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ABSTRACT:

Deep-learning-based image classification and object detection has been applied successfully to tree monitoring. However, studies
of tree crowns and fallen trees, especially on flood inundated areas, remain largely unexplored. Detection of degraded tree trunks on
natural environments such as water, mudflats, and natural vegetated areas is challenging due to the mixed colour image backgrounds.
In this paper, Unmanned Aerial Vehicles (UAVs), or drones, with embedded RGB cameras were used to capture the fallen Acacia
Xanthophloea trees from six designated plots around Lake Nakuru, Kenya. Motivated by the need to detect fallen trees around
the lake, two well-established deep neural networks, i.e. Faster Region-based Convolution Neural Network (Faster R-CNN) and
Retina-Net were used for fallen tree detection. A total of 7,590 annotations of three classes on 256×256 image patches were used
for this study. Experimental results show the relevance of deep learning in this context, with Retina-Net model achieving 38.9%
precision and 57.9% recall.

1. INTRODUCTION

Forest detection has been embraced in many studies using dif-
ferent types of remotely sensed datasets, captured from differ-
ent aerial and satellite sensor platforms. Assessment of fallen
trees is an important step to characterize forest health. Accord-
ing to Torres et al. (2021), most of the studies have been applied
mainly in America and Europe with the most frequently used
data being multipectral imagery from Landsat sensors (She et
al., 2015). The recently launched Sentinel-2 have shown less
capability in detecting individual vegetation species (Nzimande
et al., 2021). UAV remotely-sensed images are ideal for forest
health assessment since they provide optical imagery with high
geometric spatial resolution (10-40cm) (Naik et al., 2021).
Conversely, coarse ground resolution satellite imagery from op-
tical sensors does not allow to capture the geometric structure of
fallen trees (Naik et al., 2021), and hence remains mainly used
for classification at local and regional scales (Gorelick et al.,
2017). Other studies have also shown that incorporating LiDAR
data with multispectral imagery improved the prediction of tree
height estimation and canopy detection models within natural
forests (Manzanera et al., 2016).

Despite the reliability of LiDAR data, its means of acquisition
remains more expensive than that of UAV based data (Am-
patzidis et al., 2019). Moreover, models based on LiDAR data
(especially in relation to above ground biomass or fallen trees)
highly depends on the type of forest under study and the level
of tree degradation on site (Galidaki et al., 2017). Synthetic
Aperture Radar (SAR) data with longer wavelengths and cross-
polarization capabilities have also been used in fallen tree stud-
ies. Models created using SAR data produce uncertainty and
variance in modelling accuracy of above ground biomass (Dal-
ponte et al., 2018; Naik et al., 2021). On the contrary, Osio
and Lefèvre (2021) confirmed that the use of SAR-C channels
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captured in Single Look Complex mode in conjunction with
machine learning models and object-oriented approach yielded
the best results with an Overall Accuracy (OA) of 98.1% and
a Kappa of 97.0%, hence improving the above ground biomass
classification on the Acacia xanthophloea strands around Lake
Nakuru, Kenya. Despite achieving results at local scale, such
a model was not suitable to capture individual degraded Aca-
cia xanthophloea target trees that are fallen around the lake. In
recent times, the deep learning paradigm with models tailored
at image classification and detection has become a standard
methodology in remote sensing studies. The main advantage
provided by deep learning over classical machine learning ap-
proaches is that models created using deep learning can learn
and extract information directly from input data, not requiring a
costly feature engineering step. These models can then be used
to detect and predict similar features on the entire scene under
investigation.

Deep learning has been used in many studies in recent times
including automatic extraction of ice-wedge polygons using
Mask R-CNN framework on both high-resolution imagery and
UAV, producing F1 Scores of 72% and 70% respectively (Zhang
et al., 2020). Santos et al. (2019) made a comparison of three
different deep learning frameworks, namely YOLOv3, Faster
Region Based Convolutional Neural Networks (Faster R-CNN),
and RetinaNet to assess a time series of RGB images in the con-
text of tree crown detection achieving an overall average preci-
sion (AP) of 92%. Other studies have used object-based image
analysis approach to detect coarse wood debris (CWD) from
unmanned aerial systems in conjunction with LiDAR point
clouds (Thiel et al., 2020). The authors reported an overall av-
erage precision (mAP) of 85% and a recall of 69.2%. However,
they pointed out that the results achieved using very high res-
olution imagery and their line detection algorithm over CWD
areas could be improved using deep learning approaches (Jiang
et al., 2019). Further concerns by the authors involved contro-
versy about the application of deep learning frameworks on tree
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Figure 1. The geographic position of UAV flight missions around Lake Nakuru, projected at WGS84, UTM Zone 37S.

species, pointing out the challenge in model transferabilty onto
similar scene.

