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ABSTRACT: 

 

In wetland mapping, a lot of uncertainty is related to the task of selecting an appropriate classification approach. Although the 

individual models are available and well-established in the literature for the classification task, the combination approaches have 

become popular recently. Hence, selecting an appropriate method is challenging, whether an individual approach or combination. In 

this work, a meta-learning study is performed to prove that combining the result of individual machine learning models could be better 

than using the best single model. This study investigates the applicability of the meta-learning method for wetland classification. We 

will first explore the importance of extracted features for each model. Then, the essential features are fed to the model with the well-

tuned hyper-parameters. Finally, the voting classifier as a meta-learning approach is adopted to improve the classification result. The 

classification map of the study area reached the highest accuracy (Overall Accuracy = 93.9% and Kappa= 0.92) when the proposed 

ensemble classifier was employed. The results show the superiority of a combination of methods over simple model selection 

approaches. The results of this study can provide new insights for researchers to find new combination strategies to improve the 

classification results. 

 

  

1. INTRODUCTION 

Wetlands are areas submerged or saturated by water either year-

round or throughout part of the year (Tiner, 2016; M. 

Mahdianpari et al., 2020b). Due to the complex nature of 

wetlands and the internal variability of wetland classes, 

discrimination of such areas are somewhat challenging 

(Mahdianpari et al., 2019; M. Mahdianpari et al., 2020a). 

Therefore, analyzing different classification strategies can 

mitigate the issues and help better map and monitor such vital 

regions. 

As no two algorithms are alike, it then becomes impossible to 

attribute a positive performance to a particular modeling choice. 

Thus, allowing an evaluation of the combined use of individual 

algorithms can act as s guidance in order to take advantage of 

several methods at the same time. A meta-learning analysis could 

yield insights, linking the properties of algorithms and data 

features to deliver promising results. 

The core idea behind utilizing a meta-learning strategy is to 

combine the outcomes of several classifiers to achieve a better 

classification result (Jafarzadeh et al., 2021). In other words, the 

results of a group of classifiers (from a single base classifier to 

complicated models) are combined to improve the classification 

result.  

In remote sensing (RS) studies, to improve the classification 

accuracy, the application of multi-source Earth observation data 

collected using different portions of the electromagnetic 

spectrum has been extensively increased in the past decade 
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(Briem et al., 2001; Jafarzadeh et al., 2021). Hence, in this study, 

free access optical and Synthetic Aperture Radar data are utilized 

to explore and analyze a meta-learning approach and improve the 

accuracy of wetland classification. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

Wetlands compose a significant portion of the Canadian 

landscape, especially in the province of Newfoundland and 

Labrador (NL). The study area encompasses the Avalon region 

on the island of Newfoundland, located on the easternmost coast 

of Canada. This region includes four main wetland types: bog, 

fen, marsh, and swamp. The wetland ground-truth dataset used in 

this research was obtained via field campaigns conducted in the 

summers of 2015-2020. 

  

2.2 Sentinel-1/-2 

Google Earth Engine (GEE) is an integrated cloud-computing 

platform for RS data processing, which provides free and easy 

access to some valuable earth observation imagery worldwide 

(Hu and Dong, 2018; Mutanga and Kumar, 2019). Here, median 

value composites of Sentinel-1 and Sentinel-2 data (from 1 June 

to 31 October 2020) were prepared using the GEE platform. In 

addition, several features for each type of imagery were 

calculated. Table 1 illustrates the list of indices and the related 

formulas.  
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Data Feature Description Formula/ Symbol 
S

