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ABSTRACT: 

 
Effective monitoring of Mediterranean forest is essential to determine the role of forest management in mitigating climate change and 
ensuring the maintenance of its environmental services. Most of the allometric models to estimate dry above-ground biomass (AGB) 
at tree level are based on knowing the diameter of the trunk at breast height (DBH). However, it is difficult, if not impossible, to 
estimate DBH from airborne/spaceborne sensors within the context of a remote sensing-oriented approach, being common to draw 
upon regression models to relate DBH to remotely sensed dendrometric variables such as total tree height (H) and tree crown diameter 
(CD). This study uses UAV (unmanned aerial vehicle) image-based data to estimate the dendrometric variables H and CD of the 
repopulated Aleppo pine (Pinus halepensis Mill.) located in a semiarid continental Mediterranean forest of Almería (southeast of 
Spain). DBH data were gathered through field work. Both bivariate (DBH = Φ(H)) and multivariate (DBH = Ψ(H, CD)) allometric 
models were developed by applying least-squares-based regression and machine learning regression methods. The results showed that 
multivariate allometric models performed better than bivariate at predicting DBH, both in terms of goodness-of-fit and stability against 
changes in training or testing samples. In addition, least-squares-based regression (linear and potential) provided statistically similar 
results to those obtained from complex machine learning ensemble algorithms. In this way, the easy-to-apply multivariate linear 
allometric model ��� = −4.84 + 1.73149� + 3.08114�� (R2 = 89.23%) would be recommended to locally estimate DBH in 
Aleppo pine from remotely sensed H and CD data.   
 
 

1. INTRODUCTION 

According to the general definition of forests by FAO, in 2015 
there were around 88 million ha of forest area in Mediterranean 
countries, 18 million of them located in Spain (FAO, 2015). This 
means that forests occupied 10.04% of the total area of 
Mediterranean countries in 2015, equivalent to the combined size 
of Spain and Morocco, also storing 5066 billion tons of carbon, 
equivalent to 1.7% of global forest carbon (FAO, 2015).  
 
Focusing on the importance of Mediterranean forest, the 
Mediterranean region has more than 25 million ha of 
Mediterranean forests and about 50 million ha of other 
Mediterranean wooded lands (e.g., open oak woodlands of 
Quercus species such as Spanish Dehesas) (FAO and Plan Bleu, 
2018) that can effectively contribute to carbon storage and 
climate change mitigation. Furthermore, they host a large variety 
of forest ecosystems, contain an impressive plant and animal 
diversity, and generate a large number of environmental services 
(ES) that make crucial contributions to rural development, 
poverty alleviation, food security, as well as the agricultural, 
water, tourism, and energy sectors (Vilà-Cabrera et al., 2018).  
 
We know that forest area in Mediterranean countries has been 
increasing since 1990. For example, between 2000 and 2015 
there has been an increase of 8 million ha in forest area (FAO and 
Plan Bleu, 2018). This increase in forest size is both the result of 
the European Common Agriculture Policy (as in the case of 
Spain) and forest regeneration in rural areas following 
abandonment (Nogueira and Rico, 2017). Unfortunately, an 
increasing forest area, despite being good news, tell us nothing 
about forest degradation and potential capacity to adapt to 

climate change. It is needed to take a closer look to cope with 
monitoring forest structure at stand and tree level. Note that forest 
structure is formed through the action of very diverse factors such 
as silvicultural practices, fires, droughts, heat waves, storms, and 
pests or diseases, being the key that explains, in turn, relevant 
variables of ecosystems such as biodiversity, erosion control, 
water availability and landscape complexity.  
 
Taking into account the aforementioned antecedents, it seems 
clear that effective monitoring of Mediterranean forest structure 
turns out to be a key role for adapting to climate change (Pascual 
et al., 2020), ensuring at the same time the maintenance of ES and 
the preservation of the functional characteristics of 
Mediterranean forests (Vilà-Cabrera et al., 2018). But how to 
deal with it? The Intergovernmental Panel on Climate Change 
(IPC) recommends combining remote sensing and ground-based 
data to estimate forest area, carbon stocks and changes at large 
scales (Espejo et al., 2020). However, this integrated approach 
requires the development of new allometric tools based on 
individual tree measures (tree-centric approach) collected from 
spaceborne or airborne sensors (e.g., total tree height (H) and tree 
crown diameter (CD)) to make full use of remote sensing 
techniques in implementing enhanced forest inventories and 
mapping carbon stocks (Coomes et al., 2017; Jucker et al., 2017; 
White et al., 2016). 
 
