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ABSTRACT: 

 

Yerba mate belongs to the most important agricultural products of Argentina. Due to climate change, together with El Niño 

and droughts, yields are negatively affected. Drought propagation from precipitation deficits to plant water stress, its impacts 

and especially its predictability are becoming an emerging field of research. This paper explores how the future yerba mate 

production in the states of Misiones and Corrientes, north-eastern Argentina, can be projected by using climate variables and 

satellite data. The applied methodology focuses on a machine learning approach based on multiple linear regression and 

random forest regression. The results indicate a significant relationship between yerba mate and the NDVI as well as the SOI. 

The highest yerba mate productivity is expected during weak La Niña events. The methodology of this analysis can 

successfully predict mate productivity based on satellite and climate data and can also easily be used for further research areas. 

 

 

1. INTRODUCTION 

Climate change and enforced effects of global teleconnec-

tions like El Niño are severely impacting traditional agricul-

ture. In particular, the increasingly frequent occurrence of 

droughts has a major impact on agricultural productivity. In 

general, a drought describes a condition in which a precipi-

tation deficit over a certain period of time causes moisture 

and water availability below average (Mishra & Singh 2010). 

The term is characterised by diverse definitions, which in 

turn are fundamental for the overall understanding of the 

context.  

A meteorological drought occurs along with a precipitation 

deficit over a period of time. As it is based on the long-term 

mean relationship between evapotranspiration and precipita-

tion, meteorological droughts can occur at any time of the 

year (Lloyd-Hughes & Saunders 2002). If the lack of precip-

itation persists for several weeks or months, soil moisture 

and infiltration decrease and consequently limit plant growth 

(Tallaksen & van Lanen 2004). In this case, an agricultural 

drought occurs (Mishra & Singh 2010).  As soon as hydro-

logical systems experience water shortages (e.g. unusually 

low groundwater recharge or river streamflow), the agricul-

tural drought turns into a hydrological drought (Tallaksen & 

van Lanen 2004). If a drought has economic and social con-

sequences, such as health, it is referred to as a socio-eco-

nomic drought (Apurv et al. 2017). The whole process is also 

known as drought propagation (van Loon et al. 2012). When 

this paper discusses drought, we only refer to meteorological 

and agricultural drought.  

As a quantitative assessment of a meteorological drought oc-

currence, its characteristics and propagation, drought indices 

like the Standard Precipitation Index (SPI) are a common 

tool (Salimi et al. 2021). In addition, analysing a drought 
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through indicators is increasingly linked with research on 

drought impacts to deduce useful threshold values for 

drought prediction. As agricultural droughts are mostly ex-

pressed through crop production failures, forest fires or live-

stock sales, such variables are often correlated with drought 

indices (Stagge et al. 2015). In particular, the prediction of 

future crop production is one of the central components of 

agricultural research. As in many other areas of research (e.g. 

remote sensing), newer approaches use a diverse range of 

machine learning (ML) algorithms to predict future develop-

ments of drought indices (e.g. Byakatonda et al. 2019). Fur-

thermore, the ML-based prediction of drought impacts on 

crop production is developed by several scholars, including 

Potop et al. (2012) or Kogan et al. (2019).  

Climate change and global warming are accompanied by a 

multitude of global and regional impacts. Accelerated hydro-

logical processes, caused by rising temperatures and an in-

creased moisture demand of the atmosphere, and the absence 

of precipitation will contribute to a higher probability of se-

vere future drought events (Li et al. 2009; Mukherjee et al. 

2018). Predicting future climatic conditions is very difficult, 

as current climatic phenomena like El Niño are not com-

pletely understood yet. 

