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ABSTRACT:

Runoff estimations play an important role in water resource planning and management. Existing hydrological models can be divided 
into physical models and data-driven models. Although the physical model contains certain physical knowledge and can be well 
generalized to new scenarios, the application of physical models is limited by the high professional knowledge requirements, 
difficulty in obtaining data and high computational costs. The data-driven model can fit the observed data well, but the estimation 
may not be physically consistent. In this letter, we propose a hybrid physical data (HPD) model combining physical model and deep 
learning model for runoff estimation. The model uses the output of a physical hydrological model together with the driving factors as 
another input of the neural network to estimate the monthly runoff of the upper Heihe River Basin in China. We show that the use of 
the HPD model improves the quality of runoff estimation, and results in high R2, NSE values of 0.969, and a low RMSE value of 
9.645. It is indicated that the new model had an excellent learning capability to simulate runoff and flexible ability to extract complex 
relevant information; At the same time, the estimation capacity of peak runoff is optimized.

* Corresponding author

1. INTRODUCTION

Runoff simulation has always been one of the key research in
the field of hydrology, which provides important support for the
utilization of water resources, such as environmental protection,
flood disaster prevention, drought monitoring, and so on(Wang
et al., 2009; Kang et al., 2017; Guo et al., 2018; Gao et al.,
2019). The conventional runoff simulation hydrological
model estimates streamflow based on hydrophysical
processes(Kang et al., 2020). These sub-processes are
driven in nonlinear ways by physical mechanisms,
including evapotranspiration, interception, infiltration,
soil water, and groundwater exchange, as well as the
influence of water conservancy projects and other
human activities(Sophocleous, 2002). Hydrological
models have a wide range of uses. For example,karst
tunnel hydrological model (KTHM) is used for runoff
simulation in karst basins with only a small amount of
hydrogeological data(Li et al., 2021). Hydrologic
Simulation Program-FORTRAN (HSPF) is established
to simulate the hydrological processin China's Sanya
River Basin(Gui et al., 2021). And HIMS model is used
to solve the process simulation in an inland river basin
in China, Heihe River basin(Wang et al., 2018).
However, the complexity of the physical process of the
hydrological model makes it difficult for people to
simulate a more reasonable physical process through
limited input and obtain the ideal output.
With the increasing enrichment of hydrological data and
observation data and the development of artificial intelligence
(AI), especially the latest development of deep learning (DL),
data-driven model evolved into a budding tool for runoff
simulation predictions independent of physical principles(Shen,
2018; Tikhamarine et al., 2020). Compared with the
hydrological physical model containing complex hydrological
processes, the data-driven model establishes the direct
relationship between hydrological variables by extracting

relevant information from the input data, without considering
the physical mechanism of hydrological processes(Young et al.,
2017; Liu et al., 2021). For example, artificial neural networks
(ANNs) have been widely used in runoff estimation because of
their remarkable ability to deal with highly nonlinear
problems(Hsu et al., 1995; Rezaeianzadeh et al., 2014; Kratzert
et al., 2018). The long short-term memory (LSTM) network, a
variant of recurrent neural network (RNN), has been proved to
have great potential in hydrological modeling because of its
excellent time series processing ability. For example, the
effective integration of meteorological observations using
LSTM models helps to improve runoff prediction(Shen, 2018).
Compared with existing hydrological models, LSTM
architecture shows good performance in simulating rainfall-
runoff in a large number of complex catchments(Kratzert, Klotz
et al., 2018). The researchers also focused on the improvement
of the standard LSTM architecture and proposed a network
combining LSTM and fully connected layer (FC) to process the
characteristics of long duration time series with different time-
series information(Zhang et al., 2020).
Although the accuracy of runoff estimation using the deep
learning model is improved compared with the traditional
physical model, the lack of a physical mechanism becomes a
major limitation of deep learning(Ebert-Uphoff et al., 2019).
The deep learning model can fit the observed data well, but the
estimation may not be physically consistent, which is not
helpful for the discovery of physical theory(Liu et al., 2017).
Moreover, neural network training is a delicate stage, which
needs to adjust multiple parameters, which also greatly affects
the robustness of the approach(Verrelst et al., 2012). The
combination of physical models and deep learning models is a
possible solution to the current problem(Willard et al., 2020). At
present, there are many feasible means, such as using machine
learning to build a surrogate model(Mo et al., 2019) or to
correct the mismatch between simulation values of physical
models and observed values(Solomatine et al., 2009), or using
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synthetic samples containing physical mechanisms for physical
guidance during training, to effectively improve the simulation
of flood peaks and reduce the number of negative streamflow,
and strong monotonicity is still maintained even if there is a
slight disturbance in the training dataset(Xie et al., 2021).
In this letter, we establish a hybrid physical data model to
preliminarily combine the physical model with the depth
learning model to further improve the accuracy of runoff
estimation. Specifically, the output of a physically hydrological
model is used as another input in the neural network model
along with the drivers. Karpatne et al. showed that the
prediction can be improved by using the output of the physics-
based model as a feature in the ML model and the input used to
drive the physics-based model for lake temperature
modeling(Karpatne et al., 2017). In this experiment, the
distributed hydrologic model HIMS provides a preliminary
runoff estimation, which is fed into an LSTM neural network
together with the driving factors to estimate the final runoff.
Through the established Hybrid-Physics-Data Model, higher
precision runoff estimation is successfully obtained.
The rest of this letter is organized as follows. Section 2 of this
letter describes the study area and the data used in this study.
The method of the data-driven model based on the physical
mechanism is described in Section 3, followed by the results of
section 4 and discussion in Section 5. Finally, a conclusion is
drawn in part 6.