Within available remote sensing techniques, the recently 
emerged computer vision algorithm Structure from Motion 
(SfM) with Multi-View Stereo (MVS) (Furukawa and Ponce, 
2010) has boosted efficiency in building very dense and accurate 
3D point clouds of comparable quality to laser-based methods 
(Wallace et al., 2016). When coupled with Unmanned Aerial 
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Vehicle (UAV) very-high resolution images, it has demonstrated 
to be able to generate a Canopy Height Model (CHM) that can be 
successfully used to estimate total tree height in forest inventories 
(Goodbody et al., 2017; Lisein et al., 2013; Panagiotidis et al., 
2017; White et al., 2013).  
 
On the other hand, tree dry above-ground biomass (AGB) is 
traditionally estimated using forest inventory data from sample 
plots and allometric models that usually rely on stem diameter 
(diameter at breast height: DBH) and H as key inputs (Chave et 
al., 2014). However, it is impossible to measure DBH from 
airborne or spaceborne sensors, being necessary to carry out 
traditional field work or terrestrial laser scanning inventories to 
obtain this dendrometric variable (Peñalver et al., 2021). In this 
regards, it is crucial to develop locally calibrated allometric 
models to allow predicting DBH from other dendrometric 
variables such as H and CD that can be estimated from airborne 
or spaceborne sensors. The fitting of this site-specific allometric 
relationships can be faced by using both least-squares-based 
regression and machine learning regression methods (Aguilar et 
al., 2021). 
 
This work uses UAV image-based data to estimate the 
dendrometric variables H and CD in a Mediterranean forest 
mainly composed of repopulated Aleppo pine (Pinus halepensis 
Mill.). DBH data were collected almost simultaneously through 
field work, allowing the development of bivariate and 
multivariate allometric models to predict DBH from H and CD. 
These models were fitted by using both least-squares-based 
regression (linear and potential models) and supervised machine-
learning regression methods. These locally obtained allometric 
models could be used to improve forest AGB and carbon 
estimation, especially in large-scale inventories where only H 
and CD can be estimated from airborne or spaceborne sensors.  
     

2. MATERIALS AND METHODS 

2.1 Study Site 

The study site is located at “Sierra de María-Los Vélez” Natural 
Park (Fig. 1). This Natural Park is a Spanish protected natural 
area located northwest of the province of Almería (southeast of 
Spain), Andalusia.  
 

 
Figure 1. Location of the study area. a) Province of Almería 

(Spain) in yellow. b) Region of “Los Vélez” (in red). c) Limits 
of the “Sierra de María-Los Vélez” Natural Park (in green). d) 

Reference field plots represented as white dots.   

“Sierra de María-Los Vélez” was declared a natural park in 1987, 
occupying an area of 22,562 ha and a maximum elevation of 
2,045 m AMSL. It presents an average annual rainfall of about 
400 mm, with an average annual temperature of 11º C and 
semiarid continental Mediterranean climate. 
 
Although in the most humid areas of the natural park there can 
be small forests of Laricio pine and deciduous trees, the most 
representative forest ecosystem in this area presents a two layers 
structure. The emergent upper layer (dominant trees) is 
composed of repopulated Aleppo pine (Pinus halepensis Mill.), 
while the lower canopy layer (understory vegetation) is mainly 
formed of little holm oak trees (Quercus ilex L.) and different 
species of shrubs (Aguilar et al., 2019a). This forest structure is 
considered very representative of the Mediterranean forest.  
 
2.2 Field Data and Processing Methods  

The test field sites of this work consisted of 18 square plots of 
100 m side (1 hectare) that were selected trying to represent the 
variability of the stand density and tree height of the Aleppo pine 
population in the Natural Park (white dots in Fig. 1). 
 
