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ABSTRACT:

Drought events in the Philippines have resulted in a significant loss in crop production. This study investigated the drought de-
velopment during the 2019 weak El Niño using different drought indices at a country and local scale. Satellite data from MODIS
were used to derive Normalized Difference Vegetation Index (NDVI) anomaly, Vegetation Health Index (VHI), and Standardized
Vegetation and Temperature Ratio (SVTR), while TRMM was used for the Standardized Precipitation Index (SPI). These indices
were compared with crop production data at national scale and crop damage reports at local scale. The results showed consistency in
the spatiotemporal variation of drought events, where drought peak occurred during March to April in most indices and indicators.
Based on the values of SPI, the areas with rainfall deficit increased from January to April (25% to almost 100%), but looking at
vegetation stress, around 50% was affected, as seen by SVTR and VHI. Yield loss during the first and second quarter after the El
Niño peak increased up to 20%, especially in the western region in the Philippines. Overall findings demonstrate the relevance of
utilizing multiple drought indices and indicators that characterize drought evolution, from drought onset to the peak of agricultural
drought, which is essential in developing a robust drought metric for the Philippines.

1. INTRODUCTION

In the last few decades, the trend in Philippine crop produc-
tion has increased through improved practices in agriculture and
genetics (Branca et al., 2011). Investments in yield and acre-
age are owed to innovations in agricultural practices, increasing
the rice production from ∼3.9 million tonnes in 1961 to ∼19.0
million tonnes in 2018 (FAOSTAT, 2020). However, this up-
ward trend has been interrupted with episodes of drought where
severe events are often associated with El Niño (Stuecker et al.,
2018). From 2015 to 2019, two El Niño episodes with different
magnitudes (weak and strong) have impacted the country’s ag-
ricultural sector, which resulted in an approximately USD 157
and 327 million worth of crop damages, respectively. Severe
droughts in the Philippines prompted drought mitigation meas-
ures such as the formation of the El Niño Task Force and the
drought advisories issued by the Department of Science Tech-
nology - Philippine Atmospheric, Geophysical and Astronom-
ical Services Administration (DOST-PAGASA), the weather
bureau of the country, as a directive to monitor the phenomenon
closely (Urich et al., 2009). These advisories are primarily
based on ground-derived rainfall data and do not include vari-
ables important to agriculture such as vegetation health and
temperature.

Drought usually begins with precipitation deficit (also known
as meteorological drought) then leads to soil moisture defi-
cit and higher land surface temperature, which eventually af-
fects vegetation growth (also known as agricultural drought)
(Gillette, 1950). It is then critical to consider the spatiotem-
poral dynamics of different key drought-related variables to un-
derstand drought propagation especially in vulnerable agricul-
tural areas. Concurrent with the advances in remote sensing,
drought monitoring approaches began maximizing satellite-
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derived variables, such as rainfall, Land Surface Temperature
(LST), and Normalized Difference Vegetation Index (NDVI) to
derive drought indicators and indices. Anomalous behaviour
of these variables indicates early stages of dry conditions and
vegetation stress.

Several studies have developed drought indices and examined
their capabilities in monitoring and characterizing agricultural
drought, where rainfall was solely used as an early indicator
(McKee et al., 1993) while NDVI and LST were used to rep-
resent soil moisture stress. Kogan et al. (1990) developed
the Vegetation Health Index (VHI) using NDVI and LST data
to measure drought intensity and duration across locations.
Due to the sensitivity of VHI with precipitation and temper-
ature variations, it can be used in developing a comprehens-
ive, crop-specific index such as Agricultural Stress Index (ASI)
in which it integrates the spatial and temporal dimensions of
VHI coupled with crop coefficients as input parameters (Rojas,
2020). On the other hand, a localized agricultural drought in-
dex was developed and tested during the 2015-2016 drought in
the Philippines (Perez et al., 2016). The study showed that the
Standardized Vegetation Temperature Ratio (SVTR), with sim-
ilar parameters such as in VHI, was able to detect below-normal
rice yields across different climate types in the country.

