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ABSTRACT:

Remotely sensing vegetation condition and health hazards requires modeling the connection of plants’ biophysical and biochemical
parameters to their spectral response. Even though many models exist already, the field suffers from lack of access to program
code. In this study, we will assess the feasibility of open-source 3D-modeling and rendering software Blender in simulating
hyperspectral reflectance and transmittance of leaf tissue to serve as a base for a more advanced large-scale simulator. This is
the first phase of a larger HyperBlend project, which will provide a fully open-source, canopy scale leaf optical properties model for
simulating remotely sensed hyperspectral images. Test results of the current HyperBlend model show good agreement with real-
world measurements with root mean squared error around 1%o. The program code is available at https://github.com/silmae/

hyperblend.

1. INTRODUCTION

Simulating reflectance and transmittance spectrum of leaf tis-
sue has been of great interest in recent decades. Understand-
ing the connection between plant leaves’ optical properties and
their biochemical and biophysical properties allow monitoring
of plant health and condition by means of hyperspectral remote
sensing. Remote sensing allows examining plant properties of
large areas and in sites that are difficult to access, such as jun-
gle or mountains. In forestry, remote sensing has been used
to identify tree species (Polonen et al., 2018) and detect insect
infestation (Nasi et al., 2015)), for example.

In practice, simulators aim to produce spectral response similar
to spectral measurements of leaves whose biochemical and bio-
physical properties are known. Inverting the problem, i.e., com-
paring remotely sensed vegetation images to simulation results
produces predictions of the plants’ biochemical and biophysical
properties.

There exists a myriad of leaf optical properties models that sim-
ulate vegetation spectral response in different scales. Cell level
models describe the intricate internal 3D-structure of a leaf e.g.,
(Ustin et al., 2001). Leaf level models consider the average
concentration of photoactive molecules in leaves. Canopy scale
models expand leaf level models to include statistical properties
of large vegetation scenes, such as average leaf orientation and
soil contribution. (Jacquemoud and Ustin, 2019)

Perhaps the most used leaf-scale model to-date is the PROSPECT
model, which was introduced in 1990 (Jacquemoud and Baret,
1990l Jacquemoud and Ustin, 2019). The first version was ca-
pable of simulating leaf spectra using a few most important leaf
pigments and water content. Many improvements and adapta-
tions (Jacquemoud and Baret, 1990, Fourty et al., 1996} |Jacque-
moud et al., 1996/ [Feret et al., 2008}, [Féret et al., 2017} Jiang et
al., 2021) have since increased the number of modeled chemi-
cal and physical constituents, as well as overall accuracy of the
model.

* Corresponding author

A leaf scale model considers scattering and absorption of leaf
tissue and provides data similar to a point spectrometer mea-
surement. Combining it with a canopy model, such as SAIL
(Verhoef, 1984), increases its usefulness in modeling whole
forests (Jacquemoud, 1993| Jacquemoud et al., 2009). SAIL
relies on statistical properties of trees, such as average leaf in-
clination angle and leaf area index. Statistical approach works
well when modeling space-borne hyperspectral images where a
single pixel is in the scale of dozens or hundreds of meters and
can contain several tree-species, undergrowth, bare soil, and so
on. Actual geometry of forests becomes more important when
imaged from lower altitudes. For example, pixel size of imagers
mounted on a drone may well be in centimeter scale.

Canopy models that account geometry are scarce. DART (Gas-
tellu Etchegorry et al., 1996, |Gastellu-Etchegorry et al., 2004)
can simulate approximate geometry as voxels (volumetric pix-
els) and has been used to simulate canopy reflectance of Nor-
way spruce (Picea abies) in (Janoutova et al., 2019), for ex-
ample. While free-to-use for academic research, DART’s re-
strictive licensing terms hinder its applicability. In general, the
field suffers from the lack of access to program code (Jacque-
moud and Ustin, 2019). Even when the code is made available,
insufficient documentation and poor user interface may render
the code virtually unusable for others than the creators of the
software.

In this study, we present the first phase of project HyperBlend
(outlined in section [2). The final objective of the project is
to provide an open-source simulator for hyperspectral images
of randomly generated forests with various tree species, soil,
and undergrowth. This first phase of the project assesses the
feasibility of open-source 3D-modeling and rendering software
Blender (blender.org) in simulating leaf spectra in the sense
of reflection and transmission. In other words, we will show
that it is possible to create virtual materials that can represent
reflection and transmission properties of leaf tissue as if mea-
sured by a point spectrometer coupled to an integrating sphere.
Results presented in section 3] show good agreement with real-
world measurements. Future development of the HyperBlend
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simulator is outlined in section[d] Section[5|concludes the study.
Thoroughly documented program code of the project is avail-
able in a public GitHub repository at https://github.com/
silmae/hyperblend.

