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ABSTRACT: 
 
Water is a valuable resource and an understanding of soil moisture dynamics is critical in many land management, agricultural and 
engineering applications. Satellite and UAV remote sensing platforms present an opportunity for rapid, cost-efficient data collection; 
however, soil moisture remote sensing presents unique challenges. Specifically, spectral bands near 1400nm and 1900nm associated 
with water are typically avoided in remote sensing data products due to strong interference by atmospheric moisture. Using soil 
reflectance data collected in the lab, this paper presents a number of linear equations which maybe be applied to predict soil moisture 
content from Landsat 5 MSS, 7 TM and 9 data, as well as other NIR sensors collecting data at 1720, 1782, 2140 and 2240nm.  
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1. INTRODUCTION 

Accurate measurements of soil moisture are valuable in 
numerous disciplines, including land management, agriculture 
and engineering (Ahlmer et al., 2018).  As a dynamic and 
spatially erratic variable, soil moisture measurements are most 
valuable when they are up-to-date, accurate, and available in 
high spatial resolution. With the rapidly expanding capabilities 
of satellite and UAV remote sensing platforms and sensors, it 
could be assumed that there is an opportunity to perform soil 
moisture measurements of high spatial and temporal resolution 
with remote sensing technologies. 
 
Soil moisture remote sensing presents unique challenges, 
however, as instrument design and atmospheric moisture (i.e 
humidity) interfere with spectral measurements of moisture on 
the land surface. Water molecules, comprised of two O – H 
bonds, vibrate and strongly absorb energy near  ~1400nm and 
~1900nm in the NIR (Viscarra Rossel et al., 2006). As the water 
content of the atmosphere is significant, and highly variable, it 
is common-place to exclude wavelengths ~1400nm and 
~1900nm from remote sensing data products due to 
exceptionally strong absorption at these wavelengths by 
atmospheric moisture (He et al., 2004). This means that NIR 
reflectance data associated with O – H absorption bands, which 
might be used to predict soil moisture content, are not available 
in most remote sensing data products and cannot be collected by 
most sensors designed for remote sensing platforms (Figure 1). 

 
Figure 1. Landsat 5 MSS, Landsat 7 ETM+ and Landsat 9 

sensors avoid absorption bands ~1400nm and 1900nm. 
Modified from Wulder et al. (2019). 

 

A number of studies have examined the relationship between 
soil moisture content (MC) and reflectance at visible and NIR 
wavelengths. However, none of the studies known to us 
explicitly quantified the domain of the relationship or the 
equation for the line of best fit. Bowers and Hanks (1965) refer 
to earlier studies which record a decrease in reflectance with 
increasing moisture content, while also presenting foundational 
results which describe the effects of moisture on soil 
reflectance. Results presented by Bowers and Hanks (1965) 
demonstrate that the absorption intensity of soil moisture is 
wavelength dependent, that the presence of soil moisture 
inhibits prediction of the soil organic matter content, that soil 
moisture generates two large absorption features near ~ 1400nm 
and 1900nm and masks the absorption feature near ~2200nm, 
which is not associated with water (Dematte et al., 2004; Gomez 
et al., 2008). A number of these broad trends are also recorded 
and reported by Bogrekci and Lee (2006), Lobell (2002) and 
Minasny et al. (2011).  
 
A number of other authors examining the relationship between 
soil reflectance and MC mention a ‘moisture threshold’ (Liu et 
al., 2009; Whiting et al., 2004) or ‘critical point’ in the 
relationship (Weidong et al., 2002), but do not provide detail 
regarding the position or conditions of this threshold. Hong et 
al. (2018) claim the presence of a clear differentiation in the 
relationship between visible-NIR (400–2500nm) soil reflectance 
and MC at exactly 17.66% MC. The nature of the reported 
relationships is also inconsistent, with varied reports of linear 
(Condit, 1972) and non-linear (Liu et al., 2009; Weidong et al., 
2002; Whiting et al., 2004) relationships, as well as some claims 
that no relationship exists (Stenberg et al., 2010).  
 
The presence of soil moisture also causes problems for the 
prediction of other soil properties from remotely-sensed and 
other soil reflectance data (Jiang et al., 2016; Stenberg et al., 
2010). A number of approaches have been trialled to remove the 
effects of soil moisture from soil reflectance data (without 
knowledge of the relationship between soil reflectance and MC) 
for the purpose of improving model predictions of other soil 
properties. These alternative approaches include: classifying 
samples into groups based on their moisture content (Demattê et 
al., 2004; Mouazen et al., 2006), estimating soil moisture 
content from the organic carbon content of a sample (Nocita et 
al., 2013), analysing data transformed with the first derivative 
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(Wu et al., 2009), or applying an external parameter 
orthogonalization algorithm (Minasny et al., 2011).  
 