To the author’s knowledge, there has not been a comprehensive
study that utilizes well-established drought indices in charac-
terizing drought development in the country. This study aims
to describe the drought development in the country during the
2019 weak El Niño using multiple drought indices, namely
NDVI, SPI, VHI, and SVTR during and after the El Niño period
at a country and local scale. At the country scale assessment,
spatiotemporal dynamics of drought indicators and indices were
investigated through time series analysis. Moreover, drought
development was further assessed in a drought-affected region
of Occidental Mindoro against rice and corn crop damages
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from provincial records. In this study, the authors acknow-
ledge the limitation of only looking at a single drought event us-
ing moderate satellite resolution products at monthly observa-
tions, which limits the detailed variation of the vegetation con-
dition during a drought event. However, the investigation adds
value in understanding drought propagation in the Philippines,
as drought vulnerable regions are determined and studied. The
study also emphasizes the importance of available correspond-
ing ground data that permits the monitoring of drought at a local
scale.

2. MATERIALS AND METHODS

Drought assessment in the Philippines was conducted within
August 2018 to September 2019, which covers the months un-
der El Niño (Figure 1) and the period after the event. The
Oceanic Niño Index (ONI) is the three-month running mean of
sea surface temperature anomalies in the Niño 3.4 region. An
El Niño event is declared when ONI reaches 0.5°C or above for
five consecutive months. In late 2018, ONI values went up to
0.7°C starting October, peaked at 0.9°C the following month
and was consistent at 0.8°C for four consecutive months until
it dropped to 0.3°C in July 2019, which depicts the termination
of El Niño.

Figure 1. The ERSST v5 and ONI timeseries and the threshold
for identifying ENSO events.

To assess the effects of El Niño in the Philippines, two levels
of investigation were conducted, country scale and local scale,
with further validation at the farm-level. The first assessment
was used to determine the spatiotemporal evolution of drought.
The second part of the evaluation focused on a drought-affected
region, utilizing provincial crop damage reports to compare
consistency in drought spatial patterns.

2.1 Data Acquisition and Processing

2.1.1 Geophysical Variables: The remotely sensed NDVI
and LST products used for index derivation are from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) on board
Terra satellite. MOD13C2 and MOD11C3 which are the
monthly NDVI and LST, respectively, were downloaded from
Land Processes Distributed Active Archive (LPDAAC) data
pool. Quality assurance for MODIS NDVI and LST were ap-
plied. Rainfall data were acquired from Tropical Rainfall Meas-
uring Mission (TRMM) satellite. The hourly rainfall rates were
transformed to monthly rainfall. The product used to derive SPI
and rainfall anomaly was the TRMM 3B43 v7. The pixel-wise
NDVI, LST, and precipitation anomalies were computed using
the average values of the dataset. Summarized in Table 1 are the
satellite products used to derive the drought indices. All these
global dataset layers were subset into the area of the Philippines
(4.55°N - 21.28°N; 115.5°E - 126.93°E).

Parameters Data Range Sensor Resolution

Rainfall Jan 1998 to TRMM 25 km
Sep 2019

Land Surface Feb 2000 to MODIS 5 km
Temperature Sep 2019
Normalized Feb 2000 to MODIS 5 km
Difference Sep 2019
Vegetation Index

Table 1. Drought parameters used in the study.

2.1.2 Ancillary Data: Crop production data from the Phil-
ippine Statistics Authority (PSA) from the first to third quarter
of 2019 were utilized to assess the impacts of drought in se-
lected regions namely Isabela, Occidental Mindoro, Camarines
Sur, Zamboanga del Sur, and Maguindanao (see Appendix A).
At the local scale, crop damage reports of rice and corn in the
province of Occidental Mindoro were obtained from the Office
of the Provincial Agriculturist (OPag) for the period January to
April 2019. These reports contain information such as area af-
fected in hectares (ha), stage of crop development, and area of
standing crop per municipality. The damage reports in hectares
of rice and corn were combined and visualized per municipality
in QGIS 3.8.