High resolution UAV images for each reference plot were 
obtained in March 2021 by using a DJI Phantom 4 Advanced®. 
Its 8.8 mm focal length integrated RGB camera is equipped with 
a 20 megapixel 1” CMOS sensor (2.52 μm/pixel) fitted to a 3-
axis stabilized gimbal to maintain nadir image capture. The flying 
height of the mission was set to approximately 75 m above 
ground, which allowed yielding an average ground sample 
distance of 2.1 cm. High forward and side overlaps of 90% and 
85%, respectively, were set in the UAV flight plan of each 
reference plot to avoid potential forest occlusions. 
 
Between seven and eight ground control points (GCP) 
constituted of rectangular 60x40 cm wood panels (black and 
white chess-board style painted) targets were evenly distributed 
over each reference plot, trying to choose open terrain sites to 
ensure their visibility in the UAV images. Those GCP were 
surveyed with a couple of GNSS RTK multiband receivers Emlid 
Reach RS2 (rover and base). The geographical coordinates of the 
base in each reference plot were obtained by applying the 
differential corrections provided through NTRIP caster from the 
continuous reference GPS station of Huércal-Overa (Andalusian 
network of GPS positioning). The rover receiver was used to 
measure the ETRS89 UTM 30N projected coordinates and 
EGM08 REDNAP (Spanish High Precision Levelling Network) 
orthometric heights of each GCP in RTK mode using the base 
receiver as a reference. 
 
All images for each reference plot were photogrammetrically 
processed using the SfM-MVS algorithm implemented in the 
software Agisoft Metashape Professional 1.7.2 (Agisoft LLC, St. 
Petersburg, Russia), a well-known SfM-MVS software capable 
of producing image-based high quality point clouds that has been 
widely employed to conduct UAV-based forest inventories (e.g., 
Chen et al., 2021; Jensen and Mathews, 2016; Panagiotidis et al., 
2017; Wallace et al., 2016). Metashape was also used to produce 
a high-resolution RGB 3 cm/pixel orthoimage. 
 
The seven-eight surveyed GCP were manually marked on the 
digital images to carry out an iterative bundle adjustment to 
estimate the 3D coordinates of the automatically matched 
features (sparse point cloud) (Aguilar et al., 2019b). Next, a 
camera self-calibration process was performed in each reference 
plot to optimize the camera model, always maintaining fixed the 
focal length. After estimating internal and external camera 
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orientation parameters, the depth information of each image was 
combined through a multi-view reconstruction of the scene 
geometry into a single and very dense 3D point cloud, thus 
generating very high density UAV point clouds ranging from 800 
up to 1500 points/m2. Note that the selected Agisoft Metashape 
parameters were those recommended by Tinkham and Swayze 
(2021) to carry out individual tree detection from CHM. In this 
way, the photo alignment process was performed on the original 
images (i.e., without changing their original spatial resolution or 
"High Accuracy" setting), while the dense cloud was computed 
by selecting “High quality” (i.e., original image size downscaling 
by factor of four) and “Mild” depth filtering settings. 
 
The point cloud corresponding to each reference plot was 
automatically classified into ground and non-ground points 
through applying the filtering algorithm triangular irregular 
network (TIN) iterative approach proposed by Axelsson (2000) 
and implemented into Agisoft Metashape. After a trial and error 
procedure, the set of chosen parameters was cell size = 10 m, 
distance = 0.3 m and angle = 30º. Those potential outliers in the 
automatically filtered ground points  were automatically removed 
by adapting the parametric statistical method for error detection 
in digital elevation models published by Felicísimo (1994) to be 
used on scattered points, then setting the neighbourhood size 
radius to 15 cm. In addition, a local maxima filtering with a 
neighbourhood radius of 10 cm was applied to each UAV point 
cloud to obtain the corresponding Canopy Surface Model (CSM).  
 
Both CSM and DTM derived point clouds were finally 
interpolated to 5 cm grid spacing products by using the Gaussian 
Markov Random Field (GMRF) algorithm developed by Aguilar 
et al. (2016) (https://github.com/3DLAB-UAL/dem-gmrf). The 
grid DTM was finally subtracted to the grid CSM to obtain a 5 
cm grid spacing Canopy Height Model (CHM).  
 