In this paper, we evaluate off-the-shelf deep architectures in de-
tecting fallen trees of the Acacia Xanthophloea trees around
Lake Nakuru National Park, Kenya. The wetland was desig-
nated amongst wetlands of international importance (Odada et
al., 2004) as Ramser site number 476 on 5th June, 1990. Kenya,
being a signatory to the Conference of Parties (COP) based on
the Ramser convention in 1971 (Davidson et al., 2019) is re-
quired to actively conserve and make wise use of Lake Nakuru
wetlands in a sustainable manner.

It is important to quantify dead woody Acacia xanthophloea
since, according to previous studies their presence improves
biological diversity within live forests such as the introduction
of mosses and lichens which attracts migratory birds in the Na-
tional Park (Vareschi and Jacobs, 1985; Harmon et al., 1986;
Nordén et al., 2008). The downed Acacia xanthophloea was
not caused by any climatic factors but rather by the increased
volume of water due to sedimentation (Iradukunda et al., 2020)
in Lake Nakuru which overflown its bank (Osio et al., 2018),
hence weakening the riparian trees from their roots, causing
them to fall. Coarse fallen woody debris in water-bodies i.e.
lakes and streams are known to increase channel complexity,
which contributes to the improvement of habitat quality hence
increasing nutrient retention inside stream systems (Cowden,
2002; Swanson and Franklin, 1992). Previous research by Bis-
son et al. (1992) reported reduction in habitat quality in streams
that underwent traditional clearance of the deadwood in their
stream systems.

UAV flight missions around the lake revealed massive destruc-

tion of the trees, especially inside the water body and on the
mudflats. Therefore, the purpose of this study was to provide a
state-of-the-art model based on the detection and classification
of fallen trees around the lake, hence enabling the wildlife and
forest conservation managers to make informed decision on the
fallen Acacia xanthophloea trees. More precisely, our main goal
is to evaluate the performance of well-established deep neural
networks over UAV-based fallen tree datasets.To the best of our
knowledge, there are no known studies that have been carried
out on the detection of fallen Acacia xanthophloea around Lake
Nakuru, using UAV/RGB in conjunction with deep learning ap-
proaches.

2. MATERIALS AND METHODS

2.1 Study Site

Lake Nakuru National park is located in Nakuru County (see
Fig. 1), approximately 170 km away from Nairobi. The Park
is situated geographically at Latitudes 0◦18’S and 0◦27’S and
Longitude 36◦1.5’E and 39◦9.25’E within the Kenyan Rift val-
ley (Mubea and Menz, 2012). Before the recent flooding, its
bottom was initially about 1,756 m above sea level while the
surface of the water was at 1,758.5m above sea level. The alti-
tude ranges from 1,760-2,080m above sea level (Iradukunda et
al., 2020). Mean annual rainfall ranges between 876mm and
1,050mm and has an inherent bi-modal pattern (Odada et al.,
2004). The long rains start in March and end in June while the
short rains occur between October and December. Mean daily
minimum and maximum temperatures fluctuate between 8.2◦C
and 25.6◦C (Ng’weno et al., 2010). Lake Nakuru has no out-
lets and hence evaporation is the only factor that accounts for
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Figure 2. The six flight missions captured from different sites around the Lake using DJI Phantom 4, SDK Drone. The overlay vector
polygons were derived from QGIS-based forest detection plugin, Mapflow.ai representing the detected trees on each imagery.

water loss. Four seasonal rivers feed the lake, i.e. Lamurdiak,
Makalia, Enderit and Enjoro. Acacia xanthophloea tree patches
have been in existence on the Northern, Southern, Eastern and
Western side of the lake for decades. The soils on the shores
of this lake are volcanic and shallow in nature. Underneath the
Acacia savanna were the open grasslands thriving on soils and
ashes that were well-drained, friable to sandy clay loams (see
Fig. 2). Recent studies have shown that the health of Acacia
xanthophloea trees have been degrading since the year 2010
due to the persistent flooding around the lake (Osio et al., 2020;
Osio and Lefèvre, 2021).

