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ABSTRACT: 

Site-specific weed management (SSWM) is a precise and resource-efficient approach that can result in more productive and sustainable 

agricultural practices. SSWM requires weed maps, in which the vegetation-related pixels are segmented from the soil and other 

substances and then classified into crops and different weed species. Such classification with a high spatial resolution is significant for 

SSWM since preventing economic losses due to weeds requires making management decisions at meter scales. In this regard, 

hyperspectral sensors can capture leaf anatomy and biochemistry variations, suggesting many advantages for weed classification. 

However, the typical tradeoff between spectral and spatial resolution poses a challenge for applying hyperspectral imaging in large 

scales and scenarios of high densities and tiny seedlings at early growth due to mixed pixels. Mixture analysis methods were previously 

demonstrated to offer opportunities for dealing with mixed pixels in vegetation ecology and agriculture. Nonetheless, they were not 

widely utilized for weed classification. This study aims to reveal the impact of the spectral mixture on classification results using 

supervised classification, spectral unmixing, and spatial analysis. We attempted to characterize how the spectral mixture of different 

weed species and soil at different growth stages affects classification results. Our results suggest that spectral mixtures are probably a 

significant factor driving misclassifications when classifying weed species. Their effect can be characterized by spatial analysis and 

fractions obtained by spectral unmixing. We assume that the subpixel information provided by the fraction maps may add information 

about the spectral mixture that can assist in interpreting misclassification pixels alongside the widely used confusion matrix. This 

contribution is highly relevant at coarser spatial resolutions. 

1. INTRODUCTION

1.1 Site-specific weed management (SSWM) 

Weeds are the main biotic factor limiting agriculture production, 

causing 9% of the world's yield losses (Neve et al., 2018). The 

annual economic loss due to weed in the U.S. only is estimated 

at $27 billion (Neve et al., 2018). Herbicides are the primary tool 

for weed control in most industrial countries. However, herbicide 

application is associated with environmental pollution and 

human health, and over-reliance on herbicides has resulted in 

herbicide-resistant weeds. Site-specific weed management 

(SSWM) aims to reduce herbicide application by spraying only 

weed patches and adjusting herbicide rates according to the weed 

density and the species composition (Wang, Zhang, and Wei, 

2019). SSWM is a more precise and resource-efficient approach 

that can result in more productive and sustainable agricultural 

practices (Fernández-Quintanilla et al., 2018). SSWM requires 

weed maps, in which the vegetation-related pixels are segmented 

from the soil and other substances and then classified into crops 

and different weed species. Proximal and remote platforms 

acquire image data for SSWM. Ground-based proximal sensing 

allows capturing spectral and spatial data at high resolutions; 

however, it is more time-consuming and is less efficient for large 

scales than remote sensing. Remote sensing (e.g., 

satellites\airborne sensors) allows for covering larger areas with 

the price of coarser spatial resolution (Fernández-Quintanilla et 

al., 2018). High spatial resolution is highly significant for SSWM 

since preventing economic losses due to weeds requires making 

management decisions at meter scales.   
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1.2 Hyperspectral imaging for weed classification 

Image-based machine learning techniques provide great potential 

for weed identification (Lati et al., 2021). Various sensing 

technologies were previously assessed for weed classification, 

including RGB, multi and hyperspectral cameras, and LIDAR. 

Each technology suggests its advantages and limitations. 

Hyperspectral sensors can capture variations in traits such as leaf 

anatomy and biochemistry. For example, the visible range (VIS) 

respond to variation in pigments content and photosynthetic 

activity (Ustin et al., 2009), near-infrared range (NIR) respond to 

anatomical traits (Zwiggelaar, 1998), and shortwave infrared 

(SWIR) indicates water, sugars and protein content in the leaf 

(Buitrago et al., 2018). Therefore Spectral signatures capture 

variation related to species, physiological state (Ronay et al., 

2021) phenological stage (Basinger et al., 2020). Despite the 

potential to improve the classification results, only a little 

research attempted to classify weed species using hyperspectral 

data. 

