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ABSTRACT: 

 

Carbon sequestration coupled with flood mitigation and other functions of wetlands, such as water filtration, coastal protection, 

biodiversity, and providing recreational spots, make wetland mapping and monitoring important for different countries. Google Earth 

Engine (GEE) cloud computing platform is becoming a very important tool for lots of environmental studies as it provides a suite of 

tools and access to data that facilitate large-scale environmental monitoring projects through its powerful parallel processing 

capabilities. In this study, we use GEE to access multi-source remote sensing datasets and implement an object-based image analysis, 

and random forest algorithm for the classification of wetlands in the state of Minnesota. Emergent, forested, and scrub-shrub wetland 

classes, water, as well as urban, forest, and agriculture land cover types were classified using Sentinel-2, Sentinel-1, USGS 3D 

Elevation Program 10-meter DEM, and gridded soil data. NDVI, EVI, BSI, NDBI, and NDWI spectral indices were calculated from 

Sentinel-2 imagery, VV and VH polarization channels, and their ratio, as well as span parameters, were calculated from Sentinel-1 

imagery, and slope and aspect features were extracted from DEM. Simple Non-Iterative Clustering (SNIC), Gray-Level Co-occurrence 

Matrix (GLCM), Principal Components Analysis (PCA), and random forest algorithms were implemented to classify wetlands from 

the GEE platform. Emergent wetlands, water, urban, and agriculture classes performed well with producer accuracies greater than 

90%. Sentinel-1, DEM, and soil datasets improve the identification of wetland classes and highlight the importance of multi-source 

approaches for wetland mapping.       

  

 

1. INTRODUCTION 

Wetlands are regions where soils are temporarily or permanently 

saturated by water with plant community-dependent and adapted 

to these conditions (Federal Geographic Data Committee, 2013; 

U.S. Army Corps of Engineers, 1987). The role of wetlands in 

global climate and carbon ecosystems has sparked attention in its 

study and advocacy for its management, monitoring, and 

restoration. Although wetland ecosystems contribute significant 

amounts of methane, (Whalen, 2005) estimates at about 25% of 

total emissions, the carbon sequestration function of wetlands 

and the decay of methane in the atmosphere make them net 

carbon sinks (Mitsch et al., 2013) and hence are valuable 

ecosystems in the global carbon cycle. Wetlands are also helpful 

in mitigating flooding and reducing potential damage from 

flooding, they can store water and release it slowly over time 

(Steve et al., 2019). Carbon sequestration coupled with flood 

mitigation and other functions of wetlands such as water 

filtration, coastal protection, biodiversity, and recreation 

(Corcoran et al., 2013; Mahdianpari et al., 2020) make wetland 

mapping and monitoring important in this modern day. 

 

Wetlands are landscapes of transition between land and water, 

which are marked by the presence of hydrophytic vegetation and 

saturated soils. The transitional characteristic of wetlands adds 

more complexity to wetlands mapping (Mahdianpari et al., 

2020). Hierarchical classification systems have been designed to  

 

 

circumvent these challenges. The Wetland Classification 

Standard FGDC-STD-004-2013 established by the Federal 

Geographic Data Committee Wetland Sub-committee, which is 

a revision of the Wetland Classification Standard FGDC-STD- 

004-1996, drafted by (Cowardin et al., 1979), is the standard for 

National Wetland Inventory in the United States (Federal 

Geographic Data Committee, 2013). These groupings have been 

made based on plant community composition, soil morphology, 

and site wetness indicators. The Cowardin classification system 

is shown in Figure 1. 

 

Methods of mapping using remote sensing technology have been 

adapted to different classification schemes over the years. 

Remote sensing data sources and processing techniques provide 

an upgrade to traditional methods of mapping these ecosystems. 

Satellite remote sensing especially presents great potential for 

mapping wetlands due to their ability to cover large spatial scales 

in very short periods. Improvements in the spatial resolution of 

satellite sensors have also improved the ability to map wetland 

ecosystems with increased accuracy and precision. (Mahdianpari 

et al., 2020) analyzing the 40-year trend in remote sensing of 

wetland reported that the accuracy of wetland mapping increased 

as the spatial resolution of the satellite imagery increased. 