2.2 Drought Indices

2.2.1 Standardized Precipitation Index: In this study, 21
years’ worth of TRMM data were used to derive SPI. Two
SPI timescales, SPI-1 (for 1-month timescale) and SPI-3 (for
3-month timescale), were derived (Valete and Perez, 2019).
Meteorological drought was represented through SPI-1, which
measures the 1-month precipitation deviation from the mean.
On the other hand, SPI-3 measures the deviation of 3-month
precipitation total from the mean (McKee, 1995) which is re-
lated to agricultural drought. A drought event has its confirma-
tion only when a series of continuously negative values of SPI
reach the value of -1 or less (McKee et al., 1993). In deriving
SPI, the precipitation total is fitted to the gamma function. This
probability density function is then transformed to a Gaussian
distribution which gives the SPI value for the timescale used.
Table 2 shows the classification of SPI values wherein negative
values indicate less than average precipitation.

2.2.2 Vegetation Health Index: VHI combines Temperat-
ure Condition Index (TCI) and Vegetation Condition Index
(VCI). TCI exhibits variation in thermal condition (Equation
1), while VCI is a pixel-wise normalization of NDVI (Equa-
tion 2). The value for α in Equation 3, which pertains to the
contribution of the two indices, was set to 0.5 assuming even
contribution from both parameters (Kogan, 2000). VHI values
imply overall vegetation health which is utilized in classifying
drought severities as shown in Table 2. Drought is experienced
in a region when VHI values are below 40 (Kogan, 1990).

TCI =
LSTmax − LST

LSTmax − LSTmin
(1)

V CI =
NDV I −NDV Imin

NDV Imax −NDV Imin
(2)

V HI = α× V CI + (1− α)× TCI (3)
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2.2.3 Standardized Vegetation Temperature Ratio:
SVTR is defined as:

SV TR =
Ri − R̄i

σRi

, (4)

where:
Ri = ratio of Normalized Difference Vegetation Index
(NDVI) and Land Surface Temperature (LST) for month i
R̄i = historical mean of NDVI-LST ratio for month i
σRi = standard deviation of NDVI-LST ratio for month i

SVTR follows the inverse relationship between LST and NDVI
which indicates vegetation stress, thus the index can be used to
assess agricultural drought conditions in the country, especially
in low-lying areas where temperature is not a limiting factor.
Classification of SVTR values are shown in Table 2 wherein
SVTR ≤ - 0.5 are associated with drought conditions (Perez et
al., 2016).

Classification SPI VHI SVTR

Extreme 0 to -0.99 - -
Severe -1.00 to -1.49 ≤ 10 <-2.01
Moderate -1.50 to -1.99 10 to 20 -1.01 to -2.01
Mild -2.00 and less 20 to 40 -0.50 to -1.01
Normal - ≥ 40 >-0.50

Table 2. Drought classification based on SPI (McKee et al.,
1993), VHI (Kogan, 1990), and SVTR values (Perez et al.,

2016).

2.3 Data Analysis

Maps of the drought indicators and indices at a country scale
were utilized to describe the spatial patterns of drought devel-
opment across months. Only the period January to April 2019
were highlighted to focus on the peak of the El Niño event. Fur-
thermore, time series analysis of the drought indicators and in-
dices were also conducted to describe the drought development
within the period of August 2018 to September 2019, which
covers a one-year assessment of the drought development, pre-
drought, during drought, and post-drought. Boxplots were util-
ized to summarize the distribution of index values at a national
scale. A corresponding areal extent percentage was also com-
puted to indicate the number of pixels under drought as indic-
ated by the index thresholds (Equation 5).