2. MATERIALS AND METHODS

In 3D computer graphics, rendering refers to a process of pro-
ducing a synthetic image of a virtual scene (Akenine-Moller et
al., 2008). Software capable of rendering is called a render en-
gine. Implementation of a render engine depends on intended
use: in some applications, such as video games, speed is of
essence and less realistic images are acceptable, whereas in an-
imated films, photorealistic images are desired even if rendering
them takes a long time.

In this study, we use open-source 3D-modeling software Blender,
that ships with path tracing render engine called Cycles. Path
tracing type render engine is currently a popular choice for pho-
torealistic rendering. As a subset of ray tracing, path tracing is
based on numerical approximation of Kajiya’s rendering equa-
tion (Kajiya, 1986). Ray tracing methods in leaf optical models
have been widely applied in recent decades (Govaerts and Ver-
straete, 1998\ |Ustin et al., 2001} [Kallel, 2018|, |[Kallel, 2020).

The principle of path tracing is fairly simple. First, a ray (of
light) is cast from a virtual camera pixel to the virtual scene.
The ray scatters off surfaces of virtual objects until it reaches
a light source when it is deleted and the illumination informa-
tion it carried is saved to the pixel that cast it. The scattering
event is called a light bounce. To avoid too long (or infinite)
rendering time, the ray is also deleted after a certain number
of bounces. The materials (surface properties) of objects are
defined as BRDF/BSDF (Bidirectional Reflectance/Scattering
Density Function). Multiple rays are cast from a single pixel
and the final pixel illumination is the average of cast rays. Av-
eraging reduces the noise inherent in the technique as scattering
direction of each light bounce is determined by a Monte Carlo
process.

Volumetric extension of path tracing takes into account scat-
tering of rays inside an object—not just on its surface (Lafor-
tune and Willems, 1996). In this study, we make heavy use
of Cycles’ volumetric scattering and absorbing capabilities, in
fact, we do not use surface scattering at all. Ignoring surface
scattering means that we assume leaf to be a Lambertian sur-
face, which is a commonly used approximation (Jacquemoud
and Ustin, 2019)).

Cycles considers light in the fashion of computer graphics, i.e.,
it uses color models that mimic the way a human eye sees the
light instead of using spectrum of photons of varying energy
(wavelength). This prevents direct modeling of spectral phe-
nomena. To render a spectral image, we must render each wave-
length separately, as a gray-scale image as suggested in (Pent-
tila et al., 2021).

Regardless of this admittedly severe weakness, Blender has many
positive qualities difficult to find in scientific software in gen-
eral: stable, reliable and actively improved code base, complete
user-interface enhanced with Python scripting, numerous on-
line tutorials, and complete documentation. Most importantly
for our final objective of producing large-scale forest scenes, it
is very easy to create and manipulate 3D-objects. It is even pos-
sible to replicate objects procedurally to create non-identical,

Figure 1. Schematic presentation of the rendering scene. The
sunlamp is shown as a circle and its direction as a dashed line.
Camera is represented by a triangle and cast rays as solid lines.

Absorbed rays end with a square and scattered rays with an
arrow. The leaf volume is presented by dashed box. Top row
shows the camera in reflectance imaging position and bottom

row in transmittance imaging position. Left column shows leaf
target imaging and right column reference imaging setup.
Reflectance and transmittance white reference planes are shown
as horizontal solid lines in right-hand column.

more complex objects. For example, a forest can be modeled
by first modeling a leaf, a branch, and a trunk, and then spawn-
ing rotated and scaled leaves on a branch that can be spawned
on the trunk, which in turn can be spawned on ground. In this
paper, however, we will only use simple objects.

2.1 Virtual Scene and Rendering

In this study, a leaf is modeled as a box whose volume is filled
with absorbing and scattering particles. Behavior of the leaf
material is controlled by four parameters: absorbing particle
density p,, scattering particle density ps, scattering anisotropy
a that is the ratio of forward scattering versus backward scatter-
ing, and mix factor 3 that controls the ratio of scattering and ab-
sorption events. Increasing particle density increases the proba-
bility of a ray undergoing a scattering or absorption event while
traversing through the leaf. Zero particle density makes the leaf
effectively transparent.

