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ABSTRACT:  
 
Crop yield forecast is important, but determining productivity is an on-going challenge for agricultural communities including policy 
makers. An increase in the number of satellites, improved temporal and spatial resolutions and more open data policies, are leading to 
wider interest by the agricultural sector in exploiting space-based data at moderate spatial resolutions (10-30 m) and varying 
wavelengths (optical and microwave) for crop yield monitoring. This study evaluated Sentinel-1 dual-polarimetric data to forecast 
soybean yields one month before the harvest at field scales over a site in central Argentina. Specifically, polarimetric features were 
extracted from the Sentinel-1 data using the M-Chi decomposition. An Artificial Neural Network (ANN) model was trained using a 
time series of the single-bounce and volume scattering parameters derived from M-Chi from stacks of data acquired during the growing 
season. To estimate soybean yield from the ANN model, an innovative iterative retrieval method was developed. This retrieval 
approach improved the accuracies of the soybean yield forecast delivering a final coefficient of determination (R2) of 0.81 with a root 
mean square error (RMSE) of 755.81 kg/ha and mean absolute error (MAE) of 581.65 kg/ha. These accuracies demonstrate a high 
potential of Synthetic Aperture Radar (SAR) data from Sentinel-1 for soybean yield forecast at field scales.   
   
 

1. INTRODUCTION 

 effort has been invested in assessing the use of 
remote sensing data to provide estimates of crop yields at 
national and regional scales, information critical for monitoring 
food security and driving policy decisions (Ahmad et al., 2018; 
Donohue et al., 2018; Franch et al., 2019; Khaki et al., 2021). 
However, crop yield estimation at field scales is more 
challenging partly due to difficulties in accessing ancillary high 
resolution soil moisture data and information on site specific 
management such as fertilizer application. High quality data on 
field scale yield is also difficult to acquire.   
Studies on satellite-based crop yield estimation have been 
primarily carried out using coarse (250 m – 1 km) to moderate 
(10–30 m) resolution optical satellite data, utilizing vegetation 
indices or surface reflectance as features (Burke and Lobell, 
2017; Skakun et al., 2019). Yet there are challenges with using 
optical data for crop yield monitoring. These sensors are 
obstructed by clouds, cloud shadows and haze which reduce the 
temporal frequency of useful data and impedes the 
implementation of optical-based monitoring given the rapidly 
changing crop canopy and need to capture development 
throughout the growing season. The relatively small 
wavelengths used in optical sensing also limit sensing of crop 
properties to the top of the canopy, with less scattering 
originating from within the canopy. Synthetic Aperture Radar 
(SAR) satellites are an alternative source of data and are not 
impacted by these limitations (Hosseini and McNairn, 2017). 
SARs are active sensors which propagate microwave signals at 
longer wavelengths, unimpeded by cloud cover and as such, are 
able to provide images of the Earth even during cloudy periods. 
Also, microwave scattering is sensitive to the structure of crop 
canopies and given that canopy structure changes with advancing 
phenology, SARs are able to track crop development during the 
entire active growing season and into late stages of crop growth 
(Hosseini and McNairn, 2017). These imaging advantages, 

coupled with open data policies for sensors such as Sentinel-1, 
create opportunity to advance efforts to estimate crop yield and 
model productivity forecasts.  
Previous SAR studies were primarily focused on assessing the 
use of linear co-polarization and cross-polarization intensities to 
estimate yields (Setiyono et al., 2019), although some studies 
examined the phase information from quad-polarimetric SARs 
for crop monitoring (Homayouni et al., 2019). Unlike quad-
polarimetric capable SAR sensors (RADARSAT-2, ALOS-2 
PALSAR-2 and TerraSAR-X), Sentinel-1 acquisitions over land 
are typically limited to dual-polarization in the Interferometric 
Wide (IW) mode. As such, not all methods applied to fully 
polarimetric imagery, including many target decompositions, 
can be applied to Sentinel-1 data. This study investigates the 
decomposition of dual-pol SAR data for crop yield estimation. 
We show that the M-Chi decomposition method, that was 
originally developed for compact polarimetry SAR data (Raney 
et al., 2012), can be effectively applied to Sentinel-1 data. The 
derived M-Chi parameters, as well as the backscatter intensities 
extracted from Sentinel-1, are tested for soybean yield estimation 
at field scales. Machine learning algorithms have been widely 
used in recent years for crop monitoring applications (Reisi-
Gahrouei et al., 2020; Mandal et al., 2019). In this study, the 
Artificial Neural Network (ANN) algorithm is trained and tested 
for soybean yield estimation.  
 