Stratified random sampling was carried out in the 18 reference 
plots to manually digitize onto the RGB 3 cm/pixel orthoimage 
the 2D crown boundary (shp file) of up to 785 Aleppo pines, also 
estimating their corresponding total tree height and planimetric 
coordinates from the previously obtained CHM (given by the 
point with maximum height within the digitized crown boundary 
of each sample tree). The crown diameter of each tree was 
computed from the area of its crown boundary. This office work 
was done in the ArcGIS environment. 
 
Fieldwork was carried out between the end of May and the 
beginning of June 2021 to locate and measure the DBH and total 
tree height of the 785 sample trees. A pair of Emlid Reach RS2 
GNSS RTK multiband receivers allowed the precise location of 
each tree in the field to measure its DBH (diameter at 1.3 m above 
ground) using a tape measuring. Furthermore, a Nikon® Forestry 
Pro II rangefinder/hypsometer was used to measure tree height, 
although only 451 Aleppo pines out of 785 sampled could be 
measured acceptably in this case due to occlusions caused by the 
surrounding trees in high density stands.   
 
2.3 Allometric Models 

Seven allometric models were tested to predict DBH from the 
explanatory variables H (bivariate model) and H + CD 
(multivariate model). One of them was based on traditional linear 
regression, while another used a potential form. The remaining 
five focused on supervised machine learning algorithms. An 
individual-based modelling approach was used by considering 
each individual tree measurement as an instance of the 
relationships modelled. 
 

The allometric linear model tested took the following form: 
 

��� =  � + �� + �    Bivariate model,          (1) 
 

��� =  � + �� + ��� + �    Multivariate model,     (2) 
 
where  DBH = diameter at breast height (cm) 
 H = total tree height (m) 
 CD = crown diameter (m) 
 ε = fitting error 
 α = intercept (to assure that the model will be unbiased)  
 β, γ = regression coefficients for H and CD 
  
The potential model used in this study was based on the 
allometric model proposed by Jucker et al. (2017). After taking 
logarithms to linearize the potential expression, we obtain the 
following equations: 
 

��� =  �(��� ��(����� = �(��� ��(����� 
  ,            (3) 

 

��� = �(��� "#(�.$%���� = �(��� "#(�.$%���� 
  ,         (4) 

 
where DBH is given in cm, and H and CD in m. α and β are model 
coefficients, and ε is an error term. If it is considered that the error 
term is normally distributed with zero mean and standard 

deviation σ, the mean of �� could be approximated by �� 
  

(Jucker et al., 2017). This additional term would work as a 
correction factor applied to back transform the predicted values 
and remove bias from the logarithmically transformed data. 
 
Regarding supervised machine-learning methods, this work has 
tested five tree-based regression learners. The first was Decision 
Tree Regression (DTR), which is only based on one tree model. 
The remaining four were some derive ensemble algorithms 
(based on several tree models built on datasets randomly 
extracted from the original sample) that can be grouped in 
bagging (Random Forest Regression: RFR) and boosting 
algorithms (AdaBoost Regression: AdaBoost, Gradient Boosting 
Regression: GBoost, and Categorical Boosting Regression: 
CatBoost). The optimal combination of hyperparameters for each 
machine-learning model was computed by applying grid search 
with cross-validation method (Zhang et al., 2020). 
 
The accuracy assessment of the allometric models tested was 
based on the fact that the data used to train the model could never 
be used for validation. In this way, the testing set for validation 
consisted of 20% of the 785 available trees, leaving the remaining 
80% as a set for training and computing the regression model. 
This procedure was repeated 100 times, splitting the original data 
between the training and testing sets by using random sampling. 
It allowed to study the stability of the goodness-of-fit (R2) for the 
tested regression models against changes in the training and test 
samples. 
 