In this study, the relationships between soil reflectance and 
moisture content are explicitly quantified using experimental 
data. Equations which represent the line of best fit and describe 
the relationship between soil reflectance and MC, are calculated 
from high-resolution soil reflectance data collected at >20 
moisture levels. Equations describing the relationship between 
soil MC and reflectance averaged over the Landsat 5 MSS 
(multi-spectral scanner), Landsat 7 TM (thematic mapper) and 
Landsat 9 bands (Figure 1) and other wavelengths are then 
presented.   
 
 

2. METHODS 

2.1 Soil samples 

Soil reflectance data was collected from ten surface soil samples 
from Muttama, NSW, Australia. All samples were collected 
from the same grazing paddock, with an approximate area of 
45ha. Samples were dried at 40°C after collection in 2019 and 
stored in plastic, screw-top jars in a temperature-controlled 
environment until reflectance data collection in May 2021. The 
clay, silt, sand, soil texture, organic matter and bulk density 
characteristics of the samples are detailed in Table 1. 
 

 
 
2.2 Soil preparation and drying  

50.0g of each sample was measured out into a glass petrie dish. 
Samples were dried to 0% MC by placing the petrie dishes in an 
oven at 105°C for 48–60 hours. This drying procedure is 
recommended by OEH (1990) to bring the soil moisture content 
to 0%.  
 
2.3 Moisture addition 

Water was added to each sample with a pipette, to increase the 
gravimetric MC by the desired 1% or 5% MC interval. The 
amount of water added to reach the desired SM content was 
calculated using the following equation (OEH, 1990): 
 
Soil water content (%) = [mass of moist soil (g) − mass of oven-
dried soil (g)/mass of oven-dried soil (g)] × 100   (1) 
 
In detail, 2.5ml of water was added and mixed in with a clean 
spoon to increase the SM content by 5%, while 0.5ml of water 
was added and mixed in to increase the SM content by 1%. 
Reasonable efforts were made not to crush soil aggregates or 
apply excessive force during mixing.  
 

2.4 Spectrometer calibration, data collection and software 

An ASD FieldSpec visible-NIR spectroradiometer was used to 
collect soil reflectance data in the range of 400–2500nm at 1nm 
resolution. The ASD includes a backlit, handheld, contact 
probe, connected to the spectrometer by a hard-wearing cable 
containing optical fibres. The contact probe is held against the 
soil surface during data collection, eliminating atmospheric 
absorption.  
Data were exported to a csv file using the ASD software 
package Indico Pro. A Spectralon-branded reflectance tile was 
used to calibrate reflectance measurement between each sample 
and each MC. Python libraries including pandas, numpy, 
matplotlib and seaborn were utilised for data cleaning, 
visualisation and analysis. The lmfit library was used to fit 
linear models and scipy utilised to generate fit-statistics. Models 
presented in Figures 2 to 8 were generated with soil reflectance 
data averaged across all ten soil samples.  
 
 

3. RESULTS 

When soil reflectance is averaged across the visible and NIR 
Landsat 5 MSS wavelengths, a monotonic relationship between 
soil MC and reflectance (Figure 2a) below 25% MC is apparent. 
Between 5 and 25% MC the relationship is linear (Figure 2b). 
Beyond 25% MC, reflectance is a poor indicator of MC.   
 
The relationship between soil MC in the domain of 5–25% MC, 
and reflectance averaged across the visible and NIR Landsat 5 
wavelengths can be described by the following equation:  
 
  y = -0.60x + 26.78   (2) 
 
A linear regression model fitted to this relationship returns an 
R2 value of 0.99, a standard error (SE) of 0.02, and a reduced 
chi-square of 0.20 
 

 

Figure 2(a & b). A monotonic relationship between soil MC 
and reflectance averaged across all the vis-NIR Landsat 5 

wavelengths is apparent below 25% MC. Between 5–25% MC, 
the relationship is linear. (Note SD is the standard deviation.) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-447-2022 | © Author(s) 2022. CC BY 4.0 License.