2. STUDY AREA AND DATASET 

The study area is located in central Argentina (Figure 1). The 
yield data were collected for the 2017-2018 growing season for 
58 soybean fields which are distributed across an area of about 
150 km by 220 km. The yield values are in the range of 1.25 t/ha 
to 5.5 t/ha. 
Sentinel-1 data acquired in the Interferometric Wide (IW) were 
used in this study. Forty Ground Range Detected (GRD) and 
Single Look Complex (SLC) products were downloaded and 
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preprocessed. GRD data were converted to VV and VH 
intensities. Images were filtered using a boxcar 5 by 5 speckle 
filter to reduce speckle noise. The Range Doppler Terrain 
Correction was applied to ortho-rectify the data stacks. The SLC 
products were also radiometrically and geometrically corrected 

using the European Space Agency (ESA) Sentinel-1 Toolbox 
software. The M-Chi decomposition was applied to the SLC 
products to derive single bounce, double bounce and volume 
scattering components. All images were resampled to a 10 m 
spatial resolution.  

 
Figure 1. Study area in central Argentina. The soybean fields are shown in red polygons. 

 

3. METHODOLOGY 

3.1 M-Chi decomposition 
 
In the Interferometric Wide (IW) swath mode, Sentinel-1 
transmits a vertically or horizontally polarized signal and 
receives the orthogonal backscattered signals in both vertical and 
horizontal polarizations. The phase between the two received 
polarizations is retained and can thus be exploited. Quad-
polarimetric (QP) SAR satellites both transmit and receive in two 
orthogonal polarizations (with phase recorded), leading to a 4-
element scattering matrix (Eq. 1). Dual-polarimetric (DP) 
Sentinel-1 (such as VV, VH) has a 2-element scattering matrix 
(Eq. 2): 
 

[𝑆]!" = %
𝑆## 𝑆#$
𝑆$# 𝑆$$

&                           (1) 

 
[𝑆]%" = [𝑆$#	𝑆$$]                                     (2) 
 
where [𝑆]!" is the scattering matrix for quad-polarimetric SAR, 
[𝑆]%" is the scattering matrix for dual-polarimetric SAR, and SXY 
is the element of the scattering matrix in X-transmit and Y-
received polarizations.   
Well known and widely used decomposition algorithms such as 
Freeman-Durden, Yamaguchi, Cloude-Pottier and Van-Zyl were 
developed for quad-polarimetric SAR data using the 9-element 
covariance matrix (Eq. 3) (Homayouni et al., 2019). Dual-pol 
SAR has a 4-element covariance matrix (Eq. 4) and 
consequently, the polarimetric decompositions applicable to the 
dual-pol SAR are limited.  
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where C is the covariance matrix, 〈	〉 is the spatial average, and * 
is the complex conjugate. 
The M-Chi decomposition was developed and used for compact-
pol SAR (Raney et al., 2012). The features from M-Chi 
decompositions are calculated as follows. 
 
𝐵 = ((𝑚𝑆'+𝑆()/2)).+                        (5) 
𝑅 = ((𝑚𝑆'−𝑆()/2)).+                                       (6) 
𝐺 = (𝑆'(1 −𝑚))).+                                      (7) 
𝑚 = (𝑆,, + 𝑆-, + 𝑆(,)).+ 𝑆'⁄                       (8) 
 
where B is single-bounce and represents the polarimetric portion 
of the received signal after a single reflection from the target (soil 
or crop), R is double-bounce representing the portion of the 
signal received after two reflections from the soil-crop or crop-
crop interaction, and G is the volume scattering of the received 
signal after multiple reflections from within crop canopies or 
between the soil and crop. m is the degree of polarization, and S1, 
S2, S3 and S4 are the Stokes parameters derived using the 
following equations: 
 