The classification faces many environmental and biological 

challenges. Firstly, the plant's spectral reflection may vary at 

different phenological stages and environmental conditions. 

Secondly, high spatial resolution is needed for detection and 

classification at an early stage (mostly the critical time for weed 

control)  and for overcoming the challenging condition of 

overlapping leaves at the later growth stages (Fernández-

Quintanilla et al., 2018). Basinger et al. (2020) investigated the 

effect of the phenological stage on crop and weed species 

classification using hyperspectral spectra of leaf and canopy 

levels. The authors indicated that small changes in phenology 

over a week could affect the plant spectra. Herrmann et al. (2013) 

examined the potential of high spectral and spatial resolution 
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ground-level spectral imaging for weed-crop classification in a 

wheat field. They found that sunlight vegetation can be better 

separated than shaded vegetation. Besides, they indicated the 

importance of the red edge for the classification between 

broadleaf, grasses, and wheat. Finally, the authors mentioned the 

need to further explore the influence of reduced spatial resolution 

for dealing with mixed pixels.  

 

1.3 The tradeoff between spectral and spatial resolution 

Hyperspectral imaging obtains promising weed/crop 

classification results. Nonetheless, previous studies have used 

ground-based hyperspectral data at the leaf level or captured 

images from a low altitude above the canopy. Such data 

acquisition is irrelevant for field application, and up-scaling is 

essential. However, there is a tradeoff between spectral resolution 

and spatial resolution. At coarser spatial resolutions, the spectral 

signature obtained from a pixel in an image may include the 

measured reflectance of multiple landcover types creating a 

spectral mixture. As the pixels capture the reflectance from a 

larger area, more materials are likely involved in the mixture. 

Thus, mixed pixels pose a challenge when applying image 

classification since the training procedure mostly relies on the 

"pure-pixels” spectra. Under high weed densities, multiple 

species spectra will be present in the same pixel. The species mix 

may lead to errors in species classification and miss-detection of 

the spatial information about their locations. The same problem 

occurs at early growth stages when weed seedlings are smaller 

than the pixel size. In such cases, the pixel spectrum is obtained 

as a mix of the weeds and their surrounding soil spectra.  

 

Some studies investigated the effect of spectral mixing on 

estimating physiological traits such as chlorophyll content. (Jay 

et al., 2017)suggested that a resolution that compromises 

estimation accuracy and data acquisition efficiency can be found 

for different physiological traits depending on crop type. (van 

Leeuwen et al. (2021) used simulated hyperspectral images to 

evaluate the limitation of species identification and the effect of 

spatial resolution and species richness in the scene. Classification 

accuracies were lower at coarser spatial resolutions, yet, species 

richness in the scene did not affect accuracy results. Considering 

the SSWM, Louargant et al. (2017) used multispectral images 

with degraded resolutions for weed classification. Besides, they 

simulated mixed pixels to test the effect of spectral mixing on the 

soil-vegetation and monocotyledon-dicotyledon weeds 

classification. Finally, they concluded that pixels with a high 

vegetation rate are required to correctly classify between soil and 

vegetation and between monocots and dicots. Thus, Previous 

research that addressed the spectral mixture effect primarily 

relied on simulated data. 

Moreover, the mixing effect was not examined on weed 

classification using hyperspectral images. Therefore, it should be 

further characterized using real hyperspectral data at varying 

resolutions. It is also valuable to investigate how this effect 

interacts with growth stage, species composition, density, etc. 

 

1.4 Spectral mixture analysis 

The components involved in a spectral mixture can be quantified 

using spectral unmixing methods. The result provides the 

subpixel information missing at coarser resolutions. 