2.2 Data Capture

Unmanned Aerial Vehicles (UAV) drone imageries were cap-
tured across six sites around the lake in the early September
2021 for 5 consecutive days, see Fig. 2. The UAV drone used
for the ground surveys was a DJI Phantom 4 RTK SDK, all
its specification are reported in Tab. 1. Images with a mean
Ground Sampling distance (GSD) of 4.84cm and covering ap-
proximately 6.1 square kilometers were captured across six des-
ignated sites around the Lake Nakuru National Park. The sur-
veyed areas were mainly near the lake shorelines where a large
number of degradation were observed during the flight plan-
ning stage. A total of 9,056 training image patches were gener-
ated from the six images (see Figure 3) with 7,590 tree samples
annotated from the training sets. The fallen trees are classi-
fied into 3 classes according to their background, namely Water
(W), Land (L), and Mudflat (M) as shown in Fig. 3.

2.3 General Workflow

The study consisted of 4 steps. On the first step, images are
acquired from a UAV/RGB drone platform. Then, patches of
non-overlapping 256-pixel squares are extracted from the ac-
quired images and randomly sampled to training and test set.
The fallen Acacia xanthophloea trees from the image patches
are annotated with bounding boxes using the LabelImg1 tool.
Finally, the training image patches with their annotations are
used to train a deep convolutional neural network (CNN) while
the mutually exclusive test set is used to report the performance
of the network on unseen data.

Deep learning for object detection Object detection is made
of 2 subtasks, (1) localizing an object of interest in an image
with a bounding box and (2) categorizing the box with the cor-
rect class. The tasks could be performed in a 2-step process,
with the bounding boxes first proposed then classified, or all
at once, leading to the so-called 1-stage detectors. The exem-
plar model for each type of architecture include Faster Region
based Convolutional Neural Networks (Faster RCNN) (Ren et
al., 2015) and RetinaNet (Lin et al., 2017), respectively. In this
study, we evaluate these two models for detecting fallen trees
around the Lake Nakuru.

Faster RCNN The Region-based CNN (RCNN) laid the
groundwork for deep-learning-based object detection (Gir-
shick et al., 2014) with bounding boxes proposed by Selective
1 https://github.com/tzutalin/labelImg
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Figure 3. The three sample classes and numbers of annotations in the dataset: from left to right, dead trees on land (2,514 boxes), dead
trees on mudflat (2,077 boxes), and dead trees on water (2,999 boxes).

Search (Uijlings et al., 2013). Fast R-CNN (Gkioxari et al.,
2015) speeds up the process by introducing the region of in-
terest (ROI), pooling layer and inputting the full image instead
of just the proposals to the deep network. Significant acceler-
ation is achieved by Faster RCNN when a sub-network, called
Region Proposal Network (RPN), is used to generate the pro-
posal boxes in place of Selective Search and both 2 stages can
be trained end-to-end.

The vanilla Faster RCNN architecture extracts low-level im-
age features by passing an input image through several con-
volutional blocks, called a backbone (sub-)network. The fea-
tures are then shared between both the region proposal network
(RPN) and region of interest (ROI) head. The Region Proposal
Network (RPN) generates a number of proposal boxes, 2000
by default, from which the corresponding features are obtained
and classified by the ROI head (sub-)network. The classifier is
a multi-layer perceptron (MLP).