The rendering scene contains the leaf, a light source, and a
camera. As a light source, we use what is called a sunlamp in
Blender. It simply defines collimated light of certain intensity
to every part of the 3D space, i.e., a static, homogeneous vec-
tor field. For reflection rendering, the camera is placed to the
lit side of the leaf and for transmission rendering, it is placed
to the unlit side. Used rendering scene and imaging setups are
presented in Figure[T]

The rendered gray-scale images are saved to disk in TIFF for-
mat with 16-bit color depth. As in real-world photography, if
the light is too strong, the image is overexposed. We use vir-
tual white reference plates to manually adjust the intensity of
the light to avoid overexposure while using as much light as
possible for good signal-to-noise ratio. Used white references
are rectangular planes of ideally diffuse (Lambertian) reflective
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or transmissive material. White references are also used in im-
age normalization so that pixel values of the leaf are divided
by respective pixel values of the white reference. This is done
separately for reflection and transmission images.

To sum up the rendering of a reflectance—transmittance value
pair, four images are rendered: leaf reflectance, reflectance white
reference, leaf transmittance, and trasmittance white reference.
The final reflectance value is obtained by dividing leaf reflectance
image pixel-wise by reflectance white reference. The transmit-
tance value is acquired in a similar manner, normalizing the
transmittance image with the transmittance white reference.

The arrangement closely matches a spectral leaf measurement
with integrating sphere. Even while the integrating sphere it-
self is not modeled, as long as the imaged area is smaller than
the leaf object, there is no risk of light escaping the camera as
the rays are cast from the camera—not from the light source.
This convention is often used in ray tracing render engines as it
is computationally less expensive and direction of propagation
does not affect the path of light (Disney et al., 2000).

2.2 Optimization

Wavelength dependent leaf material parameters pq, ps, o, 8 are
found by minimizing the difference of simulated reflectance
7(pa, ps, @, B) to measured reflectance 7, and simulated trans-
mittance t(pq, ps, @, 3) to measured transmittance ¢,,. Term
measured is used loosely here, as there is no difference if 7,
and ¢, originate from measurements or from some simulator
that produces reflectance—transmittance pairs. The optimiza-
tion loop for a single wavelength is illustrated in Figure 2] The
optimizer solves the following minimization problem:

. 2 2\1/2
min r—1rm) +(—1tm
i, (=)™ (= b))
s.t. r+te(0,1]
Pa,ps €10,1] 6]
a, B €[0,1].

The sum of reflection and transmission is not allowed to exceed
one to ensure conservation of energy. The lower limit of ab-
sorption particle density p, and scattering particle density ps
excludes zero, to enforce at least some interaction between rays

Tm, tm
Measurements

Normalization

Averaging Optimizer

Renderer

Pas Ps; @, B

Figure 2. Simulation flow for a single wavelength: optimizer
compares measured reflection and transmission to the values
produced by Blender and adjusts leaf material parameters
accordingly. Modeled reflection and transmission values are
normalized with virtual white reference sample and averaged
over all pixels in the rendered image.
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Figure 3. Material parameter starting guess optimized using
Equation @) for ., and ¢,,. Dots indicate data points optimized
for each material parameter. Black curves show fourth order
polynomial fit to each set of points.

and the leaf material. The higher limit is not strictly needed, but
fully constraining the problem allows using an optimizer that is
intended for constrained problems. Scattering anisotropy « can
vary between zero (maximal backscattering) and one (maximal
forward scattering). Mixing factor 3 varies similarly from zero,
when there is only absorption and no scattering, to one, when
there is only scattering and no absorption.

Equation (I) defines a multiobjective optimization problem as
reflectance and transmittance must be optimized simultane-
ously. For such a problem, there does not exist a single optimal
solution. Instead, all solutions are trade-offs where increasing
the optimality of one objective may decrease the optimality of
the other. In this situation, a good starting guess is beneficial
as not only does it converge faster to a solution, it is also more
likely to converge into some certain solution. Considering the
continuous nature of the problem, we would like the leaf ma-
terial parameters to behave continuously as well. Now, if the
starting guesses of adjacent wavelengths are close to each other,
the leaf material parameters are more likely to be so too.

For finding a good starting guess, we can utilize the shape of
leaves’ reflection and transmission spectral curves, which tend
to be similar in general. Letting approximate reflectance 7 and
approximate transmittance ¢ be equal, they can be expressed
through absorption

(@)

Running the optimization for & € [0, 1] and fitting a polynomial
to each resulting material parameter spectra, we get estimates
for leaf material parameters as shown in Figure 3] The coeffi-
cients of the polynomial fitting are used to retrieve a reasonable
starting guess for any absorption value.