The El Niño Southern Oscillation (ENSO) is a large-scale 

ocean-atmosphere system associated with ocean current and 

temperature changes (Morid et al. 2007). To assess the inten-

sity of ENSO, the Southern Oscillation Index (SOI) is used, 

which measures the difference in air pressure between Tahiti 

and Darwin (Australia). Negative SOI values indicate an El 

Niño event, while positive SOI values are indicative of a La 

Niña event. These air pressure differences can lead to far-

reaching effects that affect large parts of the Earth, so-called 

teleconnections. For Argentina, an El Niño event is usually 

synonymous with high precipitation (Ulla 2016). However, 

the effects of ENSO differ greatly between regions, as do the 

impacts of climate change.
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Figure 1. Research area. The departments where yerba mate is cultivated are colour-coded based on production in t/ha.

For north-eastern Argentina, the study area of this paper, cli-

mate change models mostly predict reducing rainfall 

amounts in winter and spring. In summer and fall, however, 

increasing precipitation is more likely. This increase can 

probably be attributed to more frequent extreme events and 

is overall characterised through a higher interannual precipi-

tation variability (Cabré et al. 2016; Marengo et al. 2010). 

Studies such as Thomasz et al. (2018) show different impacts 

of increasing drought occurrence in Argentina in response to 

climate change. Portela et al. (2015) examine historic 

drought events in the border zone of Brazil, Paraguay and 

Argentina and show drought phases between 1960 and the 

1970s as well as since the mid-1980s. Historic droughts oc-

curred in the research area in the years 1977/78, 1981, 1988, 

1999/00, 2006, 2012/13 and 2020/21 (Vargas et al. 2011; 

Global Drought Observatory 2022). 

Yerba mate (Ilex paraguariensis) is a tree that originates 

from southern South America (between 21°S and 30°S and 

48°30’W and 56°10’W). The plant needs regular precipita-

tion, a minimum annual rainfall of 1200mm and high soil hu-

midity. It is less sensitive to temperatures but grows best at 

an average temperature of 21°C (Croge et al. 2021; Heck & 

Mejia 2007). Its leaves were already consumed in pre-Co-

lumbian times by indigenous peoples (e.g. Guaraní) as an in-

fusion, which is nowadays very popular in Argentina, Uru-

guay (mate), Brazil (chimarrão) and Paraguay (tereré). In 

addition, the plant is also used for e.g. energy drinks, cosmet-

ics and textiles (Croge et al. 2021). In Argentina, it is mainly 

cultivated on plantations in the two states of Misiones and 

Corrientes since the early 20th century (Heck & Mejia 2007). 

In 2019, approximately 945,962 tonnes of yerba mate were 

produced worldwide, about 31.9% of them in Argentina 

(FAO 2021). The harvesting season in Misiones lasts 

roughly from April to September (Butiuk et al. 2016). Per 

capita consumption of yerba mate in Argentina is approxi-

mately 5 kg per year, only surpassed by Uruguay. Similar to 

some Asian beverages, mate tea has a strong social compo-

nent, as it is usually shared (Bracesco et al. 2011). Further-

more, mate tea has numerous positive health properties. For 

instance, it might prevent some cancer types and is anti-in-

flammatory (Souza et al. 2015).  

Most studies on drought impacts focus on staple crops such 

as grains. Less often, however, plants that have social rather 

than nutritional benefits are considered. For this reason, we 

are trying to find out with our research whether it is possible 

to make statistically significant statements about mate 

productivity in north-eastern Argentina on the basis of cli-

mate data and drought indices. Consequently, this paper tries 

to answer the following research question: 

 

How can yerba mate productivity in Argentina be predicted 

reliably based on satellite and climate data? 

 

To answer this question, we use multiple linear regression 

and random forest regression. We are not aware of any study 

that investigates mate productivity based on satellite data or 

drought indices. We published our data and script on GitHub 

(https://github.com/HannahKemper/YerbaMate.git). 

 

2. METHODOLOGY 

2.1 Research area 

The states (provincias) of Misiones and Corrientes are lo-

cated in the extreme northeast of Argentina, enclosed by the 

neighbouring countries Paraguay, Brazil and Uruguay. Fig-
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ure 1 shows a map of the research area. In the national con-

text, both Misiones and Corrientes are comparatively small 

and sparsely populated states (INDEC 2022). The landscape 

consists mainly of forests, savannas and grasslands (Velazco 

et al. 2018). Some important bodies of water include the 

Iberá wetlands, the Iguazú waterfalls and the Río Paraná, Ar-

gentina’s longest river. In 2021, the latter was featured inter-

nationally in the press due to its low water level (BBC 2021). 