RetinaNet RetinaNet (Lin et al., 2017) is a single-stage ar-
chitecture for object detection. It consists of (i) a classification
sub-network which predicts the probability of an object occur-
rence at each spatial location for each annotated box and object
class, (ii) a regression sub-network that regresses the offset for
the bounding boxes from the annotated boxes for each ground-
truth object, (iii) a bottom-up pathway which consists of the
backbone network (ResNet) whose role is to calculate the fea-
ture maps at different scales, and (iv) a top-down pathway that
up-samples the spatially coarser feature maps from higher pyr-
amid levels. Lateral connections are included to merge top-
down layers and bottom-up layers with the same spatial size.
Specifically, the Feature Pyramid Network (FPN) is proposed
for feature extraction through upsampling or downsampling ap-
proach and relies on the focal loss objective function.

2.4 Experimental setup

In this study, we use the implementation of Faster RCNN and
RetinaNet provided in the Detectron2 library as previously im-
plemented by Wu et al. (2019).

In relation to this experiment, all the annotations from the
three classes, namely dead tree on Land (L), Water (W) and
Mudflat (M) were sampled into two parts consisting of train-
ing/validation and testing set. From each given class of the
dataset, 80% of the samples across all the missions were used
for training/validation while 20% remained for testing. This

particular design was adopted to cater for imbalances within
the datasets across the 6 missions (Fig. 2). Missions 3 and 4
have particularly fewer annotations compared to the rest of the
missions.

Metrics We follow the Common Objects in Context (COCO)
challenge for quantitative assessment, as demonstrated by Lin
et al. (2014). The challenge employs the standard definition of
precision (P) and recall (R) based on the notion of true positive
(TP), false positive (FP), and false negative (FN):

P =
TP

TP + FP
R =

TP
TP + FN

F1 = 2
P × R
P + R

(1)

The COCO metric differs in the definition of a positive box pre-
diction, for which the intersection over union (IoU, or Jaccard
index) of it with ground truth boxes are computed. IoU meas-
ures the ratio between the overlapping area of the two boxes
divided by the area covered by their union. As such, the num-
ber of positive boxes changes according to the IoU level: higher
IoU threshold (max of 1 or 100%) results in fewer positive pre-
dictions and thus, lower measurement.

At an IoU threshold, the boxes with at least (or higher than)
the given level are considered positive, true or false depending
on the predicted class, and are used to compute precision and
recall. In this paper, the precision are computed for each of
pre-defined recall values (101 values from 0 to 1 with step of
0.01), which are used to plot the precision-recall (PR) curve.
We also report the average precision (AP), average recall (AR),
and subsequently F1-score using Eq. 1 for 2 IoU levels, 0.50
and 0.75. The average precision is taken across all recall levels
and equal to the area under the PR-curve:

N∑
j=1

p(k)∆r(k), (2)

where N is the total number of images in the collection, p(k) is
the precision at a cutoff of k images, and ∆r(k) is the change
in recall that happened between cutoff k − 1 and cutoff k.

3. RESULTS

We provide in Fig. 6 and Fig. 7 the Precision-Recall curves for
the two deep neural networks considered in our study. When
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Figure 4. Sample results from different scenes using RetinaNet,
with average precision (AP) averaging over all IoU levels in

[0.5, 0.95], step size 0.05 and (50 being precision at IoU ≥ 0.5)
on three classes: Dead Tree in Water (W), on Land (L), and on
Mudflat (M). Ground truths are shown on the left and predicted

bounding boxes on the right. The confidence levels (%) are
shown on the bounding boxes.

Figure 5. Sample results from different scenes using
Faster-RCNN, with average precision (AP) averaging over all
IoU levels in [0.5, 0.95], step size 0.05 and (50 being precision

at IoU ≥ 0.5) on three classes: Dead Tree in Water (W), on
Land (L), and on Mudflat (M). Ground truths are shown on the
left and predicted bounding boxes on the right. The confidence

levels (%) are shown on the bounding boxes.
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comparing RetinaNet and Faster RCNN, one can observe that
the former delivers higher average AP results (38.85%) than the
latter (37.21%) considering an IoU threshold of 0.5. Neverthe-
less, the difference remains within a small margin. In terms of
Average Precision per class, RetinaNet performs best for both
classes “Land” and “Water” (with improvement of 2-4%) but
worse for class “Mudflat” (degradation of 2%).