Some error indicators of the DBH values predicted by the 
regression models were calculated according to the following 
expressions: 
 

�567 (%�  =  9::
; ∑ =%>�?@A%>�B@

%>�B@
C;DE9 ,               (5) 

 

FGHI (JK� = L∑ (%>�?@A%>�B@� M@NO
; ,                 (6) 

 

P�Q6R5S� FGHI (%� =  100 TUVW
%>�XXXXXXXB ,                  (7) 
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where  DBHp = DBH predicted 
 DBHo = DBH observed 
 N = number of pine trees in the testing dataset 
 ���XXXXXXY = mean value of DBH observed values 
  
Note that the Bias indicator constitute a measure of the systematic 
error of the model, while RMSE (root-mean-square error) is a 
quantitative indicator of its random error. The entire procedure 
mentioned above was coded in Python 3.8 with the support of the 
scikit-learn and catboost libraries. 
 

3. RESULTS 

3.1 Field Measured Tree Height vs Tree Height Estimated 

from Image-Based Point Clouds 

Figure 2 graphically shows the good agreement between the total 
tree height measured with a hypsometer (Hhyp) during the field 
work and that estimated from the photogrammetrically derived 
CHM (HCHM) for the sample of 451 Aleppo pines. In fact, the 
coefficient of correlation (Pearson’s r) between HCHM and Hhyp 
took a high value of 0.9929. Moreover, the RMSE value of the 
residuals (prediction errors) was only 40.65 cm, which meant a 
very low relative RMSE of 4.57% (< 5%) with respect to the 
mean value of the tree height measured with a hypsometer. 
 
These results evidenced the high geometrical accuracy of the 
CHMs generated from UAV image-based point clouds, which 
allowed us to expand the sample of Aleppo pines to 785 by 
adding those that could not be measured during field work with 
the hypsometer due to occlusions caused by surrounding trees.  
 
Similar results have been reported by other authors, who 
generally have found high agreement between field and remote-
sensed data for total tree heights (Goodbody et al., 2017; Guerra-
Hernández et al., 2016; Lisein et al., 2013; Panagiotidis et al., 
2017; Wallace et al., 2016). It has been also demonstrated that 
tree heights computed from photogrammetrically derived CHM 
can even improve the results provided by terrestrial laser 
scanning, which usually yields underestimated tree heights 
(Shimizu et al., 2022). 

 
 

Figure 2. Comparison between tree heights measured with a 
hypsometer (field work) and extracted from the image-based 

CHM. Red line refers to 1:1 line.  

 
3.2 Bivariate Regression Models 

Table 1 shows the goodness-of-fit (R2) statistics of the seven 
bivariate allometric models tested in which the explanatory 
variable was only H. Regarding R2 mean value, potential and 

linear allometric models were at the top of the list, providing fit 
figures close to 80%, although they did not return significantly 
different values compared to those based on boosting machine 
learning regression methods. In contrast, RFR (bagging 
algorithm) and DTR (just one decision tree) performed 
significantly worse (p<0.05) than the other competitors. DTR 
showed noticeably poorer performance, exhibiting a low R2 mean 
value of 62% along with high variability (standard deviation of 
R2) across the 100 randomly varying repetitions of the training 
and test data sets. It is worth noting that small changes in the 
learning sample can cause dramatic changes in the constructed 
tree when it is only based on a decision tree, leading to unstable 
and not robust results. In this sense, most recent studies have 
adopted multi-tree bagging and boosting ensemble algorithms 
(Luo et al., 2021; Zhang et al., 2020). 
 
Traditional least-squares-based regression methods (linear and 
potential) proved to be very competitive, providing results 
statistically similar to those yielded by complex ensemble 
boosting algorithms. RFR worked significantly worse (p<0.05) 
than boosting or least-squares-based regression methods, in 
addition to a greater variability in prediction when varying 
training samples. It is necessary to consider that ensemble 
learning is a branch of machine learning that builds and combines 
multiple learners (decision trees) to improve the outcomes of the 
learning process. RFR, as an ensemble bagging method, uses 
bootstrap samples randomly generated from the original dataset 
to train several tree models, then aggregating the ensembles to 
obtain final predictions by majority voting. Because RFR 
generally improves predictions by decreasing variance and 
avoiding overfitting, it is most advisable when developing 
models that include multiple explanatory variables. (Aguilar et 
al., 2021). 
 