The climates of Misiones and Corrientes are characterised by 

subtropical, humid conditions, which belong to the category 

Cfa according to Köppen and Geiger. While the average an-

nual rainfall is around 1800mm, the mean annual tempera-

ture is at 21°C. In the summertime, the maximum daily air 

temperature can rise up to 39°C, whereas the coldest days in 

July can reach -6°C (Eibl et al. 2000). ENSO can influence 

weather patterns and agricultural yields in the region due to 

its ocean-atmospheric interactions. As ENSO events strongly 

correlate with precipitation, wet summer conditions in north-

eastern Argentina are associated with El Niño (warm events) 

and dry summer phases with La Niña (cold events) (Portela 

et al. 2015, Podestá et al. 2002; Pol & Binyamin 2014). The 

latter has a higher influence in the research area, with a 

greater likelihood of remaining stable over a longer time 

(Rusticucci & Vargas 2002). Along with this, yields tend to 

be reduced during La Niña (Gutierrez 2017; Podestá et al. 

2002).  

2.2 Data 

2.2.1 Data sources 

In order to create a suitable database for the analysis, mete-

orological and remote sensing-based datasets were used. The 

research period extended from 1990 to 2020, limited by the 

agricultural data availability. Information on the yerba mate 

production was obtained from the open data portal of the Ar-

gentinian Ministry of Agriculture, Livestock and Fisheries 

(Ministerio de Agricultura, Ganadería y Pesca 2022). Infor-

mation on temperature was downloaded via Google Earth 

Engine, using a dataset from Rodell et al. (2004). 

The Standardized Precipitation Index (SPI) provides infor-

mation on the development of the precipitation deficit 

through the water cycle. In combination with data on agri-

cultural production, it can be used to make statements about 

the occurrence of agricultural droughts and emerging vulner-

abilities (Barker et al. 2016; Hayes et al. 2011). Negative val-

ues indicate dry conditions, with moderately dry conditions 

classified at values from -1.0 to -1.49, severely dry condi-

tions at values from -1.5 to -1.99, and extremely dry condi-

tions at values smaller than -2.0 (Morid et al. 2007). The SPI 

was calculated for annual values on the basis of 30-year pre-

cipitation sums from the CHIRPS dataset (Funk et al. 2015), 

using the following formula: 

𝑆𝑃𝐼 =  
𝑝𝑝𝑒𝑟𝑖𝑜𝑑−𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑑 𝑜𝑓 𝑝1990−2020
       (1) 

The Southern Oscillation Index (SOI) quantifies the strength 

of the El Niño phenomenon on a scale from -4 to +4. The 

index expresses the difference in the air pressure between 

two stations divided by the monthly standard deviation (see 

Formula 2). The values were obtained from the National 

Oceanic and Atmospheric Administration (NOAA 2022) and 

mean values were used in the analysis. 

𝑆𝑂𝐼 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑.𝑇𝑎ℎ𝑖𝑡𝑖−𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑.𝐷𝑎𝑟𝑤𝑖𝑛

𝑀𝑆𝐷
   (2) 

The Normalized Difference Vegetation Index (NDVI) can be 

calculated due to the high absorption by vegetation in the red 

(R) spectrum and the simultaneous lack of absorption in the 

near-infrared (NIR) spectrum (Schmidt & Barron 2020; Pet-

torelli et al. 2011). It is the most commonly used vegetation 

index (Guo et al. 2015) and expresses plant health using the 

following formula: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                   (3) 

NDVI data was obtained using the Landsat 5 and 7 dataset in 

Google Earth Engine (Google Developers 2022). 

All variables were then calculated for yearly mean values on 

the department (departamento) level using a Zonal Statistics 

tool in QGIS 3.12. 