Considering a higher IoU threshold of 0.75, the methods reach
lower APs. Again, RetinaNet performs better than Faster
RCNN (also with a small margin). A classwise analysis leads to
somehow different conclusions, with RetinaNet achieving bet-
ter results for classes “Mudflat” and “Water”, Faster RCNN for
“Land”. The margin being very small, one should take these
results with caution.

We then show in Fig. 4 and Fig. 5 some visualization res-
ults achieved by RetinaNet and Faster RCNN per each given
class. All classes were predicted with a high confidence level
as shown at the edge of the bounding boxes. Illustrations also
include the average Precision (AP) reported per class and mean
Average Precision (mAP) on all the bounding boxes of a spe-
cific class (shown in red values).

4. DISCUSSION

The model that achieves the best performances (Precision and
Recall) was the RetinaNet with a setting IoU ≥ 0.5, as shown
in Tab. 2. These results corroborates with recent studies carried
out by Santos et al. (2019) where RetinaNet outperformed two
other variants, namely YoloV3 and Faster-RCNN. Similar stud-
ies by Alon et al. (2019) involving tree crown detection with
UAV orthophotos and LiDAR point clouds had promising res-
ults with RetinaNet as well.

The overall Average Precision (AP) reported with RetinaNet
was 43.85%. Usually AP or Area Under the Curve are nor-
mally used on imbalanced datasets. Datasets with low true pos-
itive rates (TPR) and high false positive (FP) and false negative
(FN) rates usually produce low Precision and Recall. In the
case of our UAV dataset, annotations were carried out on the
fallen trees which exhibited different backgrounds, i.e. mudflat,
water and land. Class “water” had the highest detection rates
with an AP .

= 43.85% due to uniformity of their background,
while class “mudflat” shows the opposite behavior due to the
background non-uniformity.

It is well-known that a deep network’s performance is impacted
by the number of annotations and image patches derived from
the UAV dataset, as already shown in recent studies by Hägele
et al. (2020). Although a large number of annotations are em-
ployed in this study (9,056 patches with 7,590 annotations), the
performance is incomparable with tree crown detection using
RetinaNet (Santos et al., 2019) which reportedly achieves AP of
92.64% on 392 image patches. We observed that two different
areas might come with very different visual features and land-
scapes, hence problems with varying difficulty to tackle. More
precisely, the tree crown detection problem is much simpler
(thus leading to higher detection rates) due to the tree crown
uniformity (shape factor) than our use case, where we had to
deal with coarse wood debris (tree biomass) which come in
different shapes and backgrounds, hence the creation of noise
within networks.

We observed that the complexity of the proposed approaches
which are based on both networks were trained on a cluster

UAV Features DJI Phantom 4 RTK
Frequencies used GPS:L1/L2; GLONASS:L1/L2
Positional Accuracy H: 1.5cm; V:1cm; Both +1ppm (RMS)
Image Sensor CMOS 1”
Max resolution 4864×3648 (4:3); 5472×3648 (3:2)
Field of view 84◦

Mechanical Shutter 8-1/2000s
Data format Photo (JPEG), Video (MOV)

Table 1. Da-Jiang Innovations Science & Technology Co. Ltd
(DJI) Real Time Kinematic (RTK) of Phantom 4 Specifications

according to (Phantom, 2018).

IoU RetinaNet Faster RCNN
Precision Recall F1 Score Precision Recall F1 Score

0.50 38.9% 57.9% 46.5% 37.2% 53.2% 43.8%
0.75 14.1% 29.0% 19.0% 14.0% 27.7% 18.8%

Table 2. Quantitative results obtained with the two deep neural
networks and two IoU thresholds.

node with 2 CPU x 20 E5-2687W v3 @ 3.10GHz, 396G RAM,
and 1 NVIDIA GeForce GTX Titan-X of 12.2GB VRAM,
which are shared among cluster users. The Faster RCNN with
ResNet50 backbone and FPN contains 17,260,319 parameters
while the RetinaNet model with the same backbone contains
around 14,460,660 parameters.

5. CONCLUSION

In this study, we dealt with the detection of fallen Acacia
xanthophloea trees, on which we evaluated two competitive
CNN models, i.e. Faster-RCNN and RetinaNet using images
captured by UAV with RGB Cameras on board. The networks
were trained and assessed using a dataset made of 9,056 image
patches and 7,590 annotations on bounding boxes. RetinaNet
achieved overall Precision of 38.9% and Recall of 57.9%.