ArealPercent(%) =
Numberofpixelsbelowthreshold

Totalnumberoflandareapixels
∗ 100 (5)

The same boxplot time series was employed at a local scale,
where the development of drought was closely assessed, from
its onset up to the termination. A drought intensity and density
map of the drought-affected region of Mindoro was also pro-
duced to compare it with the accumulated rice and corn dam-
age reports of the region, from January 2019 to April 2019. The
drought intensity map shows the averaged index values within
the period while the drought density map indicates the percent-
age of the number of pixels under drought within the period.
The map was compared with the accumulated damaged reports
to confirm consistency in spatial patterns of drought in the area.

The damage reports were also visualized in a map, represented
by the total damaged area expressed in hectares. Both inform-
ation from rice and corn were combined to compare it with the
satellite-derived drought indices. The computational analyses
and plotting were run using the MATLAB software ver. R2019a
and Google Earth Engine, while the post-processing of maps
was conducted in QGIS 3.8.

3. RESULTS

3.1 Drought development at a country scale

Figure 2 depicts the spatiotemporal evolution in rainfall and
LST during the drought episode in January to April 2019. Neg-
ative rainfall anomalies dominated the eastern part of the Phil-
ippines across all months, as shown in Figure 2a, signifying
the effect of El Niño, which also coincided with the northeast
monsoon season. Furthermore, the negative rainfall anomalies
started in the central region of the Philippines in January, then
further spread in the southern regions until it mostly domin-
ated the northeast, central, and southern regions during Febru-
ary, the month when El Niño was declared in the Philippines
by PAGASA. On the other hand, monthly positive LST anom-
alies started in the western regions during February to March
and propagated in the central regions during April, as shown in
Figure 2b.

To better characterize how drought evolved during this period,
we analyzed maps of the different drought indices described
earlier. Figure 3a shows that meteorological drought stress, as
indicated by orange and red regions in the SPI-1 maps, peaks in
February, and persists until March. Whereas for SPI-3, which
is a proxy for agricultural drought, stress started to manifest in
January, and intensified in March and April (Figure 3b). The
occurrence of stress in January for SPI-3 could be attributed
to the persisting rainfall deficits in the previous two months of
November to December (data not shown).

For the NDVI-LST-based drought indices, it can be seen in Fig-
ure 4 that the NDVI anomaly, SVTR, and NDVI generally ex-
hibit similar trends and spatiotemporal patterns. Interestingly,
the monthly NDVI anomalies shown in Figure 4a followed a
similar trend with temperature (Figure 2b), where drought stress
is concentrated in the western and central regions in the country
during the drought peak in April.

Compared with rainfall anomalies where drought signals
peaked in February, both LST and NDVI anomalies reached
their peak drought stress values around March and April. The
monthly observations revealed that the impacts on vegetation
were detected when stress still persisted during March and
April. Similar, but more pronounced, drought signal patterns
are exhibited by SVTR and VHI, as shown in Figures 4b and
4c, respectively. Persistent and severe drought can be seen in
the western and eastern regions such as Occidental Mindoro and
Camarines Sur, respectively, while in the north, the province of
Isabela shows moderate to severe drought, and for the southern
regions, Maguindanao and Zamboanga del Sur shows moderate
drought signals (see Appendix A).

To gain more insights on the development of drought on a
longer time-scale, a boxplot time series and corresponding areal
percentage from August 2018 to September 2019 are plotted
for the different drought indices, as shown in Figure 5. Within
the one-year assessment, the rainfall-based indices, SPI-1 and
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Figure 2. Monthly rainfall anomalies and the monthly land
surface temperature anomalies derived from TRMM and

MODIS, respectively.

Figure 3. SPI at different timescales.

