without 

the glint correction are shown in Figure 7 for the image acquired 

on 16 December 2019 (after the training period). As evident, the 

sediment plumes, particularly in the lower part of the bay, are 

mapped more effectively with the glint-corrected model. 

 

 

 
(a) without sun glint correction 

 
 (b) with sun glint correction 

Figure 7. TSM maps derived from OBRA without and with the 

sun glint correction. 

 

Figure 8 shows the TSM maps derived from the neural network 

model with and without the glint correction for the same date 

presented for OBRA. The maps show slight differences 

indicating the minimal impact of the glint correction on the 

transferability of the proposed model. The sediment plumes are 

clear with high TSM concentrations. Visual inspection of the 

maps (Figures 7 and 8) also indicates the underestimated TSM 

based on OBRA, which is in line with the matchup statistics 

(Table 2). 
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(a) without sun glint correction 

 
 (b) with sun glint correction 

Figure 8. TSM maps derived from NN without and with the sun 

glint correction. 

 

5. CONCLUSIONS AND OUTLOOKS 

This study investigated the temporal transferability of machine 

learning and band ratio models in retrieving TSM from Sentinel-

2 imagery. The results of the ratio model implemented through 

the OBRA indicated that the optimal bands and performance of 

the model are not robust when transferring the model to another 

time than the training period. However, sun glint correction 

significantly improved the accuracy and robustness of the TSM 

retrieval. The proposed neural network-based method 

outperformed the standard OBRA and provided high 

performance in terms of temporal transferability. The glint 

correction minimally impacts the results of the proposed model. 

The better performance and robustness of the proposed method 

can be attributed to the capability of the machine learning 

approach to learn various features from all the spectral bands. 

This is while the OBRA relies only on a single band ratio feature 

that can be degraded due to various confounding factors, 

particularly in the temporal context (e.g., sun glint, atmospheric 

effects).  

The spatial transferability of the TSM retrieval models is an area 

of investigation for future studies. In this context, more extensive 

training samples from different water types (e.g., eutrophic, 

CDOM-rich) would be required to generalize the model. In 

addition, deep networks would be beneficial to learn high-level 

and robust features from a huge set of training. Here, we 

investigated the transferability of models for TSM retrieval. This 

study can be extended to other constituents (e.g., Chl-a and 

CDOM). Furthermore, the impact of the spectral resolution of 

satellite sensors on the transferability of the models also requires 

investigation. For instance, there is a growing interest in  CubeSat 

imagery for aquatic applications (Niroumand-Jadidi and Bovolo, 

2021; Poursanidis et al., 2019). Currently, the spectral resolution 

of CubeSat data (e.g., PlanetScope imagery) is mainly limited to 

four bands that may affect the temporal transferability of water 

quality retrieval models. The robustness of the methods 

concerning different atmospheric and sun glint correction 

methods also require further investigation. 
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