The ubiquity and explosion of different sources of earth 

observation data has also increased our ability to identify 

different wetland classes. In recent years, multi-source 

approaches to wetland mapping have received great attention 
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(Battaglia et al., 2021; Corcoran et al., 2013; Kloiber et al., 2015; 

Mahdianpari et al., 2021). Using Landsat 5 Thematic Mapper 

optical imagery, PALSAR L-band radar, RADARSAT-2 C-band 

radar, US Geological Survey (USGS) National Elevation Dataset 

topographic data, and soil data from US Department of 

Agriculture (USDA) Soil Survey Geographic Database 

(SSURGO), (Corcoran et al., 2013) identified key combinations 

that could be useful for differentiating wetlands classes. 

 

 

 
Figure 1. Cowardin Classification System 

 

 

(Corcoran et al., 2013) empirically observed that red band, near-

infrared band, middle infrared band and derived Normalized 

difference Vegetation Index from optical satellite imagery, 

elevation, and curvature from topographic data, horizontal-

vertical (HV) polarization of L-band Radar, and hydric soil data 

are key variables for differentiating between upland, water, and 

wetland classes. For classifying different wetland types, C-band 

radar and other spectral bands from satellite imagery are useful 

in addition to the other input variables. (Mahdianpari et al., 2020) 

also observed an increased accuracy trend when LiDAR, optical, 

and SAR data were combined for wetland classification. 

Modern-day challenges in wetland classification lie in adapting 

existing functionality for large-scale mapping. Hardware and 

software limitations affect the large-scale production of land 

cover maps (Shafizadeh-Moghadam et al., 2021). Advances in 

high-performance computing and cloud computing technology 

address these limitations (Tamiminia et al., 2020). Parallel 

processing capabilities mean that computationally intensive 

tasks can be distributed across different units to save time and 

improve efficiency. Google Earth Engine(GEE), a cloud-based 

platform for processing geographic related information 

(Tamiminia et al., 2020) is increasingly being used in recent land 

cover and wetland mapping studies (Mahdianpari et al., 2019, 

2021; Shafizadeh-Moghadam et al., 2021; Tassi & Vizzari, 2020; 

Valenti et al., 2020). GEE makes multi-source remote sensing 

workflows easier providing access to multi-petabytes of earth 

observation data and complementary functionality for 

implementing algorithms and visualizing results (Shafizadeh- 

Moghadam et al., 2021; Tamiminia et al., 2020).  

 

Some of the array of algorithms available through GEE are 

Simple Non-Iterative Clustering (SNIC) and random forest 

algorithms. SNIC is a key technique in object-based image 

analysis, which is fast replacing pixel-based classification 

methods. Advantages of object-based image classification 

schemes include reducing the salt-and-pepper effect on high-

resolution imagery and improving classification accuracy (Tassi 

& Vizzari, 2020). Random forest has been shown to perform well 

for integrating multi-source datasets for the classification of 

wetlands (Corcoran et al., 2013; Mahdianpari et al., 2021). SNIC 

and random forest algorithms were used in this study for image 

classification. 

 

This study focuses on the large-scale mapping of wetlands in the 

state of Minnesota. The first wetland inventory mapping for 

Minnesota was carried out around the 1980s (Steve et al., 2019). 

Dwindling funding for wetland mapping impacted the ability to 

update inventory, major state-wide inventory update was only 

carried out by the Minnesota Department of Natural Resources 

(DNR) in 2019 after funding from Environment and Natural 

Resources Trust Fund (Steve et al., 2019). This highlights the 

need to utilize satellite remote sensing sources for large-scale 

wetland inventory mapping, which have cost advantages over 

aerial imagery and cover larger spatial scales in shorter periods, 

reducing the costs of wetland mapping projects and offering the 

ability to monitor wetlands constantly over short temporal scales. 

These maps will be invaluable to government agencies, non-

profit organizations, and other institutions that require regularly 

updated wetland inventory information for decision making and 

policy planning. This study aims to adapt the established 

methodology for wetland remote sensing to map wetlands on a 

large scale using multi-source datasets. 

 

 

2. STUDY AREA 

The study is focused on the state of Minnesota which totals about 

225,000 Km2 in area, 91% of which is land. According to the 

Cowardin classification scheme in the state, predominant 

wetland systems are the riverine, lacustrine, and palustrine 

systems (Steve et al., 2019). Forested wetlands are the largest 

wetland in Minnesota, most of the wetlands in Minnesota are in 

the north-eastern region of the state, and about half of the 

wetlands in the state have been lost since 1850 (Steve et al., 

2019). Average annual precipitation in the study area ranges 

from 18 to 32 inches, with the most precipitation occurring in the 

summer season. Figure 2 shows a satellite image view of 

Minnesota. 