Hyperspectral unmixing refers to the process of separating the 

spectral mixture into a collection of pure spectral signatures, so-

called End Members (EM). The product of unmixing an image is 

a set of fraction maps corresponding to a set of EMs. In each map, 

the EM’s abundance are quantified for each pixel. Recent 

advances in algorithms even suggest the opportunity to create 

high-resolution fraction maps by fusing fraction maps with high-

resolution RGB images creating an abundance map with 

additional subpixel spatial information (Kizel and Benediktsson, 

2020). Thus,  fraction maps suggest valuable subpixel 

information essential for the accurate classification of weed 

species at different scales. 

Some studies in agriculture and ecology demonstrated the use of 

unmixing methods for various applications. In agriculture, 

unmixing methods were examined to monitor disease and pests 

while assuming that an infected plant and a healthy plant are 

separated endmembers (Zhang et al., 2019). The pixel purity 

index, which allows finding the most “pure” pixels in a spectral 

image, was used to identify endmembers and develop thresholds 

to classify tomatoes late blight infection (Zhang, Qin, and Liu, 

2005). Another study used fraction maps of healthy plants, 

damaged plants, and soil endmembers to detect spider mites' 

damage severity in cotton (Fitzgerald, Maas, and Detar, 2004).  

 In ecology, fraction maps were used to estimate forest species 

abundance (Stagakis, Vanikiotis, and Sykioti, 2016). Medina, 

Manian, and Chinea, (2013) used the fraction map of airborne 

hyperspectral images for biodiversity assessment by calculating 

the Shannon entropy index of each pixel as a measure of the 

mixing level that corresponds to the biodiversity.  

Hence, Mixture analysis methods were demonstrated to offer 

vegetation mapping and agricultural applications and should be 

utilized for precision agriculture and research applications. 

Different vegetation spectra can be successfully unmixed to 

fractions and provide information about species abundances and 

physiological conditions of crop plants.  

Nonetheless, the unmixing approach has not yet been evaluated 

for weed mapping and SSWM purposes, and its ability to 

mitigate the tradeoff between spatial and spectral resolution was 

not determined. Furthermore, the analysis of classification results 

usually relies on a confusion matrix and overlooks the effect of 

spectral mixtures on the classification. 

We assume that the subpixel information provided by the fraction 

maps may add information about the spectral mixture that can 

assist in interpreting misclassified pixels alongside the widely 

used confusion matrix. This contribution is highly relevant at 

coarser spatial resolutions. Revealing the impact of the spectral 

mixture on classification results may allow locating pixels in the 

scene that are more prone to misclassifications. Once those pixels 

are located,  it can be beneficial to approach them differently to 

achieve better classification accuracies and more accurate 

vegetation maps. The main objective of this study is to utilize 

mixture analysis to investigate and understand the relationship 

between spectral mixtures and the misclassification of weed 

species. Here, as a preliminary step, we attempted to characterize 

how the spectral mixture of different weed species and soil at 

different growth stages affects classification results. We acquired 

a time series of hyperspectral images of a scene containing 

multiple weed species during early growth for testing and 

validation. First, we classified the images using support vector 

machine (SVM) supervised classification. Besides, we unmix the 

images to derive fraction maps corresponding to four EMs. Then, 

we analyzed the misclassifications in the scene based on two 

factors, 1) their spatial location and 2) the fraction composition 

in each pixel. 

 

2. METHODOLOGY 

2.1 Data acquisition  

To investigate the effect of spectral mixtures on weed species 

classification, we experimented with data acquired under 

different growth stages, species, functional group, composition, 
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and plant densities. Three weed species were used: Amaranthus 