𝑆' = 〈|𝐸#|,〉 + 〈|𝐸$|,〉                                      (9) 
𝑆, = 〈|𝐸#|,〉 − 〈|𝐸$|,〉                                   (10) 
𝑆- = 2〈𝐸#𝐸$ cos∅#$〉                                     (11) 
𝑆( = 2〈𝐸#𝐸$ sin∅#$〉                                      (12) 
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𝐸# and 𝐸$ are the horizontal and vertical components of the 
received signals and ∅#$ is the phase difference between them.  
All four Stokes parameters can be derived from dual-polarized 
SAR satellites including data collected in the Sentinel-1 IW 
mode. The challenge in applying the M-Chi decomposition to 
dual-pol Sentinel-1 is that the ellipticity angle is close to zero, 
meaning that it is challenging to distinguish between single and 
double bounce targets (Raney, 2007). This presents an important 
limitation when the objective is to distinguish between different 
types of polarimetric scattering.  
 
For most distributed targets, including those with a dominant 
vertical structure, single, double and volume scattering all 
contribute to total scattering. However, for agriculture targets 
one scattering mechanism typically dominates and the mix of 
mechanisms changes as the canopy develops (McNairn et al., 
2002; McNairn et al., 2009). Here, we apply the M-Chi 
decomposition over agricultural fields two months after planting. 
Although a mixture of scattering mechanisms can be expected, 
volume scattering will dominate during this period of advanced 
canopy development. Our objective is not to define the 
dominated scattering but rather to evaluate if the scattering 
components B, R and G derived from Sentinel-1 SLC data 
(equations 5-7) are correlated with crop yield. Because the 
ellipticity angle for dual-pol SAR is close to zero, the powers of 
the single bounce (B) and double bounce (R) are very close, and 
the power of the volume scattering (G) is significantly higher and 
is illustrated in Figure 2. As such yield estimates from single-
bounce and double-bounce components would be expected to be 
equivalent, and is verified in section IV. 
 

 
Figure 2. Time-series of the average scattering powers of all 58 

fields for the three scattering components of the M-Chi 
decomposition including single-bounce (M-Chi B), double-

bounce (M-Chi R) and volume scattering (M-Chi G). 
 
In this study the parameters derived from M-Chi decomposition, 
was applied to Sentinel-1 data, are used to train an ANN 
algorithm for yield estimation.  
 
3.2 ANN Algorithm 
 
The ANN algorithm used in this study is a feed-forward multi-
layer perceptron (MLP) network that has one input layer, two 
hidden layers and one output layer. Each hidden layer has 10 
neurons. The Sigmoid function was used as the cost function and 

the Levenberg-Marquardt backpropagation algorithm (Yu and 
Wilamowski, 2011) was used to train the algorithm.  
 
3.3 Feature Selection 
 
Following the application of the M-Chi decomposition to 
Sentinel-1 SLC products, the field measured yield of soybeans 
was correlated with the single-bounce and volume scattering 
parameters using first-order polynomial functions. As explained 
above, single-bounce and double-bounce are equivalent so we 
used just one of them. Compared to the volume scattering, the 
single-bounce parameter had the higher correlation with soybean 
yield. However, because volume scattering is the dominant 
scattering in mid to late growing season (Figure 2), we used both 
parameters as input features for training the model. Therefore, 
the median single-bounce scattering component, and the median 
volume scattering of all pixels for each of the 58 soybean fields, 
were used to train the Artificial Neural Network (ANN) model 
for yield estimation. To minimize the impact of soil on the SAR 
backscattered signal, the time-series commenced two months 
after the planting dates. Fields were planted late-November 2017 
to early December 2017. The Sentinel-1 time-series started from 
February 2018.  
Given the 12 day revisit of Sentinel-1A, seven images were 
available from February 2018 until soybean harvest. A 5-fold 
cross-validation approach (Kuhn and Johnson, 2013) was 
applied to train and validate the model. Therefore, in each fold, 
80 percent of the points were selected randomly for the training 
and with the remainder of points used for the validation.  
 