 

 

3. DATA AND METHODS 

3.1 Datasets 

3.1.1 Sentinel 1: This study used images from the European 

Space Agency’s Sentinel-1 twin satellites. Aboard both Sentinel-

1 satellites is a C-band Synthetic Aperture Radar instrument 

observing the earth day and night, in all weather conditions with 

a 6-day revisit period (European Space Agency, 2014).  

The ability of SAR instruments to penetrate cloud cover and its 

24-hour per day earth monitoring capability makes it suitable for 

mapping wetlands, especially to compensate for some limitations 
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of optical satellite imagery. VV+VH polarization and ratio and 

span parameters were calculated and used as input variables for 

the random forest classifier. This dataset was directly accessed 

through the GEE interface.   

 

  
 

Figure 2. Study area Minnesota, US. Source Imagery is from 

Maxar accessed through ESRI ArcGIS online 

 

3.1.2 Sentinel 2: This study used images from European 

Space Agency’s Sentinel-2 satellites. The optical instrument 

samples 13 spectral bands in the visible, near-infrared, and 

shortwave infrared wavelengths; with 4 bands (B2, B3, B4, and 

B8) in 10m resolution, 6 bands (B5, B6, B7, B8A, B11, and B12) 

in 20m resolution and 3 bands (B1, B9, and B10) in 60 m 

resolution (European Space Agency, 2015). It has a 5-day revisit 

period (European Space Agency, 2015). Bands B2, B3, B4, B6, 

B8, and B11 corresponding to blue, green, red, red edge 2, Near-

infrared, and shortwave infrared 1 of the Level-2A orthorectified 

atmospherically corrected surface reflectance product were used 

as inputs for our model. Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Bare Soil Index 

(BSI), Soil Adjusted Vegetation Index (SAVI), Normalized 

Difference Vegetation Index (NDWI), Normalized Difference 

Building Index (NDBI) spectral were calculated from spectral 

bands of the sentinel-2 image and used as input variables for the 

model. This dataset was directly retrieved from the GEE data 

catalog. 

 

3.1.3 U.S. Geological Survey, 3DEP 10-Meter Resolution 

Digital Elevation Model: In 2016, the 3D Elevation Program 

(3DEP) run by the U.S. Geological Survey National Geospatial 

Program was established to provide high-resolution elevation 

data for the United States. In this study, we use the seamless 1/3 

arc-second 3DEP product with a resolution of approximately 10 

meters. Slope and aspect parameters were calculated and used as 

input variables for the model. This dataset was directly assessed 

through the GEE interface. 

  

3.1.4 US FWS National Wetlands Inventory: The National 

Wetland Inventory (NWI) managed by the US Fish and wildlife 

service (FWS) was used to download wetland data for the study. 

NWI data for Minnesota was downloaded through the NWI 

wetlands mapper tool. The Wetland layer from the NWI data was 

used to generate test and training samples for the study. Test and 

training samples generated were uploaded to the GEE platform. 

 

3.1.5 National Land Cover Database (NLCD): National 

Land Cover Database is a collection of land cover products 

created by The U.S. Geological Survey (USGS) in collaboration 

with the Multi-Resolution Land Characteristics (MRLC) 

consortium. Land cover product was used to generate test and 

training samples for upland classes. 

 

3.1.6 Gridded Soil Data: Gridded soil data for Minnesota 

was downloaded from the Gridded Soil Survey Geographic 

(gSSURGO) Database of the United States Department of 

Agriculture, Natural Resources Conservation Service. Raster 

data for hydric soil was extracted from the database and manually 

uploaded to the GEE platform. 

 

4. METHODS 

4.1 Test and train data preparation 

To generate training samples for the machine learning model, the 

wetlands layer from NWI was overlaid on sentinel-2 imagery. 

Samples were picked at class level following the Cowardin 

classification system; wetland classes were grouped into 

emergent, forested and scrub-shrub categories. Aquatic bed, 

Unconsolidated bottom, and Unconsolidated shore classes were 

put into a unified water class due to their spectral similarity. 