Regression 
method 

R2 mean 
value (%) 

R2 standard 
deviation (%) 

R2 range 
(min-max %) 

Potential 79.61a 2.40 72.56-85.86 
Linear 79.41a 2.44 73.80-84-53 
CatBoost 77.88a 2.71 68.12-84.57 
GBoost 77.73a 2.88 70.17-83.87 
AdaBoost 77.30a 2.46 69.61-83.17 
RFR 70.58b 3.95 61.11-80.00 
DTR 62.01b 5.41 49.17-74.12 

Table 1. Statistics of R2 for bivariate allometric models DBH = 
Ψ(H).  Mean values with different superscript letters are 

significantly different (p<0.05) (two-sample t-test). 

 
Regression 
method 

Mean Bias 
(%) 

Mean RMSE 
(cm) 

Relative 
RMSE (%) 

Potential 4.38 (1.87) 4.24 (0.17) 19.00 (0.81) 
Linear 4.15 (1.81) 4.29 (0.21) 19.20 (0.97) 
CatBoost 4.24 (1.90) 4.41 (0.21) 19.80 (1.03) 
GBoost 4.33 (2.10) 4.42 (0.24) 19.79 (1.12) 
AdaBoost 5.40 (2.28) 4.45 (0.19) 19.91 (0.89) 
RFR 3.38 (2.23) 5.09 ((0.27) 22.78 (1.21) 
DTR 3.00 (2.26) 5.72 (0.30) 25.66 (1.40) 

Table 2. Statistics of systematic and random error for bivariate 
allometric models DBH = Φ(H). Figures in parentheses 

correspond to the standard deviation.  

 
Regarding systematic error, the bias of the bivariate allometric 
models tested in this work is depicted in Table 2, providing mean 
bias values of less than 5% in all cases, except AdaBoost (5.4%), 
with a reasonably low standard deviation (values in parentheses). 
Note that the positive sign of bias in all cases pointed to a slight 
overestimation of the observed values of DBH.  
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In the case of random error, the group of best performance 
allometric models (linear, potential and boosting) yielded mean 
RMSE values lower than 5 cm in the prediction of DBH, which 
meant a reasonably low relative RMSE ranging between 19% and 
20% approximately (Table 2). 
 
3.3 Multivariate Regression Models 

Table 3 presents the goodness-of-fit statistics of the seven 
multivariate allometric models tested in this work (DBH = Φ(H, 
CD). Note that the prediction results were clearly better than 
those provided by the bivariate allometric models shown in Table 
1, especially in the case of machine-learning regression methods, 
explaining between about 87% and 89% of the variance of the 
observed data. Again, there were no significant differences (p 
<0.05) between least squares regression methods and machine 
learning, in this case also including RFR, which clearly 
performed better than when applied to the bivariate allometric 
model. DTR was again ranked the worst, although notably 
improved its performance when dealing with multivariate 
regression. All the tested models showed lower variability in R2 
when varying training samples, which meant that multivariate 
regression provided greater stability than bivariate. These 
findings point to the need to have CD, obviously together with H, 
as a key variable to build accurate allometric models to predict 
DBH. Similar results were recently reported by Aguilar et al. 
(2021) working in teak plantations in Ecuador.  
 

Regression 
method 

R2 mean 
value (%) 

R2 standard 
deviation (%) 

R2 range 
(min-max %) 

CatBoost 89.37a 1.42 82.67-93.45 
GBoost 89.17a 1.42 84.78-91.69 
Linear 89.08a 1.23 86.16-91.77 
RFR 87.98a 1.57 84.86-92.12 
Potential 87.75a 1.61 82.66-91.76 
AdaBoost 87.41a 1.58 82.53-91.03 
DTR 79.63b 2.97 71.68-85.71 

Table 3. Statistics of R2 for multivariate allometric models 
DBH = Φ(H, CD).  Mean values with different superscript 

letters are significantly different (p<0.05) (two-sample t-test). 