SPI-3 were already showing acute stress at the last quarter of
2018. In general, both indices already captured the effect of El
Niño during this quarter where almost all regions of the coun-
try experienced rainfall deficits (Figure 5a and 5b). The trop-
ical depression Usman that occurred in December and affected
most of the southwestern regions of the country was reflected
at the national scale, with more positive SPI values, indicating
a temporary break from meteorological drought for SPI-1 but
not with SPI-3 (Figure 5b). The narrow spread of the SPI-1
values during February (Figure 5a) further indicates the peak
of meteorological drought, where most of the landmass of the
country experienced mild to severe stress. The values started to
increase in March until most of the values reached zero in July,
signifying the dissipating signals of El Niño. In SPI-3 (Figure
5b), the spread of the values narrowed starting from November
until its peak in April indicating the agricultural drought stress
signals dominating the country. The negative values with much
narrower spread were consistent from November to April. Not-
ably, despite the consistent areal percentage from 80-100% of
SPI-3, the distribution of the drought signals across the country
started to decrease after the peak in April (Figure 5b).

On the other hand, NDVI anomaly, SVTR, and VHI showed
similar trends when areal percentage is considered, but not

Figure 4. Monthly drought indices derived from MODIS
product.

much information on spread can be observed from NDVI an-
omalies. It was only during March to April that the median val-
ues of the NDVI anomalies went below zero, indicating that the
peak occurred during these months. For both SVTR and VHI,
more noticeable patterns can be seen especially when looking
at the drought affected areas at the national scale. The percent-
age of affected areas went beyond 50% in March to April but
then eventually decreased in the following months. The box-
plot was able to capture the difference in the spread of values
of both indices, further signifying that both differ in indicating
drought severity. Narrower spread of values of SVTR relative
to VHI implies more drought signals identified in the country,
especially in March, where most values reached the drought
threshold in SVTR.

In looking at the areal percentage, the difference between
rainfall-based indices and NDVI-LST based indices were high-
lighted. All land areas represented by pixels were under drought
from February for SPI-1 (100%) while it was from March to
April for SPI-3 (100%). This signifies that all land areas were
identified to be in varying stress, from mild to severe, according
to deviation in rainfall against the historical mean of 21 years.
Similarly, SVTR and VHI had the highest number of affected
land areas during March and April, from 41 to 48%, while it
was 58% in April for NDVI anomalies. This indicates that the
meteorological drought impact that propagated throughout the
hydrological cycle only manifested in almost half of the land-
mass of the country, as identified by NDVI anomaly, SVTR,
and VHI.

To assess the impacts of drought on crop production, data from
Philippine Statistics Authority (PSA) were analyzed. The na-
tional crop production data showed a decrease in rice and corn
yield gain by 4.44% and 6.14%, respectively, during the second
quarter of 2019 compared to the previous year (PSA updated
2020). This decrease coincides with the peak of El Niño in
2019. Moreover, the majority of the drought hotspots men-
tioned above also incurred a decline in rice and corn yield gain
by 1% to 20% and 0.1% to 26%, respectively, in the first to
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third quarters of 2019 relative to 2018 (See Appendix B). This
demonstrates the general agreement between the drought in-
dices and the crop production data in signifying drought im-
pacts on crops. On the other hand, the drought hotspot region
in Maguindanao experienced a crop yield increase by 19% to
45% from the 2018 crop production data. This suggests that
the satellite-derived drought indices overestimated the drought
signals in the area within the drought period.

Figure 5. Boxplots of the drought indices within the 14-month
period which includes the pre-drought, during drought, and

post-drought events.