2.2.2 Exploratory Data Analysis 

A first step in a statistical analysis is usually an exploratory 

data analysis. For this purpose, we calculated a correlation 

matrix, using Spearman’s 𝜌 to check for correlations be-

tween the explanatory variables (cf. Figure 2). High coeffi-

cients are usually a good indicator for multicollinearity, 

which is a common problem in regression analyses. In our 

data, there was only one variable combination with a corre-

lation coefficient > 0.7, which is a common threshold (Dor-

mann et al. 2013). The relation between precipitation and SPI 

showed a correlation coefficient of 0.94, which is sensible as 

the SPI is based on precipitation values. Consequently, pre-

cipitation was not considered as a separate variable in the 

analysis. 

 

Figure 2. Correlation matrix. The Spearman correlation co-

efficient was used to calculate statistical similarity between 

the explanatory variables. 

2.3 Regression analysis 

The data cleaning and further analyses were conducted using 

Python 3.8. The data basis used in this study had to be 

cleansed by treating missing and outlying values, as these 

could affect the reliability and plausibility of relationships 

between variables. Missing values in yerba mate production 

were imputed using region-based mean values. Further out-

liers were detected and excluded using an interquartile range 

of 0.98 (Wong & Wang 2003). The values were normalised 
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using the standard scaler in scikit-learn (Pedregosa et al. 

2011). The independent and dependent variables were tested 

for skewness and split into training and testing data. For this, 

the training data size was set to 70%, a common threshold 

(Dobbin & Simon 2011).  

2.3.1 OLS Model 

One of the most common and simplest linear regression mod-

els is the Ordinary Least Squares model (OLS), which can be 

described by the following formula: 

y  = αιn  +  Xβ  + 𝜖                (4) 

where y is the dependent variable, "𝜄𝑛 is a n × 1 vector of 

ones associated with the constant term parameter 𝛼, X de-

notes an n × K matrix of explanatory variables associated 

with the K × 1 parameter vector 𝛽" and 𝜖 is an error term 

(Halleck Vega und Elhorst 2015). 

The explanatory variables were ordered according to theoret-

ical relevance in order to add them in a stepwise approach. 

The defined order was SPI, SOI, NDVI, temp. The resulting 

specifications were then tested for their suitability using sta-

tistical measures, such as the Akaike information criterion 

(AIC), Bayesian information criterion (BIC) and the coeffi-

cient of determination (R²). Additionally, the variance infla-

tion factor (VIF) was calculated to check for multicollinear-

ity. 

2.3.2 Random Forest Regression 

A common ML algorithm applied for the prediction of nu-

merical values is the random forest regression (RF). The RF 

is a so-called ensemble of regression trees where the predic-

tions of several decision trees are averaged (Strobl et al. 

2009). Using a randomised search cross validation, numer-

ous models were calculated, varying parameters including 

the number of trees, the depth of trees, the minimum samples 

per split and the minimum samples per leaf. The result of the 

validation was the best-performing parameter combination 

for the data basis (Koehrsen 2018). As the model perfor-

mance generally varies with sample size, we performed an 

additional k-fold cross validation (n_splits: 10) in order to 

evaluate the average performance of our models. 

As a measure of model quality, several indicators were used. 

The Mean Squared Error (MSE) and Mean Absolute Error 

(MAE) are among common quality measures (Bachmair et 

al. 2016). Further, the percentage of correctly predicted val-

ues and the relative importance of the variables in the data-

base were considered for the evaluation of the models. For 

the RF, we used the normalised variables. 

The calculated RF model was then used to predict yerba mate 

productivity using different values for the explanatory varia-

bles. A value range with 0.1 steps was defined for all varia-

bles, stretching between the minimum and maximum values 

of the respective variable, with one standard deviation added 

to each. Predictions were made based on all possible combi-

nations. 