2. STUDY AREA AND DATA

The study area is in the upper Heihe River Basin. The Heihe
River Basin is located in the middle of the Hexi Corridor in
Northwest China and originates in the upper Heihe River Basin
situated in the Qilian Mountains. The upper Heihe River Basin
covers 2088.3 km2 and ranges in elevation from 1669 m to 5247
m. The annual average temperature is between -5 and 4 °C. The
annual average rainfall is between 50 and 70 m3/s. There are
few meteorological and hydrological stations in the upper Heihe
River Basin, as shown in Figure 1. The Yingluoxia station is on
the upstream exit of the Heihe River Basin, which controls
mountainous watershed runoff.

Figure 1. Upper reaches of the Heihe River Basin.

The meteorological data are from the meteorological center of
the China Meteorological Administration. It includes the
minimum temperature (Tmin), maximum temperature (Tmax)
and precipitation (P) data of three meteorological stations in the
upper Heihe River Basin, i.e. Tuole, Qilian and Yeniugou. The
series is from 2000 to 2016.
Hydrological runoff data are from the Heihe River Basin
Authority. It is the runoff observation data(Q) of Yingluoxia
station, and the series is from 2000 to 2016.

3. METHODS

3.1 HIMS

To promote water resources management and water
environment protection and provide a scientific basis for
water resources management in China, a multi-scale
hydrological model system was developed and named as
Hydro-Informatic Modelling System (HIMS)(Liu et al.,
2008). HIMS is a modular-based open framework, which
can customize modules and assemble them rapidly
according to the application requirements of different
temporal and spatial scales.
The infiltration calculation is an empirical model, and the
infiltration amount is related to rainfall, soil and vegetation:

, (1)

Where f is infiltration capacity, P is rainfall, and parameter R
and r values are parameters related to land use and soil moisture.
The water balance formula for surface flow is as follows, where
surface flow equals the difference between precipitation and
infiltration:

, (2)

where Qd is surface flow, f is infiltration capacity, and P is
rainfall.

3.2 LSTM

The LSTM neural network is an improved RNN model,
which was first proposed by Hochreiter and
schmidhuber(Hochreiter et al., 1997). The proposal of
LSTM solves the problems of gradient explosion and
disappearance in RNN, and the LSTM network can also
deal with complex and long-lag tasks that traditional
RNNs cannot deal with. Compared with traditional RNN,
LSTM introduces the concept of three gates, in which
whether the input gate control allows writing, whether
the forgetting gate control must update the value of the
storage unit, whether the output gate control allows
output. The opening or closing of the three gates is
determined by the training of the dataset. The specific
steps are as follows:
First, decide what information we will discard from the cellular
state. This decision is made by a sigmoid layer called the
“forget gate layer”, which selectively forgets unnecessary
information by looking at the output ht-1 of the previous state
and the input xt of this state.