3.2 Drought development at a local scale

The development of drought was closely investigated in the
drought-affected province of Occidental Mindoro (Figure 6).
Compared to the national scale assessment, closer inspection
at a drought-affected region revealed a clearer delineation of
drought onset and termination. Values are much closer to each
other, signifying the region to be dominated by drought signals.
SPI-1 was used as an indicator for meteorological drought to
determine drought onset and termination. SPI-1 identified two
meteorological events in 2018 and 2019, as shown in Figure 6a.
The first event started in August to November 2018 and termin-
ated in December 2018, reflecting the impact of typhoon Usman
at a regional scale. The second event covers the months from
January to July 2019, which also coincided with the termina-
tion of El Niño according to ONI (Figure 1). For agricultural
drought, SPI-3 identified one event from October 2018 up to
July 2019 while for VHI and SVTR, both had similar duration
from March to May 2019 (Figure 6d and Figure 6e). The differ-
ences of SPI-3 as a proxy for agricultural stress using rainfall
only and SVTR and VHI as soil moisture proxy can be seen
in how they identify drought events. The persisting stress as
identified by SPI-3 across the three-month accumulation was
captured, therefore, declaring drought from October until the
termination of the El Niño event, whereas for SVTR and VHI,
the inverse relationship of NDVI and LST were intense dur-
ing March to May. LST anomalies were intense during these
months (Figure 2), implying its effect on drought development.
For NDVI anomalies, the persistence of stress only manifested
during April to May, which coincided with the peaks of other
indices, however, this index was not very sensitive in captur-
ing acute stress in the region, which could be attributed to the
spatiotemporal limitation of the products used.

Figure 6. Drought temporal evolution in drought-affected
province of Occidental Mindoro, as indicated by the boxplot

time series of a) SPI-1, b) SPI-3, c) NDVIa, d) VHI, and e) VHI.

Figure 7. Drought intensity and density map of SVTR, VHI,
NDVI anomaly.

The actual rice and corn damage reports (Figure 8) collected
from the official provincial records of Occidental Mindoro were
assessed with the drought indices, SVTR, VHI, and NDVI an-
omaly. This considered the accumulated reports within the
growing season from January 2019 to April 2019. The drought
intensity as an averaged index values from January to April
2019 period and the drought density (Figure 7), which indicates
the frequency of each pixel under drought (VHI <40, SVTR
≤ -0.5, and NDVI anomaly <0), were compared with the ag-
gregated rice and corn damaged areas to see spatial patterns of
recurring drought and therefore, assess its consistency with the
actual impacts.

SVTR and VHI captured more frequent drought pixels in the
southern regions, while for NDVI anomaly, higher density can
be found in most parts of the province (Figure 7a). For the
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drought intensity, mild signals dominated the region as identi-
fied by both SVTR and VHI, while for NDVI anomaly, moder-
ate and severe drought were also observed. Interestingly, NDVI
anomaly and VHI were able to capture more drought signals
in the central to southern regions of the province, which also
reflected in the higher drought density in the area (Figure 7b).

In the actual crop damage reports for Occidental Mindoro (Fig-
ure 8), the southern regions incurred damages that were worth
1000 to 2000 hectares of farms. In addition, the northern region,
particularly the municipality of Mamburao, incurred >500 hec-
tares of damaged farms, while the rest of the municipalities de-
clared damages <500 hectares only. Notably, the municipality
of San Jose incurred the highest number of hectares damaged
at >2000. This could be attributed to the occurrence of drought
in the area during the younger stages of the crops, i.e. newly
planted to vegetative, compared to other municipalities with af-
fected crops only during its reproductive to mature stages, as
reported by the provincial level crop damage records.

Figure 8. Crop damaged reports (rice and corn) expressed in
total hectares damaged in Occidental Mindoro within the

January to April 2019 cropping season.

4. DISCUSSION

The effects of El Niño such as the weaker monsoon activity and
delayed onset of rainfall were reflected in the spatiotemporal
dynamics of the drought indices and indicators utilized in the
study. The weakened easterlies brought by El Niño is reflected
in the negative rainfall anomalies that started in the eastern part
of the country. The peak of the El Nino episode in February
to March coincides with the dry months of the country, there-
fore, exacerbating dry conditions as seen in deficits in rainfall
amount and hotter than normal temperatures.