 
448



 

When reflectance data averaged across the Landsat 7 ETM+ and 
Landsat 9 wavelengths are considered as a function of MC, the 
monotonic decrease in reflectance continues to 30% MC, 
however the decrease is not linear beyond 25% MC. Linear 
models fit to reflectance data averaged across the Landsat 7 
ETM+ (Figure 3a) and Landsat 9 (Figure 4a) wavelengths 
returns an excellent fit in the 5–25% MC domain, with an R2 of 
1.00, SE of 0.02, reduced chi-square of 0.14 (Figure 3b), and R2 
of 1.00, SE of 0.01, reduced chi-square of 0.11 (Figure 4b), 
respectively.  
 
The equation for the line of best fit between soil MC and 
reflectance averaged across the Landsat 7 ETM+ wavelengths 
is: 
 
  y = -0.83x + 34.71   (3) 
 

Figure 3(a & b). A linear regression model between soil 
reflectance averaged across the Landsat 7 wavelengths and MC 

returns an excellent fit for the domain of 5 to 25% MC. 
 
The equation for the line of best fit between soil MC and 
reflectance averaged across the Landsat 9 wavelengths is: 
 
  y = -0.73x + 30.97  (4)  
 

 
Figure 4(a & b). A linear regression model fitted to reflectance 

data averaged across the Landsat 9 wavelengths, returns an 
excellent fit in the domain of 5–25% MC. 

 
Strong linear relationships between soil reflectance and MC are 
also apparent for other NIR wavelength combinations when 
basic addition or subtraction transformations are applied.  
 
Reflectance data from individual wavelengths can also be used 
in a number of ways to predict soil moisture content. For 
example, the sum of reflectance values at 2140 and 2240nm 
(Figure 5a) can be accurately described with an inverse linear 
relationship between 5 and 25% MC (Figure 5b) (R2 of 1.00, SE 
of 0.01, reduced chi-square of 0.21). The relationship should not 
be applied beyond this domain, however, as the linear 
relationship disappears (becomes “saturated”) above 25%MC 
(Figure 5a) and does not continue to 0% MC. The equation for 
the line of best fit for the linear relationship is: 
 
 y = -2.41x + 95.67   (5) 
 

Figure 5(a & b). There is a linear relationship between the sum 
of soil reflectance at 2140 & 2240nm and MC between 5 and 

25% MC. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-447-2022 | © Author(s) 2022. CC BY 4.0 License.

 
449



 

A linear model with very low error (R2 of 1.00, SE of 0.16, 
reduced chi-square of 0.24) can also be used to describe the 
relationship between soil MC and the difference between 
reflectance values at 2140 and 2240nm (Figure 6a & b).  

Figure 6(a & b). A linear model best describes the relationship 
between soil MC and the difference x between reflectance 

values at 2140 and 2240nm between 5 – 25% MC. 
 
Though the relationship shown in Figure 6a appears non-linear 
for the domain 0–55% MC, a linear model (Figure 6b) best 
describes the relationship at low MC’s from 0–25% MC. The 
equation for the line of best fit is for this domain is: 
 
 y = 8.90x + 31.37  (6) 
 
Reflectance data from 1720nm and 1782nm can be analysed in 
a similar way to identify linear relationships between soil 
moisture content and reflectance below 25% MC. When the 
sum of reflectance values at 1720 and 1782nm are added 
together and considered as a function of MC (Figure 7a & b), a 
linear relationship between 5–25% MC becomes apparent.  
 
In this case, the linear regression model fitted to this 
relationship returns an R2 value of 1.00, a SE of 0.01 and a 
reduced chi-square of 0.24.  
 
The equation of the line of best fit for this relationship is:  
 
 y = - 2.18x + 95.57  (7) 
 
 
 
 

 
Figure 7(a & b). There is a linear relationship between soil 

moisture content (y) in the domain of 5–25% MC and the sum 
(x) of reflectance at 1720 and 1782nm. 

 
 
Similarly, when the difference between reflectance values at 
1720 and 1782nm is compared to soil MC (Figure 8a & b), a 
linear relationship is also apparent in the domain of 5–25% MC. 
The line of best fit describing this relationship has the equation: 
 
  y = - 0.03x + 0.10  (8) 
 
This linear regression model returns an R2 value of 1.00, a SE of 
0.42 and a reduced chi-square of 0.07.  
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Figure 8(a & b). There is a linear relationship between soil MC 

and the difference between reflectance at 1720 and 1782nm. 
 