)],[( 1 fttft bxhWf   , (3)

Then decide what new information we will store in the cell state.
There are two steps here. In the first step, a sigmoid layer called
the “input gate layer” decides which values we’ll update. Next,
a tanh layer creates a vector, ,containing new candidate values,
which can be added to the state.

)],[( 1 ittit bxhWi   , (4)

)],[tanh(~
1 CttCt bxhWC  

, (5)

The second step is to update the new cell state. Update the old
cell state into the new cell state.
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1  

, (6)

Finally, we need to decide what to output. We use a sigmoid
layer and a tanh layer to determine what we want to output.

)],[( 1 ottot bxhWo   , (7)

)tanh( ttt Coh  , (8)

3.3 Architecture of HPD

Figure 2. A schematic illustration of a hybrid-physics-data
(HPD) model.

A hybrid physical data model is constructed, as shown in Figure
2. Firstly, obtain the meteorological data, precipitation data (P),
maximum temperature (Tmax), minimum temperature (Tmin)
and hydrological data Q in the study area from 2000 to 2016,
and adjust them to the format that HIMS can read; Then, the
period from 2000 to 2009 is selected as the periodic rate, and
the measured data in this period are used to calibrate the HIMS
model; Select 2010-2016 as the verification period to verify the
calibrated HIMS; The validated HIMS model is used to estimate
the runoff to obtain the preliminary runoff estimation Q' of
HIMS.
Normalize the preliminary runoff estimation Q' and
meteorological data P, Tmax, Tmin and hydrological data Q in
the study area, and obtain monthly scale data; Taking P, Tmax,
Tmin and preliminary runoff estimation Q' of multiple stations
as input and runoff data as output, LSTM neural network model
is constructed; The data set of time series from 2000 to 2012
was taken as the training set, and the data set of time series from
2013 to 2016 was taken as the validation set; Input learning_rate,
Dropout, and iterations into the LSTM model and start training;
The trained optimal LSTM model is used to obtain the final
runoff Q*, and the model is evaluated.
Furthermore, HIMS may provide an incomplete representation
of the target variable due to simplified or missing physics in the
physical model, thus resulting in model discrepancies with
respect to observations. Hence, the basic goal of HPD modeling

is to combine the HIMS and LSTM to overcome their
complementary deficiencies and leverage information in both
physics and data. The complex features are extracted from the
deep learning model to learn and make up for the systematic
differences in the hydrological model.

3.4 Evaluation of Model Performance

In this letter, the data from 2000 to 2012 are used for training,
and the data from 2013 to 2016 are used for verification. At the
same time, root mean square error (RMSE), the coefficient of
determination(R2) and the Nash-Sutcliffe model efficiency
(NSE) are used as the evaluation indicators of the accuracy of
model simulation. RMSE refers to the deviation of the analogue
value from the actual value. The smaller the RMSE value is, the
better the estimation process is. The mathematical formula is
shown below:

, (9)

R2 describes the degree to which the model interprets the actual
value. R2 values range with in the interval of 0 to 1. The closer
the result is to 1, the better the model fitting effect. The
mathematical formula is shown below:

, (10)

NSE is generally used to verify the quality of the hydrological
model estimation results. NSE values are in the interval of -∞ to
1. The closer the result is to 1, the better the model fitting effect
is. The mathematical formula is shown below:

, (11)

where is the simulated runoff, and yi represents the observed
runoff.

4. RESULTS

4.1 Monthly Runoff Simulation Results

First, the distributed hydrological model HIMS was calibrated
and verified, and take the highest temperature, lowest
temperature and precipitation of three meteorological stations as
inputs to simulate runoff, as shown in Figure 3 (a). The
simulated runoff is used as the output of the physical model.
To facilitate comparison, the same input as HIMS is selected as
the input of the LSTM model to simulate runoff, as shown in
Figure 3 (b). The simulated runoff is used as the output of the
data-driven model.
To facilitate comparison, the preliminary runoff estimation Q' of
HIMS and the highest temperature, lowest temperature and
precipitation of three meteorological stations are taken as the
driving factors, and the estimation is carried out under the
condition of ensuring the same input data as HIMS and LSTM,
as shown in Figure 3 (c). The simulated runoff is used as the
output of the hybrid model.
The evaluation indexes of different models are shown in Table 1.
The R2 of the HPD model is 0.969, which is 1.36% and 3.09%
higher than that of HIMS and LSTM respectively; NSE was
0.969, increased by 0.83% and 5.10% respectively; The
corresponding RMSE is 13.105, reduced by 15.36% and
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27.98% respectively, indicating that the HPD model has the best
effect in runoff estimation. According to the model principle,
the HPD model combines the advantages of a physical model
and a data-driven model, so that the estimated value will not
deviate too much. The complex features are extracted from the
deep learning model to learn and make up for the systematic
differences in the hydrological model.