Notably, areas with pronounced dry climate experienced pos-
itive temperature anomalies, which eventually spread in other

parts of the country. In this case, drought propagation depends
on the local climate type, where regions with distinct dry and
wet seasons are more vulnerable to changes in monsoonal pat-
terns. Recent insights on drought sensitivity highlighted the
factors such as topography, climate, and soil characteristics,
where areas with higher elevation, drier climate, and greater
soil bulk density are more vulnerable to drought (Cartwright
et al., 2020). Considering these different factors should reveal
specific patterns of vulnerability that could be the basis for site-
and crop-specific mitigation strategies in the drought hotspot
regions.

The different stages of drought development were also identi-
fied based on different drought indicators and indices used in
the study. At a country scale, rainfall deviations were prom-
inent during February, whereas for NDVI and LST, its identi-
fied drought stress peaked one to two months after, from March
to April. The same pattern was observed among drought in-
dices, where agricultural drought indices, STVR, VHI, and SPI-
3 were consistent with their identification of drought peak when
compared with the meteorological drought index, SPI-1. The
peak in drought values for SVTR and VHI only occurred later
in March and April, which implies that despite the excess rain-
fall brought by Typhoon Usman in December, the persisting dry
conditions brought by El Niño, impacted agriculture within one
to two months after the temporary break from meteorological
drought. The degree of moisture deficiency, as could be estim-
ated from different SPI timescales, is an important factor to con-
sider when anticipating drought impacts. In the study conduc-
ted in Indonesia, VHI was significantly correlated with SPI-3,
indicating that rainfall deficit for three months has a significant
impact on agricultural drought (Ma’Rufah et al., 2017). This
further highlights the limitations and strengths of the different
drought indicators and indices in characterizing different stages
of the drought development. In this case, rainfall-based indices
could be a suitable tool for drought propagation triggers but
it is with temperature-vegetation based indices and other soil
moisture-related indices that drought impacts on crops could be
determined.

The 2019 weak El Niño started from October 2018 and ended
in June 2019; however, its effects are still felt until September
2019. This has caused several drought events in the Philippines,
as indicated by SPI, NDVI anomaly, VHI, and SVTR. SPI-1
identified two meteorological events, August 2018 to Novem-
ber 2018 and January 2019 to July 2019, separated by Decem-
ber 2018. SPI-1 values during December were higher than the
threshold set for drought, which might be due to typhoon Us-
man bringing excess rainfall to most areas of the country dur-
ing December 2018. For the agricultural drought indices, SPI-
3 only started two months (October 2018) after SPI-1 identi-
fied meteorological drought, while for VHI and SVTR, it only
started during March and extended up to April 2019. The
growing season in most agricultural areas of the country starts
from December to January, with the reproductive stages during
March to April and harvesting around May. Despite a weak
El Niño, the Philippines incurred billions of crop damages dur-
ing this event, which could be attributed to the timing of the
drought occurrence in the country. When drought impacts the
water-demanding stage of the crop, i.e. vegetative to reproduct-
ive, this will affect the overall crop yield during the harvest-
ing period. This was further demonstrated in the assessment of
drought at a local scale. At the local scale, municipalities with
younger crops at the time of the drought event incurred more
damages relative to other regions with mature stages. Further-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-463-2022 | © Author(s) 2022. CC BY 4.0 License.

 
468



more, when assessing the national crop yield data, decrease in
crop yield mostly reflected during the second quarter of 2019,
which is expected since most of the crops planted in the pre-
vious quarter coincided with the peak of El Niño. Drought
hotspots identified by the satellite also incurred a decrease in
crop yield which highlights the agreement between satellite es-
timation and crop production data, however, Maguindanao crop
yield increased during this time period.