en
ti

n
el

-1
 

Vertically transmitted, vertically 

received SAR backscattering 
coefficient 

𝜎𝑉𝑉
0  

Vertically transmitted, horizontally 

received SAR backscattering 

coefficient 

𝜎𝑉𝐻
0  

Horizontally transmitted, 

horizontally received SAR 

backscattering coefficient 

𝜎𝐻𝐻
0  

Horizontally transmitted, vertically 
received SAR backscattering 

coefficient 

𝜎𝐻𝑉
0  

Span or total scattering power 
|𝜎𝑉𝑉

0 |2 + |𝜎𝑉𝐻
0 |2, 

|𝜎𝐻𝐻
0 |2 + |𝜎𝐻𝑉

0 |2 

Difference between co- and cross-

polarized observations 

|𝜎𝑉𝑉
0 |2 − |𝜎𝑉𝐻

0 |2, 

|𝜎𝐻𝐻
0 |2 − |𝜎𝐻𝑉

0 |2 

Ratio 

|𝜎𝑉𝑉
0 |2

|𝜎𝑉𝐻
0 |2

⁄ , 

|𝜎𝐻𝐻
0 |2

|𝜎𝐻𝑉
0 |2⁄  

S
en

ti
n

el
-2

 

Spectral bands 2 (blue), 3 (green), 

4 (red) and 8 (NIR) 
𝐵2, 𝐵3, 𝐵4, 𝐵8 

Normalized Difference Vegetation 
Index (NDVI) 

𝐵8 −𝐵4
𝐵8 +𝐵4

 

Normalized Difference Water 

Index (NDWI) 

𝐵3 − 𝐵8
𝐵3 + 𝐵8

 

Modified Soil-Sdjusted Vegetation 
Index 2 (MSAVI2) 

2𝐵8 + 1− √(2𝐵8 + 1)2 − 8(𝐵8 −𝐵4)

2
 

Enhanced Vegetation Index (EVI) 2.4
𝐵8 − 𝐵4

(𝐵8 + 𝐵4) + 1
 

Difference Vegetation Index (DVI) 𝐵8 −𝐵4 

Green Chlorophyll Vegetation 
Index (GCVI) 

(
𝐵8

𝐵3
⁄ ) − 1 

Table 1. A description of extracted features from SAR and 

optical imagery. 

 

 

2.3 Methodology 

There are several machine learning approaches proposed in the 

literature (Dietterich, 2000; Rokach, 2005). Here, the goal is to 

investigate a meta-learning approach in wetland classification. 

To this end, several well-known decision tree-based models that 

are utilized significantly in the classification of RS data (Masoud 

Mahdianpari et al., 2020; Georganos et al., 2018), especially 

wetland classification, are selected, including Decision Tree 

(DT), Random Forest (RF), Gradient Boosting Machine (GBM), 

and Extreme Gradient Boosting (XGBoost). The details of these 

models are discussed thoroughly in (Jafarzadeh et al., 2021). 

The first step in utilizing the abovementioned models is the 

hyper-parameter tuning step. According to the assessments 

reported in  (Jafarzadeh et al., 2021), tuning parameters are set as 

shown in Table 2. 

 

Model User-Defined Parameters Value 

D
T

 

maximum tree depth ([0,∞]) 150 

minimum sample split ([0,∞]) 5 

minimum number of samples at a leaf 

node 
5 

R
F

 

number of decision trees ([0,∞]) 150 

maximum tree depth ([0,∞]) 10 

number of variables in each node 

split 
5 

minimum number of samples at a leaf 

node 
2 

fraction of the input to bag per tree 0.5 

G
B

M
 maximum tree depth ([0,∞]) 10 

number of gradient boosted trees 150 

learning rate ([0,1]) 0.1 

X
G

B
o

o
st

 maximum tree depth ([0,∞]) 10 

number of gradient boosted trees 

([0,∞]) 
150 

learning rate ([0,1]) 0.1 

Table 2. Hyper-parameter tuning of classifiers. 

 

In the second step, the feature importance for each model is 

provided. As listed in Table 2, ten features were computed and 

extracted in GEE for each set of imagery (i.e., ten features for 

each of Sentinel-1 and Sentinel-2). The relative importance of 

each model is depicted in Figure 1. 

 
              (a) 

 
             (b) 

 
             (c) 

 
            (d) 

Figure 1. Variable importance measuring: (a) DT, (b) RF, 

(c) GBM, and (d) XGBoost. 
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As illustrated in Figure 1, out of 20 features, the Red, EVI, GCVI, 

NIR, and SpanHH_HV features in the DT method; EVI, NDVI, 

NIR, Green, and HV features in the RFl NIR, Blue, DVI, EVI, 

and Red features in the GBM method; and EVI, NIR, NDWI, 

Blue, and DVI features in the XGBoost method shown the most 

importance. 