These results indicate that RGB Cameras embedded on UAV
in conjunction with deep neural networks could possibly lead
to the development of operational tools for the detection of
fallen Acacia xanthophloea trees on different environmental
backgrounds. This could also help in carrying out demographic
surveys on fallen Acacia xanthophloea trees around the Park
and in similar environments. Fallen Acacia xanthophloea tree
demography could help ecologists and conservationists in quan-
tifying the magnitude of Acacia tree degradation around Lake
Nakuru. This model can be applied on other areas with similar
characteristics such as fallen trees along the riparian reserve of
other Rift valley lakes. Future studies should look into combin-
ing UAV-based images and their point clouds for tree detection
and classification using deep networks.
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Hägele, M., Seegerer, P., Lapuschkin, S., Bockmayr,
M., Samek, W., Klauschen, F., Müller, K.-R., Binder,
A., 2020. Resolving challenges in deep learning-based
analyses of histopathological images using explanation
methods. Scientific reports, 10(1), 1–12.

Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins,
P., Gregory, S., Lattin, J., Anderson, N., Cline, S., Au-
men, N., Sedell, J. et al., 1986. Ecology of coarse woody

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-455-2022 | © Author(s) 2022. CC BY 4.0 License.

 
461



debris in temperate ecosystems. Advances in ecological
research, 15, 133–302.

Iradukunda, P., Sang, J. K., Nyadawa, M. O., Maina, C. W.,
2020. Sedimentation effect on the storage capacity in
lake Nakuru, Kenya. Journal of Sustainable Research in
Engineering, 5(3), 149–158.

Jiang, S., Yao, W., Heurich, M. et al., 2019. Dead wood
detection based on semantic segmentation of vhr aerial
cir imagery using optimized fcn-densenet. The Interna-
tional Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 42, 127–133.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P., 2017.
Focal loss for dense object detection. Proceedings of
the IEEE International Conference on Computer Vision
(ICCV).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C. L., 2014. Microsoft
COCO: Common objects in context. European Confer-
ence on Computer Vision, Springer, 740–755.

Manzanera, J. A., Garcı́a-Abril, A., Pascual, C., Tejera, R.,
Martı́n-Fernández, S., Tokola, T., Valbuena, R., 2016.
Fusion of airborne LiDAR and multispectral sensors re-
veals synergic capabilities in forest structure character-
ization. GIScience & Remote Sensing, 53(6), 723–738.

Mubea, K., Menz, G., 2012. Monitoring land-use change
in Nakuru (Kenya) using multi-sensor satellite data.

Naik, P., Dalponte, M., Bruzzone, L., 2021. Prediction
of Forest Aboveground Biomass Using Multitemporal
Multispectral Remote Sensing Data. Remote Sensing,
13(7), 1282.

Ng’weno, C. C., Mwasi, S. M., Kairu, J. K., 2010. Dis-
tribution, density and impact of invasive plants in Lake
Nakuru National Park, Kenya. African Journal of Eco-
logy, 48(4), 905–913.

Nordén, B., Götmark, F., Ryberg, M., Paltto, H., Allmer,
J., 2008. Partial cutting reduces species richness of fungi
on woody debris in oak-rich forests. Canadian Journal
of Forest Research, 38(7), 1807–1816.

Nzimande, N., Mutanga, O., Kiala, Z., Sibanda, M., 2021.
Mapping the spatial distribution of the yellowwood
tree (Podocarpus henkelii) in the Weza-Ngele forest us-
ing the newly launched Sentinel-2 multispectral imager
data. South African Geographical Journal, 103(2), 204–
222.

Odada, E., Raini, J., Ndetei, R., 2004. Experiences and
lessons learned brief, Lake Nakuru. Lake Basin Man-
agement Initiative: Main Report.
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Osio, A., Lefèvre, S., Ogao, P., Ayugi, S., 2018. Obia-
based monitoring of riparian vegetation applied to the
identification of degraded acacia xanthophloea along
lake nakuru, kenya. GEOBIA 2018-From pixels to eco-
systems and global sustainability, 18–22.
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