Figure 3. three kinds of runoff estimation.

Input R2 RMSE NSE
HISM 0.956 11.395 0.961
LSTM 0.940 13.392 0.922
HPD 0.969 9.645 0.969

Table 1. monthly runoff simulation.

Figure 4. three kinds of runoff estimation in flood period.
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Input R2 RMSE NSE
HISM 0.774 14.208 0.815
LSTM 0.520 20.706 0.404
HPD 0.808 13.105 0.809

Table 2. runoff simulation in flood period.

For the optimal LSTM model, the number of neurons in each
hidden layer is 40, the number of training iterations is 15000,
and the learning rate is 0.0002. The dropout regularization
method was used to prohibit overfitting, and the value is set to
0.5.
For the optimal HPD model, the number of neurons in each
hidden layer is 40, the number of training iterations is 10000,
the learning rate is 0.001, and the dropout is set to 0.5.

4.2 Runoff Simulation Results in Flood Period

It is notoriously difficult to estimate flood peaks using runoff
estimation models. Therefore, we performed additional
evaluations of the estimates during the flood period (June to
September each year) to assess the model's performance in
estimating peak runoff, as shown in Figure 4.
Evaluation indexes of different models are shown in Table 2. It
can be seen that the LSTM model has the worst effect in flood
peak simulation, which to some extent illustrates one of the
drawbacks of LSTM models. Although they have unique
features in time series processing, they still have shortcomings
in extreme point estimation. HPD model has the best estimation
result, with R2 and NSE values as high as 0.808 and 0.809,
respectively, and RMSE values as low as 13.105. This further
confirms that the HPD model can make the estimated runoff
closer to the real value, which is more obvious in the estimation
of flood peak.

5. DISCUSSION

In this letter, the hybrid physical data model we adopted only
preliminarily combines the deep learning with the physical
model, and we have to make further efforts to integrate the
physical knowledge into the deep learning model. For example,
the P-RNN layer of the hydrology-aware deep learning
model developed by Jiang is wrapped with physically
meaningful parameters in physical model(Jiang et al.,
2020). Additionally, some studies regard the physical
constraints as loss terms in the neural networks, and
have been successful in some fields(Karpatne, Watkins
et al., 2017; Read et al., 2019).
In this letter, for the convenience of the experiment, the physical
hydrological model we selected is only a simplified version,
only using the simplest data for runoff simulation, so the
simulation accuracy may not reach the upper limit of the HIMS
model. If more comprehensive inputs are used, the HIMS
model's estimation accuracy will be higher, and accordingly, the
HPD model's estimation accuracy will be improved.
In addition, one reason why we build the hybrid model
is to obtain physically consistent estimation results.
However, some experts believe that the randomness of training
weights injected into neural networks during dropout is enough
to eliminate the physical consistency caused by the physics-
guided loss during training(Karpatne, Watkins et al., 2017).
Therefore, we should also consider that the dropout
method is physically inconsistent with the estimation
results while enhancing the generalization ability of the
model.

6. CONCLUSIONS

In this letter, a hybrid physical data model combining physical
model and deep learning model is established. More specifically,
the output of a physically hydrological model HIMS used as
another input in the neural network model along with the drivers.
The following results are obtained.
1. HPD model has an excellent learning capability to simulate
runoff and a flexible ability to extract complex relevant
information. Using the HPD model results in high R2, and NSE
values of 0.969, respectively, and a low RMSE value of 9.645.
2. It can be seen from Table 2 that the HPD model has a good
improvement on flood peaks simulation. Flood period
simulation results in high R2, and NSE values of 0.808 and
0.809 , respectively, and a low RMSE value of 13.105.
The method of combining the physical model with the deep
learning model can effectively improve the accuracy of the
model, which proves the applicability of the mixed physical
data model in runoff estimation. The HPD model is effective in
estimating the general trend of runoff and tracking the extreme
value. The results can provide a reference for water resources
management and scientific decision-making in the study area.
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