The simple transformations presented in Figures 5 to 8 and 
corresponding lines of best fit (Equations 5 to 8) demonstrate 
opportunity for soil moisture prediction from a variety of NIR 
wavelengths.  
 
 

4. DISCUSSION 

The results presented in this paper demonstrate strong linear 
relationships between soil MC and the reflectance of our soil 
samples at wavelengths corresponding to the Landsat bands and 
other NIR wavelength combinations. The results suggest that 
simple, linear algorithms could be applied to Landsat 5, 7, or 9, 
or other select NIR data for the purpose of soil MC prediction. 
All models and wavelength combinations proposed are practical 
for application to remote sensing data, as they avoid spectral 
bands around 1400 and 1900nm, the NIR bands most strongly 
affected by atmospheric moisture absorption.  
 
It is, however, important to recognise that there is a limit to the 
domain of the relationships presented in Figures 2 - 8. 
Therefore, equations 2 - 8 should only be applied when soil MC 
is expected to be in the range of 5 – 25% MC, with the 
exception of equation 6, which may be applied to the 0 – 25% 
MC range. Approximations of soil MC (used to determine the 
models’ applicability) may be determined with the Australian 
Landscape Water Balance (ALWB) tool (BOM, 2022). 
 
In the future, our models could be applied to remotely sensed 
surface reflectance data and tested against data from in-situ soil 
moisture probes. If the models perform well, it may be possible 
to improve the resolution and performance of the ALWB tool 
by integrating remote sensing data classified with the moisture 
content prediction models presented in this study. The ALWB 
tool relies upon local rainfall data and evapotranspiration, 
runoff, and deep drainage models to provide predictions of 
surface soil MC across Australia. In addition to testing the 
ALWB against our models and in situ MC data, the 
combination of the ALWB and soil MC models could also be 
used inversely to predict surface reflectance, a useful dataset for 
the correction of some remote sensing data products. 
 
The linear relationships shown in this paper are for a set of 10 
soil samples from a single Australian paddock. It might be 
questioned how universal these results are. Importantly, similar 
linear relationships are found in very similar MC domains when 
each soil sample is analysed separately, although precise 
relationships differ; for example see Figure 9(a & b).  

 

Figure 9(a & b). The reflectance of single samples e.g. 
ISS11(a) and ISS20(b) averaged across the Landsat 5 bands, 

decrease in a monotonic, linear fashion, as MC increases. The 
domain of the relationship varies slightly between soil types, 
but was typically recorded as 5 – 25% MC or 0 – 25% MC.  

 
Moreover, these samples were chosen essentially at random, in 
the sense that we used samples collected for independent 
projects by others which were available to us. These points 
suggest that most, if not all, soils will have linear relationships 
between MC in the approximate domain of 5-25% and the 
reflectance averaged over suitable domains of visible-NIR 
wavelengths. If so, then for any given soil (or set of averaged 
soils) it appears that measurements of the averaged reflectance 
at two different MC’s in the domain of 5-25% are sufficient to 
determine the relevant linear relationship and permit its use for 
remote sensing analyses. 
 
The presence of soil moisture is a significant impediment to the 
prediction of other soil properties (Angelopoulou et al. 2019; 
Soriano-Disla et al. 2014; Stenberg et al. 2002; Yaron et al., 
2019): for example, organic carbon, calcium, magnesium or 
clay content, cation exchange capacity (CEC), Fe content, pH 
and microbial activity. This is  due to water’s strong absorbance 
characteristics throughout the visible and NIR spectrum 
(Bowers and Hanks, 1965; Jiang et al., 2016). Recognising that 
soil moisture is a highly variable parameter across landscapes 
and causes significant absorption in the visible and NIR 
wavelengths (Yaron et al., 2019), it is recommended that 
professionals applying remote sensing data consider the effects 
of soil moisture when interpreting, correcting and considering 
the application of remote sensing data.  
 
Most ‘analysis-ready’ remote sensing data products are not 
corrected for the effects of soil moisture. Hence, temporal 
analyses employing time-series data are likely to be affected by 
varying levels of absorption by the soil, likely linearly 
proportional to the soil moisture content in the domain of 5 –
25% MC as shown here. Other soil components such as soil 
organic matter also include O – H bonds, with concentration 
predictions known to be impacted by water in the soil (Stenberg 
et al., 2002), especially in cases where the soil moisture content 
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is significantly higher than the organic matter content. In these, 
and numerous other circumstances, the prediction of land-
surface properties and temporal variability could be improved 
by correction of remotely sensed data for the effects of soil 
moisture.  
 