Similarly, upland classes were generated from the NLCD layer 

to prevent overfitting in the model. Three large groups 

corresponding to the forest, agriculture, and urban were chosen 

based on spectral similarity of the upland classes; subclasses 

such as mixed forest, evergreen forest, deciduous forest were 

grouped under the forest class, barren and developed land were 

grouped under the urban category, and grassland, pasture, and 

cultivated crops were merged into the agriculture class. Table 1 

shows the number of samples generated for training and testing 

the model. Samples were split in a 70:30 ratio in GEE. 

 

TYPE CLASS TOTAL TRAIN TEST 

 

 

 
WETLAND 

Water 933 669 264 

Emergent wetland 658 457 201 

Forested wetland 630 463 167 

Scrub-shrub 

wetland 

686 463 223 

 

 
UPLAND 

Urban 410 273 137 

Forest 429 317 112 

Agriculture 401 276 125 

 

Table 1. Wetland and upland test and train points 
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Figure 3. Train and test sample distribution 

 

4.2 Satellite image processing 

Sentinel-2 Optical imagery, Sentinel-1 C-band Radar, and USGS 

3DEP topographic data used for classification were retrieved 

from the GEE data catalog. Sentinel-2 Level 2A products, 

atmospherically corrected surface reflectance, for the 2017-2020 

period was used to create a mosaic for the entire study area after 

filtering scenes with more than 20% cloud cover and applying a 

cloud mask; the 4 years is used to generate cloud-free scenes for 

the mosaic. Similarly, a 2017-2020 Sentinel-1 radar imagery 

mosaic was created for the study area. Image collection 

containing Sentinel-1 imagery was also queried to retrieve 

images acquired in interferometric wide imaging mode, images 

with a resolution of 10 meters, images acquired in ascending 

orbit, and images in VV-VH polarization. Sentinel-1 images 

available on GEE have been pre-processed, applying thermal 

noise correction, radiometric calibration, and terrain correction. 

 

4.3 Image Classification and process flow 

As summarized in Figure 4 image classification was carried out 

but applying object-based image classification and random forest 

algorithm on input variables.  Simple Non-iterative Clustering 

algorithm was applied to the red, green, blue, and Near-infrared 

bands of the Sentinel-2 data to segment the imagery into objects 

of connected pixels called superpixels. Grey level co-occurrence 

matrix (GLCM) was applied to red, green, and Near-infrared 

bands to extract textural information which was subsequently 

passed through a principal component analysis algorithm to 

reduce the dimensionality of textural outputs. These outputs 

together with all bands of sentinel-2 imagery, sentinel-1 imagery, 

USGS 3DEP DEM data, gridded soil data and derived 

parameters including spectral indices, ratio and span of the radar 

image, and slope and aspect of DEM data were used as inputs for 

the random forest classifier. Different scenarios were empirically 

tested to quantify the impacts of multi-source remote sensing on 

wetland classification. Classification for all the scenarios was 

carried out on a scale of 10 meters over the entire study area. 

Workflow for image classification was adapted from a procedure 

developed by (Tassi & Vizzari, 2020) 

  

4.4 Accuracy assessment 

30% of the data generated from the train-test split was used to 

assess the accuracy of the random forest classification. The 

overall accuracy of the model and ability of the classifier to 

identify classes wetlands, defined during training, from test data 

was recorded through the producer’s accuracy metric. Different 

combinations of data were also assessed to observe the influence 

of adding various data sources. Fig 4 shows the distribution of 

training samples in the study area. Table 1 summarizes the total 

number of test and train samples. 

 

 
Figure 4. Flowchart of the methodology used for 

wetland classification. 

 

 

5. RESULTS 

Tables 2, 3, and 4 show the confusion matrices of the model for 

three of the scenarios tested. Using only sentinel-2 imagery with 

spectral indices derived from input bands was able to identify 

water and urban classes with high accuracy. This is due to the 

large spectral dissimilarity between both classes and other 

classes being mapped. However, using the optical source alone 

did poorly identifying wetland classes and the forested upland 

with producer accuracies of 82%, 71%, 62%, and 59% for 

emergent, forested, scrub-shrub wetlands, and forested upland 

lasses, respectively. The inability of the classifier to distinguish 

between forested wetlands, scrub-shrub wetlands, and forested 

upland classes is due to the ecological similarity of these classes. 