Results from this study demonstrate the relevance of utiliz-
ing multiple remotely sensed drought indices and indicators in
characterizing the different stages of drought that have intens-
ified to agricultural scales. The strength of the rainfall-based
drought indices in indicating drought onset was highlighted
in the study. At a different timescale such as SPI-3, drought
persistence was captured and was consistent with the NDVI-
based drought indices. However, the latter were more repres-
entative of the agricultural stress on the ground, as reflected
in the spatial distribution of drought at a local scale. Overall,
these indices look at different characteristics of drought, where
one could indicate drought onset and termination and the other
could indicate drought persistence. Their strengths in identify-
ing specific drought characteristics could be combined to form
a more robust drought metric. However, insights from the study
also prompt the need to utilize spatiotemporally finer satellite
data to be more efficient in representing farm-scale impacts and
precisely discriminate different degrees of drought stress. An
improved agricultural drought index would need further under-
standing on the relationship among the drought indicators and
indices while considering the vegetation cover and anthropo-
genic influences in a specific location. Furthermore, verification
studies using crop damage reports at a national scale highlights
the importance of consistent and good quality data in the coun-
try.

5. CONCLUSION

Insights from the investigation on drought development during
the 2019 weak El Niño in the Philippines revealed that the coun-
try is vulnerable to El Niño, especially distinctly drier regions
in the western part of the country. Weak monsoonal activity in
the east brought less rainfall and led to the drought propagation
dominating the central region and the western areas where local
climatic conditions have distinct wet and dry seasons, mak-
ing these parts of the country drought hotspots regions. This
also shows how drought development is a slow process, where
different stages can be captured by different satellite-derived
drought indicators and indices. In this study, these different
tools were maximized to determine the early signs of drought
stress, as can be seen using SPI-1, and to investigate the peak
of agricultural drought using SPI-3, VHI, and SVTR. Meteoro-
logical drought index may have few direct impacts but it serves
as an early indicator of drought, which is essential for drought
mitigation measures. For SPI-3, VHI, and SVTR, their sensit-
ivity to actual drought impacts are critical in risk assessment.
For example, the decrease in crop yield at the first and second
quarters of 2019 coincided with the drought peak identified by
the drought indices, establishing the efficacy of satellite data to
estimate impacts on crops.

Moreover, it was highlighted that drought impacts depend not
only on severity but also on drought timing, as the peak of
drought coincided with the sensitive stages of rice and corn
farms in the drought-affected region of Mamburao, Occidental
Mindoro, resulting in severe crop damages.

Overall, determining the strengths and limitations of each
drought-related variable is essential in developing an integrated
approach which could simultaneously detect multiple drought
types. This will be key in developing an even more sensit-
ive drought metric, as we aim to reduce uncertainties and in-
crease accuracy of predictions to be more proactive in securing
the food and water resources in the country. Findings from the
study will be significant for the prioritization of drought assist-
ance, especially in vulnerable regions, where drought condi-
tions frequently develop.
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APPENDIX A

Selected drought hotspots in the Philippines within the 2019 El
Niño Period

APPENDIX B

Percent of rice crop production yield gain in 2018 and 2019 for
the whole Philippines and for selected provinces.

NATIONAL % Rice Yield % Rice Yield % Loss
Gain 2018 Gain 2018

Quarter 1 9.73 8.62 -1.10
Quarter 2 10.60 6.16 -4.44
Quarter3 6.49 12.88 6.39

ISABELA

Quarter 1 11.22 11.92 0.69
Quarter 2 11.57 10.38 -1.20
Quarter3 -1.55 15.73 17.29

OCCIDENTAL MINDORO

Quarter 1 10.76 1.55 -9.22
Quarter 2 9.47 -10.63 -20.10
Quarter3 6.41 10.11 3.70

CAMARINES SUR

Quarter 1 7.48 -4.34 -11.83
Quarter 2 10.21 -8.58 -18.79
Quarter3 9.89 7.04 -2.85

ZAMBOANGA DEL SUR

Quarter 1 8.80 3.09 -5.71
Quarter 2 9.45 16.72 7.27
Quarter3 3.10 8.10 5.00

MAGUINDANAO

Quarter 1 5.03 24.14 19.11
Quarter 2 0.18 26.20 26.02
Quarter3 -12.50 32.80 45.31
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