retroflexus, Solanum nigrum, Setaria adhaerens (representing 

different botanical groups (monocots, dicots), and photosynthesis 

mechanisms (C3, C4). Besides,  a crop plant (Triticum) was 

selected, and all species simulated a scene with different 

combinations of species and sowing densities. We sowed the 

plants in a sowing tray divided into cells (2 x 2 cm), which 

allowed for controlling the densities and arrangement of the 

different species (Figure 1a). Each variation included nine cells, 

where the wheat sown in the middle cell, and the weeds around 

it at different combinations and densities. Each cell in the tray 

contained one type of species. We included 5-8 seeds and 10-16 

seeds per cell in the low and high densities, respectively. The tray 

included 26 variations of species composition and densities, with 

four randomly distributed repetitions across the scene (Figure 

1b). The trays were irrigated daily using sprinklers to allow 

germination. The emergence of the plants occurred ~5 days after 

sowing. We acquired hyperspectral (Specim IQ, Oulu, Finland) 

images of the scene on six days during the two weeks after 

emergence. Each image frame contained a barium-sulfate 

calibration panel to retrieve the reflectance spectra based on the 

same reference/conditions.   

 

 

Figure 1 Experimental setup. (a) The trays with three different 

weed species were grown in a net house. (b) An example for 

one of the trays. (c) images were acquired using a hyperspectral 

camera in a semi-dark room, illuminating the scene with two 

halogen lamps. 

 

For each image, each species' pixels were manually labeled on 

the RGB image obtained by the camera which provides a higher 

resolution for sampling (Figure 2). We applied the labeling 

process using the MATLAB app “Image Labeler”. Three 

different grouping methods were chosen to allow examination of 

classification based on the plant's species (Amaranthus 

retroflexus, Solanum nigrum, Setaria adhaerens(, and botanical 

groups (monocots, dicots) and photosynthesis mechanisms (C3, 

C4). 

 

 

2.2 SVM classification 

To examine the effect of mixed pixels on weed species 

classification, we applied the Support Vector Machine (SVM) 

classifier to the data. First, to reduce the complexity of the data, 

we applied principal components analysis (PCA). Then, we 

selected the first ten components of the hyperspectral data and 

used them for the SVM classification. The study relies only on 

vegetation pixels since soil and vegetation classification is better 

established than species classification. The classifier was trained 

on a random sample of 5% of the pixels from each group. Then, 

to assure that the stability of the classifier is independent of the 

training set, the training process was repeated ten times, using 

different randomly selected pixels set. Eventually, the 

classification results were compared to the ground truth image to 

generate a confusion matrix and calculate the overall accuracy. 

 

2.3 Spectral unmixing 

Fraction maps were generated to examine the hypothesis that 

spectral mixtures increase the rate of misclassifications. We used 

the Vectorized Projected Gradient Descend Unmixing (VPGDU) 

algorithm for this purpose. The VPGDU is robust to illumination 

variation and computationally efficient (Kizel et al., 2017). First, 

we extracted eight different sets of four EMs using random 5% 

of the pixels in each group based on the ground truth image 

(Figure 2). Then, to prevent bias in the EM extraction, we 

repeated the process eight times and used the mean EMs. 

 

2.4 Characterizing misclassifications 

We hypothesize that mixed pixels are most likely to on areas of 

transition from one landcover type to another. Accordingly, 

misclassifications are more likely to occur around the edges of 

the image. Thus, we first used the Canny algorithm to detect the 

edges. Then, we calculated the distance of each pixel from the 

nearest edge. Finally, we examined the correlation between the 

distance from the nearest edge and the probability of 

misclassifying a pixel.  

Besides, we tested the relationship between each EM fraction and 

the probability of a pixel being misclassified.  

 

 

Figure 2 An example for the ground truth data for the three 

grouping methods. (a) RGB visualization of the hyperspectral 

image, (b), (c), and (d) ground truth data for plant species, 

botanical groups, and photosynthesis mechanisms, respectively. 

 

3. RESULTS & DISCUSSION 

3.1 The probability for misclassifications as affected by 

distance from the nearest edge 

The Overall Accuracy (OA) ranged between 81.01%-94.82%  for 

the classification between species. Table 1 presents the OA for 

all images in the experiment. 