 
Regression 
method 

Mean Bias 
(%) 

Mean RMSE 
(cm) 

Relative 
RMSE (%) 

CatBoost 2.18 (1.24) 3.04 (0.18) 13.64 (0.76) 
GBoost 2.48 (1.41) 3.04 (0.17) 13.61 (0.74) 
Linear 2.90 (1.52) 3.07 (0.15) 13.74 (0.73) 
RFR 2.01 (1.24) 3.21 (0.19) 14.41 (0.84) 
Potential 2.81 (1.45) 3.24 (0.19) 14.64 (0.85) 
AdaBoost 3.98 (1.55) 3.27 (0.18) 14.73 (0.78) 
DTR 1.77 (1.76) 4.15 (0.26) 18.63 (1.16) 

Table 4. Statistics of systematic and random error for 
multivariate allometric models DBH = Φ(H, CD). Figures in 

parentheses correspond to the standard deviation.  

 
The bias of the multivariate allometric models can be considered 
low, as can be seen qualitatively in Figure 3 for the case of Linear 
and DTR models. The quantitative results represented in Table 4 
also confirmed this finding, providing low mean bias values of 
around 3% in all cases, with the exception of DTR, always 
yielding a slight overestimation of the observed values of DBH. 
The variability of bias (standard deviation) was also less than that 
recorded when bivariate models were tested. 
 
Focusing on the random error of the multivariate allometric 
models, both the regression methods based on least squares and 
those of machine learning (except DTR) presented mean RMSE 
values close to 3 cm, thus clearly improving the results provided 

by the bivariate allometric models (Table 4). These results, when 
converted to relative RMSE values, led to low relative random 
error between 13.61% (GBoost) and 14.73% (AdaBoost), 
relegating DTR to last position with a relative RMSE value of 
18.63%.  

 

 
Figure 3. Plots of the observed/predicted values of DBH for a 
test dataset case (157 Aleppo pine trees not used for training) 
given by two multivariate allometric models (DBH = Φ(H, 

CD)). Top: Linear Regression (R2 = 89.02%). Bottom: Decision 
Tree Regression (R2 = 79.86%). Red line refers to 1:1 line.   

 
3.4 Recommended Allometric Model 

In view of the results described in sections 3.2 and 3.3, the 
multivariate allometric model based on Linear Regression 
(Equation 2) would be the most appropriate locally adjusted 
model to predict the DBH of Aleppo pine as a function of H and 
CD in “Sierra de María-Los Vélez” Natural Park. In fact, its 
goodness of fit was statistically similar to that obtained when 
applying more complex and sophisticated machine learning 
regression methods, such as Categorical Boosting or Gradient 
Boosting, showing even slightly higher stability (i.e., lower 
standard deviation) against changes in the training data set (Table 
3). It should be noted that machine learning or deep learning 
regression methods are capable of modelling complex non-linear 
allometric relationships, thus surpassing the linear regression 
method when applied to tree species that present this type of 
morphology (Aguilar et al., 2021; Bayat et al., 2020; Chen et al., 
2020; Ercanlı, 2020; Vieira et al., 2018). However, this potential 
improvement is not applicable if the allometric relationships are 
mostly linear, which may be common in some pine species (Filho 
et al., 2019). Furthermore, linear models have the advantage that 
they are easy to fit and apply (for example, simply by using an 
Excel tabulator). 
 
Figure 4 shows the fit of observed and predicted values of DBH 
for the entire dataset (785 Aleppo pines) according to the 
multivariate linear allometric model. It can be seen that the model 
is unbiased, also explaining up to 89.23% of the variance of the 
observed DBH values (R2 adjusted = 89.20%). In addition, the 
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DBH residuals followed a normal distribution (Figure 5), while 
both the regression coefficients and the intercept were 
statistically significant (p <0.001), thus giving rise to the 
formulation of the following allometric model: 
 

 ��� =  −4.84 + 1.73149� + 3.08114��,           (8) 
 
where DBH is given in cm, and H and CD in m. 
 
Considering the allometric equation to estimate AGB proposed 
by López-Serrano et al., (2005) for Aleppo pine in south-eastern 
Spain (AGB = 0.128. DBH2.29), where AGB is expressed in kg 
and DBH in cm, AGB estimates at tree level could be obtained 
from airborne and spaceborne sensors by only collecting two key 
variables such as total tree height and crown diameter (Equation 
8).  