2.3 Experiment

For testing HyperBlend, we used reflectance and transmittance
spectra of 28 silver birch (Betula pendula) leaf samples col-
lected by (Hovi et al., 2017) in summer 2016. Each sample
spectrum is an average of three spectral measurements. The
data is publicly available at SPECCHIO database (Hueni et al.,
2020), which is administered by Remote Sensing Laboratories,
Institute of Geography, University of Zurich.
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Figure 4. Mean and standard deviation of reflectance and
transmittance of 28 spectral measurements of silver birch (B.
pendula) leaf samples and respective simulated spectra. Mean
measured reflectance and transmittance is indicated by black
dotted line and respective simulated values by solid colored line.
Standard deviation of modeled and measured values are
indicated by colored shadows and gray dashed lines,
respectively. The mean of simulation aligns almost perfectly
with the measurements except where transmittance is close to
zero. Variation of the measured data is also captured by the
model as can be seen from the alignment of the shaded area and
grey dashed line.

The size of rendered images was 16 pixels (4 x 4) as that is
the smallest image used Blender version (2.93.5) can produce.
Wavelengths from 400 nm to 2300 nm were optimized with 5
nm spectral resolution. For 381 wavelengths and 28 samples,
the optimization problem was thus solved 10668 times—each
requiring dozens of render calls. Wall clock time per leaf sam-
ple was approximately 70 minutes using over 9 hours of proces-
sor time on a single 4-core (Intel i17-7700K, 4.20 GHz) central
processing unit (CPU). Rendering was also done on said CPU,
not on a graphical processing unit (GPU), as the overhead of
CPU-GPU memory swaps outweighs GPU’s faster rendering
time on such tiny images with simple geometry.

3. RESULTS

Comparison of measured and modeled leaf reflection and trans-
mission spectra of the 28 samples is shown in Figure El Mod-
eled mean spectrum differs significantly from measured mean
spectrum only in short wavelengths where the transmittance is
nearly zero. Variation of the measured data is also captured by
the model, as can be seen from the standard deviation shown in
Figure @] There is large variation in 500-700 nm range, which
is expected, as the data contains both adaxial (upper surface)
and abaxial (lower surface) leaf side measurements where great
variation has been reported in visible region (Hovi et al., 2017).
Our model incorporates this variation mainly in the scattering
anisotropy parameter.

The total root mean square error (RMSE) over the whole spec-
trum and all 28 samples was 0.0010 for reflectance and 0.0008
for transmittance. Wavelength-wise errors averaged over all
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Figure 5. Average root mean square error between measured and
simulated reflectance and transmittance over the 28 samples.
The error of reflectance behaves somewhat systematically in

visible spectrum and around the second water absorption peak at

1940 nm. The error of transmittance is high on short
wavelengths but still less than 6%o of the maximum
transmittance of 1. On average, error of reflectance is 1%o for
reflectance and 0.8%o for transmittance.

samples are plotted in Figure El The plot of reflectance er-
ror mostly shows appropriately random behavior except in the
range of visible light and near the second water absorption peak
at 1940 nm where systematic behavior can be seen. Error of
transmittance is less systematic but several times greater than
average near 400 nm, which indicates that our model cannot
fully handle the situation where transmission is almost zero (see
also Figure ). One reason for this might be that, as shown in
Figure 3] the starting guess does not quite catch the behavior
when absorption is close to one, which may hinder the opti-
mization process. Despite the systematic elements in the error,
we consider the model accurate, as even the greatest error is less
than 0.0006, i.e., 6%o of the theoretical maximum value of 1. In
practice, if reflectance or transmittance reached the value one,
the leaf would be either fully opaque or completely transparent.

The leaf material parameters shown in Figure |§| behave con-
tinuously and are consistent with the shape of reflectance and
transmittance curves as expected. For example, the first water
absorption peak near 1500 nm is mirrored as a sharp increase
in absorption particle density. Mix factor shows similar shape,
which is natural since greater mix factor means that absorption
events are favored over scattering events. Scattering anisotropy
favors forward scattering, varying around 0.8 in near infrared.
Value 0.5 would mean equal amount of forward scattering and
back scattering, which is the case only around 500 nm. Scatter-
ing particle density shows the least variation over the modeled
spectrum, which is somewhat surprising, but it still follows the
shape of the reflectance curve.