Adding Sentinel-1 C-band radar image improved the ability of 

the classifier to identify wetlands and distinguish between 

forested wetlands, scrub-shrub, and forested upland, with 

producer accuracy of the emergent wetland class jumping by 8%, 

forested wetland by 5%, scrub-shrub by 10%, and forested 

wetland by 11%. Overall accuracy improved by 6%, showing the 

significance of combining radar imagery with optical imagery for 

wetland classification. DEM and soil datasets were also 

significant data sources for the classifier and were key in 

discriminating between the forested and scrub-shrub wetlands 

classes and the forested upland class. Producer accuracies of 

these classes increased by 7%, 7%, and 9%, respectively, after 

adding these ancillary data sources. The overall accuracy of the 

best performing combination resulted was 89%. Figure 5 shows 

the final map of the best-performing combination. 
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CLASSES WATER EM FO SS URB FST AGR TOTAL UA 

WATER 260 4 1 2 0 0 1 268 97% 

EM 1 172 0 22 2 1 13 211 82% 

FO 2 0 127 25 0 14 0 168 76% 

SS 1 12 27 132 0 28 6 206 64% 

URB 0 13 0 3 121 0 3 140 86% 

FST 0 3 24 26 0 63 0 116 54% 

AGR 0 5 1 3 5 1 105 120 88% 

TOTAL 264 209 180 213 128 107 128 1229  

PA 98% 82% 71% 62% 95% 59% 82%  OA = 80% 

Table 2. Classification error matrix for random forest classifier using only Sentinel-2 optical imagery. Key: EM- Emergent 

wetland, FO-Forested wetland, SS-Scrub-Shrub wetland, URB- Urban, FST- Forest, AGR-Agriculture, UA- User accuracy, 

PA- Producer accuracy, OA- Overall accuracy 

 

CLASSES WATER EM FO SS URB FST AGR TOTAL UA 

WATER 262 4 0 1 0 0 1 268 98% 

EM 2 180 0 18 3 0 8 211 85% 

FO 1 0 138 18 0 11 0 168 82% 

SS 0 7 20 160 0 19 0 206 78% 

URB 0 8 0 1 129 0 2 140 92% 

FST 0 0 21 23 1 71 0 116 61% 

AGR 0 1 2 0 3 0 114 120 95% 

TOTAL 265 200 181 221 136 101 125 1229  

PA 99% 90% 76% 72% 95% 70% 91%  OA = 86% 

Table 3. Classification error matrix for random forest classifier after Sentinel-1 C-band radar was added. 

 

CLASSES WATER EM FO SS URB FST AGR TOTAL UA 

WATER 262 5 0 1 0 0 0 268 98% 

EM 1 182 0 16 4 0 8 211 86% 

FO 1 0 139 18 0 10 0 168 83% 

SS 0 6 11 176 0 13 0 206 85% 

URB 0 7 0 2 129 0 2 140 92% 

FST 0 0 16 10 1 89 0 116 77% 

AGR 0 1 1 0 3 0 115 120 96% 

TOTAL 264 201 167 223 137 112 125 1229  

PA 99% 91% 83% 79% 94% 79% 92%  OA = 89% 

Table 4. Classification error matrix for random forest classifier after DEM and soil datasets were added. 
 

 

6. CONCLUSION 

One of the main goals of this study is to show the potential of 

producing large-scale wetland inventory maps from major 

satellite sources in other to improve the periodicity of the 

production of such inventory maps. GEE is a very vital tool in 

this process making it possible to bypass challenges associated 

with large-scale map production. Providing access to 

preprocessed data by running simple queries on its interface to 

the data catalog makes for very efficient workflows. Parallel 

processing of this cloud computing platform allowed for the 

methodology to be applied to a large area without having to 

divide into smaller processing units while achieving very good 

accuracy. 

Utilizing multiple data sources is seen to improve the ability of 

the classifier to identify and distinguish between wetland classes. 

Combining optical, radar, DEM, and soil datasets was key to 

training the classifier to discriminate better ecologically similar 

forested, scrub-shrub wetland, and forested upland classes. 

Further improvements can be made to the classification model 

by using polygons as training data, and integrating additional 

ancillary data sources, especially from climate datasets to 

increase the overall accuracy and ability of the random forest 

classifier in discriminating wetland classes. Also, the possibility 
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of training deep learning classifiers for large-scale classification 

should be explored. 

 

 

Figure 5. Output classification of random forest 

classifier 
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