3. RESULTS 

3.1 Classification maps 

Classifying wetland classes is accomplished by selecting and 

utilizing five of the most important features in each model. Figure 

2 shows the classification maps for each model. The next 

subsection presents the evaluation of each model. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Legend 

 Bog  Fen 

 Swamp  Marsh 

 Water  Forest 

 Agriculture  Urban 

Figure 2. The classification maps for: (a) DT, (b) RF, (c) 

GBM, and (d) XGBoost. 

 

 

3.2 Confusion matrices 

The confusion matrices for each of the obtained classification 

maps are also demonstrated in Figure 3. Comparing the results 
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shows that these ensemble classifiers are capable of classifying 

most non-wetland classes correctly. However, as mentioned 

earlier, the complexity of wetland categories impedes class 

discrimination. Although over 93% of non-wetland classes have 

been classified correctly, all methods have the worst performance 

in classifying swamp and marsh classes. The DT method could 

only classify about 45% of swamp and marsh classes correctly. 

The RF (with about 58% and 61% of correctly classified swamp 

and marsh classes) and GBM (with about 58% and 54% of 

correctly classified swamp and marsh classes) have better results 

than DT. Overall, the XGBoost approach has the best 

classification result.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. The confusion matrices for: (a) DT, (b) RF, (c) 

GBM, and (d) XGBoost. 

3.3 Meta-learning result 

Here, the voting classifier (VC) as a meta-learning approach is 

adopted for the final classification. This method uses predicted 

class labels for majority rule voting. Indeed, this approach is a 

simple strategy that tries to produce a better classification map by 

combining the result of several methods. Thus, we expect to 

reach a high accuracy in wetland classification through this 

approach. The classification map and confusion matrix of the VC 

is illustrated in Figure 4. 

 

(a) 
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(b) 

 

Figure 4. (a) the classification map and (b) confusion 

matrix for the VC approach. 

 

The VC’s result shows high accuracy in non-wetland area 

classification like the previous methods. However, as expected, 

the wetland classification accuracy is also increased in this 

approach. By looking at its performance in discriminating the 

swamp and marsh classes and comparing it with the XGBoost 

method (the best one among the utilized ensemble methods), it is 

clear that the classification accuracy has increased. 

3.4 Quantitative evaluation 

To assess the overall performance of classification maps, the 

Overall Accuracy (OA) and Kappa metrics are selected. These 

metrics are well-known and used in a variety of RS applications 

(Hamid Jafarzadeh and Hasanlou, 2019; H. Jafarzadeh and 

Hasanlou, 2019). 

Model 
Metric 

OA% Kappa 

DT 88.32 0.8591 

RF 91.06 0.8917 

GBM 90.31 0.8904 

XGBoost 91.92 0.9081 

VC 93.9 0.9250 

Table 3. Accuracy assessment of the 

classification algorithms. 

 

According to quantitative evaluation, DT algorithms were able to 

predict the classes (wetland and non-wetland areas) with OA and 

kappa of 88.32% and 0.85, respectively. The RF, GBM, and 

XGBoost had better results than DT, in lowest accuracy to the 

highest order. The OA and kappa metrics for the VC approach 

were 93.9 and 0.925, which are the highest in this study. 

 

 

4. CONCLUSION 

Wetland classification and wetland types discrimination are 

challenging tasks using Earth observation data. Thus, an 

appropriate classification approach is needed to deal with the 

classification complexity. This study compares individual 

classifiers with a meta-learning approach combining classifiers 

via a majority vote rule, with an application on wetland 

classification. The results show that the classification map of the 

Avalon area reached the highest accuracy when the voting 

classifier was employed as a meta-learning strategy. The results 

of this work demonstrate the superiority of a combination of 

methods over solo model selection approaches. For future work, 

the combination of more complex classification models for meta-

learning is suggested. Moreover, designing new strategies for 

meta-learning may prove to be an essential research path for 

classification accuracy improvement.  
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