 

5. CONCLUSION 

Linear relationships between soil reflectance and MC are 
demonstrated for a number of Landsat band combinations and 
selected wavelengths at 1720, 1782, 2140 and 2240nm for a set 
of 10 soil samples, averaged together, from a single Australian 
paddock. Similar relationships exist for all the individual soil 
samples tested. Linear relationships are typically found in the 
domain 5–25% MC, but sometimes extend to 0% MC. Beyond 
25% MC, linear relations are not found for our samples and 
analyses. Importantly, below 25% MC, there are multiple 
wavelength domains for which linear relationships exist, which 
can be utilised to generate linear models for soil MC prediction. 
Linear models with R2 of ≥ 0.99, standard error of <0. 5, and 
reduced chi squared between 0 and 0.66 could be fit to all 
relationships presented. Though extensive work has been 
undertaken previously for the purposes of predicting soil 
moisture content and removing the effects of soil moisture from 
remotely sensed data, this study provides clarity on the nature of 
the relationship (linear), demonstrates the necessity to constrain 
a linear correction algorithm to an appropriate domain (5 – 25% 
MC in most cases), and provides equations which can be used 
to correct remote sensing data for the effects of soil moisture at 
commonly measured wavelengths. The existence of linear 
relations is expected to be robust, based on such relations 
existing for the individual soil samples, and when averaged over 
the set of 10, and considering the essential randomness of the 
choice of samples which were analysed. However, calibration 
for the precise soils of interest may be necessary, with 
measurements of the reflectance at two MCs (in the domain of 5 
– 25% MC) is required to quantify the relationship within the 
available error bars.  
 
 

ACKNOWLEDGEMENTS 

The ten soil samples utilized in this study were sourced from a 
soil store managed by Prof. Bishop from the University of 
Sydney’s School of Life and Environmental Sciences. We thank 
Prof. Bishop for access to these samples. We would also like to 
acknowledge the Australian Research Council (ARC) for their 
ongoing funding of CUAVA (the ARC Research Centre for 
CubeSat’s, UAV’s and their Applications) and Dr P. Barber and 
Dr B. Evans for their early contributions to this work.  

.  
 

REFERENCES 

 
Ahlmer, A.-K., Cavalli, M., Hansson, K., Koutsouris, A. J., 

Crema, S., & Kalantari, Z. (2018). Soil moisture 
remote-sensing applications for identification of 
flood-prone areas along transport infrastructure. 
Environmental earth sciences, 77(14), 1-17.  

Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., & 
Bochtis, D. (2019). Remote Sensing Techniques for 
Soil Organic Carbon Estimation: A Review. Remote 
Sensing, 11(6), 676.  

Australian Bureau of Meteorology (BOM). (2022, 14 Mar 
2022). Australian Landscape Water Balance. 

Retrieved from 
http://www.bom.gov.au/water/landscape/ 

Bogrekci, I., & Lee, W. (2006). Effects of soil moisture content 
on absorbance spectra of sandy soils in sensing 
phosphorus concentrations using UV-VIS-NIR 
spectroscopy. Transactions of the ASABE, 49(4), 
1175-1180.  

Bowers, S. A., Hanks, R. J. (1965). Reflection of Radiant 
Energy from Soils. Soil Science, 100(2).  

Condit, H. (1972). Application of characteristic vector analysis 
to the spectral energy distribution of daylight and the 
spectral reflectance of American soils. Applied optics, 
11(1), 74-86.  

Demattê, J. A., Campos, R. C., Alves, M. C., Fiorio, P. R., & 
Nanni, M. R. (2004). Visible–NIR reflectance: a new 
approach on soil evaluation. Geoderma, 121(1-2), 95-
112.  

Gomez, C., Lagacherie, P., & Coulouma, G. (2008). Continuum 
removal versus PLSR method for clay and calcium 
carbonate content estimation from laboratory and 
airborne hyperspectral measurements. Geoderma, 
148(2), 141-148.  

He, T., Wang, J., Guo, X., & Chen, Y. (2004). Study on 
applying hyperspectral remote sensing technology in 
land quality monitoring. Paper presented at the 
Remote Sensing for Environmental Monitoring, GIS 
Applications, and Geology IV. 

Hong, Y., Yu, L., Chen, Y., Liu, Y., Liu, Y., Liu, Y., & Cheng, 
H. (2018). Prediction of soil organic matter by VIS–
NIR spectroscopy using normalized soil moisture 
index as a proxy of soil moisture. Remote Sensing, 
10(1), 28.  