 
 

Figure 4. Plot of the observed/predicted values of DBH for the 
entire dataset (785 Aleppo pine trees) corresponding to the 
multivariate allometric model based on Linear Regression 

(DBH = Φ(H, CD)). Red line refers to 1:1 line. 

 

Figure 5. Histogram of the DBH residuals for the multivariate 
linear allometric model (DBH = Φ(H, CD)). The corresponding 

normal distribution is overlaid in red.  

 
Note that one of the main drawbacks of using image-based 
reconstruction in forested areas is the fact that the ground must 
be visible on aerial imagery, allowing ground points to be 
generated to build an accurate DTM below the canopy. Indeed, 
an accurate ground reference is needed to obtain a high-quality 
CHM in order to correctly calculate tree height. In this sense, it 
is worth noting that the vegetation cover of the reference plots 
that participated in this study ranged between 29% and 85% 
(average value of 49.4%), also having relatively low height pines 
with Lorey’s mean height (plot-level) ranging from  3.4 m to 16.2 
m.  

Under these conditions, and although these results are not 
presented in this paper due to lack of space, the vertical accuracy 
assessment of the UAV image-based extracted DTMs (UAV-
DTM) was performed using airborne LiDAR data available for 
the study area, yielding systematic error (bias) values of 8.1 cm 
and 7.6 cm for the mean and median DTM vertical error, 
respectively. It meant that the UAV-DTM slightly overestimated 
the z-terrain reference values provided by the LiDAR data. In any 
case, this reasonably low bias in the construction of the ground 
reference (DTM) should be interpreted as adequate to support the 
generation of CHMs aimed at estimating AGB maps over the 
natural park studied. 
 
Finally, the LiDAR data used as ground truth were provided by 
the PNOA (National Plan of Aerial Orthophotography of Spain). 
Data were taken on December 7, 2014, by means of a Leica 
ALS60 discrete return sensor with up to four returns measured 
per pulse and an average flight height of 2700 m. The point 
density of the test area, considering overlapping, turned out to be 
0.97 points/m2 (all returns). The nominal (at nadir) horizontal 
accuracy (RMSExy) and nominal vertical accuracy (RMSEz) 
after processing had values lower than 0.3 m and 0.2 m, 
respectively 
 

4. CONCLUSIONS 

In this study, several allometric models were tested to relate DBH 
(dependent variable) and H and CD (explanatory variables) in the 
case of the population of Aleppo pine trees in “Sierra de María-
Los Vélez” Natural Park. Since UAV carrying visible sensors are 
gaining ground in local and small-scale data acquisition, UAV 
image-based point clouds to build CHMs and high-resolution 
orthoimages were successfully tested to estimate total tree height 
(Pearson’s r = 0.9929; relative RMSE = 4.57%) and tree crown 
diameter, increasing the efficiency in obtaining these parameters 
compared to traditional field inventory. Furthermore, this UAV-
based technique has proved to be very useful to estimate tree 
heights that could not be measured during field work 
(hypsometer) due to occlusions caused by surrounding trees. 
 
Multivariate allometric models (including H and CD as 
explanatory variables) performed better at predicting DBH, both 
in terms of goodness-of-fit and stability of regression models 
against changes in training samples, than those based solely on 
H. It highlights the need to count on CD, in addition to H, to build 
accurate predictions of DBH. Within the tested multivariate 
allometric models, the linear model showed statistically similar 
goodness-of-fit than that provided by ensemble machine learning 
regression methods. This finding is attributed to the linear 
relationships between DBH and H/CD in the case of Aleppo pine. 
The machine learning regression method based on just one 
decision tree (i.e., DTR) performed significantly worse than 
linear, potential and ensemble machine learning regression 
methods.   
 
According to the results obtained in this work, the easy-to-apply 
multivariate linear allometric model would be the recommended 
model to estimate DBH in Aleppo pine, and consequently AGB 
at tree level, from total tree height and crown diameter collected 
from airborne or spaceborne sensors. This remote sensing-
oriented approach is gaining importance in recent years because 
it enables large-scale mapping of AGB for forest management 
and monitoring in the context of mitigating climate change 
(Reducing Emissions from Deforestation and forest Degradation 
(REDD) monitoring programmes). 
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