4. DISCUSSION

In light of the results, the proposed method can accurately
model physical world in its intended use, but it is significantly
slower than other existing methods. For example, generating
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Figure 6. Mean leaf material parameters of the 28 simulations
(solid lines). Standard deviation of parameter values are
indicated by colored shadows.

reflectance and transmittance spectra from 400 nm to 2500
nm with 1 nm resolution using web-implementation (http:
//opticleaf.ipgp.fr/) of PROSPECT takes only a few sec-
onds compared to 70 minutes using our method. Considering
that we simulated five times less wavelengths, our model is
slower by four orders of magnitude.

Comparison of simulation speed between PROSPECT and cur-
rent version of HyperBlend is not as meaningful as it might
seem. Ray tracing is meant for tracing light paths in complex
scenes with three-dimensional geometry. In this study, we have
reduced ray tracing into essentially one-dimensional model for
the sake of assessing whether or not it can replicate light scat-
tering in leaf tissue accurately enough to be useful. On the other
hand, PROSPECT inherently lacks any spatial information and
even if extended into canopy model using, e.g., SAIL, no real
geometry is included.

If we hypothesize that HyperBlend will be able to simulate
hyperspectral images of forest scenes with real geometry, we
can construct a more meaningful comparison with an existing
model DART, which also utilizes real geometry. In (Janoutoval
et al., 2019) DART was used to simulate 926 wavelengths in
400 pixel (20 x 20) hyperspectral image of spruce forest scene
with 10 trees. Simulation times ranged from few hours on 2
processor cores to 34 hours on 8 processor cores depending
on the detail level of the scene. Based on our preliminary ex-
periments of rendering forest scenes with almost hundred trees
and leaf material like the one used in this study, render time
of a single wavelength 0.5 megapixel (1028 x 512) is less than
half a minute on a common desktop computer with 8-core pro-
cessor and several years old consumer grade GPU. Rendering
this more complex scene (in terms of number of trees) in vastly
higher resolution using the same number of wavelengths would
then take less than eight hours. With this, we are optimistic
that HyperBlend will be at least on par with existing models in
terms of simulation speed.

Regardless of the future versions of HyperBlend, current ver-
sion can also be improved. Speeding up the model considerably
requires omitting the slow optimization process where, in the

worst case, hundreds of rendered images are needed to simulate
reflectance and transmittance of a single wavelength. Instead of
modeling each reflectance and transmittance value accurately,
approximate values might suffice.

As the parameter spectra was shown to behave continuously
when reflectance and transmittance do so too, one could gener-
ate evenly spaced reflectance—transmittance pairs and optimize
respective material parameters. This would form four parame-
ter surfaces with respect to reflectance and transmittance, one
for each material parameter. By fitting a surface function to
each parameter surface, the material parameter retrieval would
be reduced into a function evaluation. We estimate that this
approximation could make the simulation 10-100 times faster.
In addition to faster parameter retrieval, this strategy would al-
low to render images for all wavelengths on a single Blender
execution reducing processor context switches and Blender ini-
tializations from thousands to one.

Accuracy of such model would depend on how well selected
surface fits on each parameter surface. If the material parame-
ters do not behave smooth enough, the surface may be signifi-
cantly less accurate than the optimization strategy. In that case,
training a deep neural network could be considered (Imaizumi
and Fukumizu, 2019).

As a final note, binding leaf material parameters used in Blender
directly to reflectance and transmittance values allows coupling
any leaf model that produces reflectance—transmittance pairs
with HyperBlend. It also allows mixing measured and mod-
eled values in a single scene, i.e., one tree could have leaf ma-
terial derived from PROSPECT simulation, another one could
use material parameters based on a field study. By expanding
HyperBlend into non-transmissive materials, one could include
roofs of buildings or other man-made objects into the scene.

5. CONCLUSIONS

In this study, we presented the first phase of a new leaf opti-
cal properties model HyperBlend, which can simulate leaf re-
flectance and transmittance as if measured by a point spectrom-
eter coupled to an integrating sphere. Moreover, we showed
that open-source 3D-modeling and rendering software Blender
can be used in simulating spectral data, even though it cannot
inherently handle spectral phenomena. Our model used just
four material parameters to depict the behavior of light inter-
acting with leaf tissue. Simulated reflectance and transmittance
showed good agreement with real-world measurements.

The performance of the model in its current state was discussed.
Ideas on future development of HyperBlend and estimates of its
performance were presented.

Program code used in this study is available at https://
github.com/silmae/hyperblend with a tag vO.1.0.
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