Jiang, Q., Chen, Y., Guo, L., Fei, T., & Qi, K. (2016). 
Estimating soil organic carbon of cropland soil at 
different levels of soil moisture using VIS-NIR 
spectroscopy. Remote Sensing, 8(9), 755.  

Liu, H.-J., Zhang, Y.-Z., Zhang, X.-L., Zhang, B., Kai-Shan, S., 
Zong-Ming, W., & Na, T. (2009). Quantitative 
analysis of moisture effect on black soil reflectance. 
Pedosphere, 19(4), 532-540.  

Lobell, D. B., Asner, G. P. (2002). Moisture effects on soil 
reflectance. Soil Science Society of America Journal, 
66(3), 722-727.  

Minasny, B., McBratney, A. B., Bellon-Maurel, V., Roger, J.-
M., Gobrecht, A., Ferrand, L., & Joalland, S. (2011). 
Removing the effect of soil moisture from NIR 
diffuse reflectance spectra for the prediction of soil 
organic carbon. Geoderma, 167, 118-124.  

Mouazen, A., De Baerdemaeker, J., & Ramon, H. (2006). Effect 
of wavelength range on the measurement accuracy of 
some selected soil constituents using visual-near 
infrared spectroscopy. Journal of Near Infrared 
Spectroscopy, 14(3), 189-199.  

Nocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2013). 
Prediction of soil organic carbon for different levels 
of soil moisture using Vis-NIR spectroscopy. 
Geoderma, 199, 37-42.  

Office of Environment and Heritage. (1990). Soil Survey 
Standard Test Method - Soil Moisture Content.  

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., 
Macdonald, L. M., & McLaughlin, M. J. (2014). The 
Performance of Visible, Near-, and Mid-Infrared 
Reflectance Spectroscopy for Prediction of Soil 
Physical, Chemical, and Biological Properties. 
Applied Spectroscopy Reviews, 49(2), 139-186. 
doi:10.1080/05704928.2013.811081 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-447-2022 | © Author(s) 2022. CC BY 4.0 License.

 
452

http://www.bom.gov.au/water/landscape/


 

Stenberg, B., Jonsson, A., & Börjesson, T. (2002). Near 
infrared technology for soil analysis with implications 
for precision agriculture. Paper presented at the Near 
infrared spectroscopy: Proceedings of the 10th 
International Conference, Kyongju South Korea. NIR 
publications, Chichester, UK. 

Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & 
Wetterlind, J. (2010). Visible and Near Infrared 
Spectroscopy in Soil Science. In Advances in 
Agronomy (Vol. 107, pp. 163-215): Elsevier. 

Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., 
Janik, L. J., Skjemstad, J. O. (2006). Visible, near 
infrared, mid infrared or combined diffuse reflectance 
spectroscopy for simultaneous assessment of various 
soil properties. Geoderma, 131(1-2).  

Weidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z., & 
Bing, Z. (2002). Relating soil surface moisture to 
reflectance. Remote Sensing of Environment, 81(2), 
238-246.  

Whiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water 
content using Gaussian model on soil spectra. Remote 
sensing of environment, 89(4), 535-552.  

Wu, C., Wu, J., Luo, Y., Zhang, L., & DeGloria, S. D. (2009). 
Spatial prediction of soil organic matter content using 
cokriging with remotely sensed data. Soil Science 
Society of America Journal, 73(4), 1202-1208.  

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., 
Masek, J. G., Woodcock, C. E., . . . Cohen, W. B. 
(2019). Current status of Landsat program, science, 
and applications. Remote sensing of Environment, 
225, 127-147.  

Yaron, O., Faigenbaum-Golovin, S., Granot, A., Shkolnisky, Y., 
Goldshleger, N., & Eyal, B.-D. (2019). Removing 
moisture effect on soil reflectance properties: A case 
study of clay content prediction. Pedosphere, 29(4), 
421-431.  

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-447-2022 | © Author(s) 2022. CC BY 4.0 License.

 
453


	SOIL MOISTURE PREDICTION WITH MULTISPECTRAL VISIBLE AND NIR REMOTE SENSING
	1. Introduction
	2. Methods
	2.1 Soil samples
	2.2 Soil preparation and drying
	2.3 Moisture addition
	2.4 Spectrometer calibration, data collection and software

	3. Results
	4. Discussion
	5. Conclusion
	Acknowledgements
	References