 

 

3. RESULTS 

3.1 OLS Model 

Different specifications for a simple OLS model were calcu-

lated. The results can be found in Table 1. Based on the AIC 

and BIC, model 3 seemed to be the most appropriate for the 

data basis. The specification that added temperature had a 

practically identical AIC, but the added variable was not sta-

tistically significant. For both of these models, both SOI and 

NDVI had positive correlation coefficients and were statisti-

cally significant (p ≤ 0.05). The SPI, on the other hand, was 

not statistically significant in any of the model specifications, 

which was also reflected by its strongly fluctuating coeffi-

cients. 

The VIF was well below the commonly applied threshold of 

10 for each variable, implying low multicollinearity. The 

condition number, a similar measure, also remained below 

the popular threshold of 30 (Lever et al. 2016). 

 model 1 model 2 model 3 model 4 

SPI -15.593 

(0.6261) 

12.649 

(0.6969) 

-0.702 

(0.9572) 

0.037 

(0.9977) 

SOI - 177.849 

(0.0017) 

101.109 

(1e-05) 

102.143 

(1e-05) 

NDVI - - 902.450 

(2e-74) 

704.289 

(2e-05) 

temp - - - 39.652 

(0.2164) 

AIC 3649.35 3641.37 3304.27 3304.70 

BIC 3652.57 3647.82 3313.95 3317.61 

R² 0.0013 0.0534 0.8471 0.8484 

Adjusted 

R² 

-0.0041 0.0431 0.8446 0.8451 

Condition 

number 

1 1.86 2.39 29.44 

Table 1. Results of OLS models. The p-values are included 

in brackets after the correlation coefficients. The second part 

of the table shows statistical measures. For easier legibility, 

the values of the indices were multiplied by 10.  

3.2 Random Forest Regression 

The randomised search cross validation revealed that a 

model with 200 estimators was the most accurate. Details on 

the parameters and performance can be obtained from Ta-

ble 2. In both models, the order of importance of the varia-

bles was the same, with the respective values differing 

slightly. The SOI was the most important variable within the 

models. The average accuracy, i.e. the number of correctly 

classified data points, of the RF models was 71.9. 

We predicted yerba mate productivity for different variable 

values. For the highest predictions, the SOI values were al-

ways in the low negative range, i.e. light La Niña events. At 

the same time, they all had high NDVI values. The SPI val-

ues, on the other hand, did not show such a clear trend. For 

the very highest predictions, however, the SPI values were 

negative, although the range of values fluctuated strongly. 

The highest prediction was made for a SPI of -0.3, a NDVI 

of 0.6 and a SOI of -0.2 (cf. Table 3). 
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Model Accu-

racy 

MSE MAE Variable 

im-

portance 

Default 

model  

70.97 0.5208 0.5310 SOI: 0.38 

SPI: 0.34 

NDVI: 0.28 

n_estimators:100, min_samples_split: 2, min_samples_leaf: 1, 
max_features: auto, max_depth: None, bootstrap: True 

Optimised 

model 

  

71.92 0.5393 0.5485 SOI: 0.36 

SPI: 0.32 

NDVI: 0.31  

n_estimators: 200, min_samples_split:2, min_samples_leaf: 1, 

max_features: sqrt, max_depth: 50, bootstrap: True 

Table 2. Results of Random Forest Regression. The default, 

baseline model is listed, as well as the best model according 

to the Randomised Search Cross validation. 

In the case of the lowest predictions, the statements are not 

quite so clear. Only the NDVI values were consistently very 

low. For the other two variables, there were very strongly 

fluctuating values, although these were mostly negative. The 

lowest prediction was made for a SPI of -1.2, a NDVI of 0.4 

and a SOI of -0.6. Interestingly, these were not the respective 

extreme values for the variables. 

SPI NDVI SOI Predicted productivity 

-0,3 0,6 -0,2 6104,22 

-0,3 0,7 -0,2 6104,22 

-0,5 0,6 -0,2 6101,23 

-0,5 0,7 -0,2 6101,23 

-1,1 0,6 -0,2 6097,68 

-1,0 0,4 -0,6 1891,20 

-0,9 0,4 -0,6 1884,86 

-1,1 0,4 -0,6 1872,94 

-0,8 0,4 -0,6 1864,16 

-1,2 0,4 -0,6 1858,89 

Table 3. Prediction of yerba mate productivity. The top 5 

highest and lowest predictions are shown in the table with 

the respective values for each variable. 