 

4. RESULTS 

4.1 Evaluations of the Input Features 
 
The correlation between soybean yield and SAR feature was not 
consistent across all ranges of yield. Correlation of determination 
(R2) between soybean yield and sum of the M-Chi single-bounce 
time-series from two months after planting date to one month 
before the crop harvest are shown in Figure 3 for the whole 
soybean yield range (1000- 5200 kg/ha) and the low soybean 
yield range (1000- 4000 kg/ha). The correlations between 
volume scattering and soybean yields are shown in Figure 4. 
While for the volume scattering, the correlation for total yield 
range is a bit higher than the lower yield range (i.e. R2 of 31 for 
the total yield range versus R2 of 27 for the lower yield range), 
higher correlation of 0.62 were observed for the lower yield 
range than the total yield range with the correlation of 0.52 for 
the single-bounce. Given this finding the ANN algorithm was 
trained for the entire range of soybean yield, as well as for the 
soybean yield range of 1000-4000 kg/ha using time-series of 
single-bounce and volume scattering from two months after 
planting date to one month before the harvest date for each field. 
These trained ANN models were then used to retrieve soybean 
yield. First, the ANN model was trained for the entire yield range 
to predict a preliminary yield value for each field. If the predicted 
yield was equal or less than 4000 kg/ha, a second model that was 
trained for this range of yield and rerun to estimate yield on these 
lower producing fields. If the initial predictions were above 4000 
kg/ha, this estimate was considered final. 
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Figure 3. Correlation between single-bounce and soybean yield for (a) all yield values and (b) only low yield values.  

 
 

 
Figure 4. Correlation of determination between the SAR 

features and soybean yield. 
 

4.2 Validation of the ANN Model 
 

The trained ANN algorithms were used for a 5-fold cross-
validation. Using an independent dataset for the validation will 
make sure of not having the overfitting issue that might occur 
when using the Machine Learning algorithms. The accuracies of 
yield forecast are shown in Figure 5 for iterations 1 and 2. Using 
the ANN model trained for the whole yield range, R2 of 0.79, 
RMSE of 830.80 kg/ha and MAE of 675.67 kg/ha were derived. 
However, in the second iteration and by using the ANN model 
trained for the low yield range, the accuracies significantly 
improved to R2 of 0.81, RMSE of 755.81 kg/ha and MAE of 
581.65 kg/ha. For many fields, after applying iteration 2, their 
RMSE were significantly increased. Figure 6 shows the average 
of the yield values for the 58 fields. It shows the average 
estimated yields are 3072 kg/ha and 3162 kg/ha from iterations 
1 and 2, respectively. The observed average yield is 3212 kg/ha 
which shows 140 kg/ha (i.e. 4.4%) error for iteration 1 and 50 
kg/ha (i.e. 1.5%) error for iteration 2. It shows that at the lower 
scale, the error reduced by 2.9% after applying the second 
iteration.  

 

        
 

Figure 5. Accuracies of yield forecast for the first and second iterations. 
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Figure 6. Average yield values of all the fields derived from iterations 1 and 2 and the ground observations.

 

5. CONCLUSIONS 

In this study, the M-Chi decomposition was applied to the dual-
polarimetric Sentinel-1 data and the extracted parameters were 
used and tested for soybean yield forecast. Three M-Chi 
decomposition parameters including single-bounce, double-
bounce and volume scattering were analyzed. Time-series of the 
single-bounce and volume scattering parameters for each field 
were used to train the ANN model. A new method was developed 
and proposed to improve the yield forecast accuracies using an 
iterative retrieval algorithm. The results showed that the 
Correlation of Determination (R2) improved by 2%, Root Mean 
Square Error (RMSE) of yield forecast decreased by about 75 
km/ha and the Mean Absolute Error (MAE) decreased by about 
106 km/ha by using the proposed iterative algorithm at field 
scale. When the estimated yields were upscaled to the whole 
region, the difference between the two iterations was about 2.9%. 
All the experiments showed a high potential of SAR data for 
soybean yield estimation at both field scale and regional scale.  
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