 

4. DISCUSSION 

According to the results of the OLS model, there is a statis-

tically significant relationship between yerba mate produc-

tivity and the SOI and NDVI. If the NDVI increased by 0.1, 

the productivity would also rise by 902 kg/ha. The relation-

ship with the SOI was also positive. If the SOI increased by 

0.1, the productivity would rise by 101 kg/ha. The interpre-

tation of this value is not quite simple, which is mainly due 

to the nature of the linear model. It is doubtful that a strong 

La Niña event delivers higher yields than under normal con-

ditions. However, one could interpret that a drier event is bet-

ter for mate cultivation than too wet conditions, i.e. El Niño. 

There may be a connection to the possible irrigation of the 

plants, which was not controlled for in our model due to lack 

of data. 

The RF performed well considering the difficulty of predict-

ing numerical values ranging from 0 to 7,500 kg/ha. An ac-

curacy value of over 70% was satisfying, given that the MAE 

values were smaller than 0.7. 

Considering the predicted yerba mate productivity for the 

SPI, NDVI and SOI, a more complex image was given on the 

relationship between the variables. Predicting the expected 

production for certain SPI, NDVI and SOI values was helpful 

to understand the model's interpretation of the data. The great 

importance of the SOI combined with the fact that this vari-

able can be predicted up to six months in advance could be 

relevant for future research. 

The RF results indicated that the maximum yerba mate pro-

duction is to be expected during weak La Niña events. El 

Niño events, which tend to be weak in north-eastern Argen-

tina, on the other hand, were estimated to provide rather low 

yerba mate production. The relationship between vegetation 

vitality and productivity also appeared clear, with high NDVI 

values being related to high predicted production. For the 

SPI, the correlations were not quite so clear, as the values 

fluctuated strongly. However, negative SPI values, which 

represent drier phases, were most likely to be present in high 

forecasts. However, similar SPI values were also associated 

with very low predictions. The interpretation of this result 

was not entirely clear. It may even indicate a threshold value 

at which mate productivity tips. 

The methodology presented here should only be understood 

as a first approach to the topic, as the analysis relied only on 

very basic statistical methods. Other, non-linear types of re-

gression models or ML algorithms could provide more in-

sightful statements in future research on this topic. For this, 

data with a higher spatial resolution or an explicit geo-refer-

ence with regard to the cultivation areas would probably be 

advantageous. 

Several shortcomings of the methodology should be noted. 

As it was already mentioned, we were not able to control for 

irrigation practises on yerba mate plantations due to missing 

data. Furthermore, the extension of our research area to other 

regions with yerba mate plantations could be sensible. Par-

ticularly, an extension to the south of Brazil, the largest pro-

ducer of yerba mate (FAO 2021), could enhance the quality 

of the models. Since the employed variables, in particular the 

SOI, were not geographically explicit and not restricted to 

the plantations, a more pixel-based approach could be ade-

quate for future studies. Then, information on soil types or 

topography could also be considered. In order to make a 

more accurate statement regarding droughts, one could also 

use a logistic regression which is based on a binary classifi-

cation of the dependent variable. This was tested for our data, 

but it did not yield any significant results and was therefore 

discarded. However, it could be considered sensible for an-

other case study. 
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5. CONCLUSION 

According to the regression analysis performed in this paper, 

the relationship between the yerba mate productivity and the 

SOI and NDVI are both of high significance in north-eastern 

Argentina. Future monitoring of SOI values could be of im-

portance for the prediction of the Argentinian yerba mate 

production, as the highest productivity values were predicted 

for weak La Niña events. Even though there were some lim-

itations, the chosen methodology offers great potential for 

further use in other geographical regions, considering other 

crops and the integration of additional remote sensing infor-

mation. 
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