 

  Days after sowing 

Tray 7 8 9 12 13 14 

A 91.56 87.30 87.61 92.70 89.42 91.83 

B 91.62 89.90 91.97 91.98 89.98 89.87 

C 93.60 91.64 92.80 94.32 92.57 94.82 

D 87.81 87.20 88.10 86.11 83.69 81.01 

E 92.45 91.69 92.95 91.21 89.88 90.48 

Table 1. Overall accuracies (in percentage) were obtained by  

SVM species classification of the hyperspectral images of all 

sowing trays (A-E) in all days of measurements. 
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When imposed on the image, misclassified pixels seem to be 

mostly located on the edges of the plant's leaves connecting to 

classes of weed- soil or between two weed species. The regions 

that contain misclassifications seem to be characterized by mixed 

pixels (Figure 3b, 3c). Figure 4 presents the probability of pixel 

misclassification as affected by their distance from the nearest 

edge. 

 

 
Figure 3 Misclassification location: an example for 

misclassified pixels locations on the ground truth image taken 

14 days after sowing (a). Misclassification (M). is presented in 

red. The species in the scene are Solanum nigrum (Sn), 

Amaranthus retroflexus (Ar), and Seteria adherents (Sa). 

Selected regions of misclassifications in mixed pixels, 

overlayed on the RGB visualization of the hyperspectral image 

(b+c). The example given is an image taken 14 Days after 

sowing the weeds 

. 

 

 

The analysis showed that the probability for misclassification 

decreased as the distance from the nearest edge  increased. This 

suggested that spectral mixtures, which are more likely to occur 

at the boundaries between different objects, are a major factor for 

misclassifications between weed species 

 

3.2 Probability for misclassifications as affected by specific 

EM fractions 

As a first step, we examined how the misclassification rate is 

affected by the pixels spectral mixture. We tested the hypothesis 

that the fraction size of a specific endmember in the pixel affects 

its probability to be misclassified. Accordingly, we expected that 

for the weeds EM’s the probability for misclassification will 

decrease as the fraction of the endmember increases. Opposingly, 

we expected that as the fraction of soil increases, the probability 

of misclassification of weed species will decrease. Figures 5,6,7 

and 8 present the results obtained for each one of the EM’s. As 

expected, when the fraction of soil has increased, the probability 

for misclassification of weed species decreases (figure 5). We 

repeated a similar analysis for all the images acquired during the 

experiment. For Seteria adherents the opposite trend was 

expected, and the results confirmed that as the fraction of Seteria 

adherents increases, the probability for misclassification 

decreases (figure 6). Unexpectedly, this trend did not seem to be 

as significant when we examined the effect of the Amaranthus 

retroflexus fraction on the misclassification rate (figure 7). For 

Solanum nigrum, the fraction did not seem to influence the 

misclassification rate (figure 8). This might be related to the fact 

that both Amaranthus retroflexus and Solanum nigrum are 

dicotyledon weeds, and therefore share more spectral similarities 

(Herrmann et al., 2013). 

 

Figure 4 The effect of distance (D) from the nearest edge on mean misclassification probability (P) on 6 days of measurments.  

Distance is measured in pixels. As the distance from the nearest edge increase the probability for misclassification decreases. 

The mean was calculated based on 5 different sowing plates.  Error bars represent the probabilities’ standard deviation. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-477-2022 | © Author(s) 2022. CC BY 4.0 License.

 
480



 

 

 

Figure 5 The effect of soil fraction (F) in the pixel on the mean misclassification probability (P) on 6 days of measurments. As the 

soil fraction increases the probability for misclassification between weed species increase. The mean was calculated based on 5 

different sowing plates.   Error bars represent the probabilities’ standard deviation. 

 

Figure 6 The effect of Seteria adherents fraction (F) in the pixel on misclassification probability (P) on 6 days of 

measurements. The mean was calculated based on 5 different sowing plates.   Error bars represent the probabilities’ standard 

deviation. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-477-2022 | © Author(s) 2022. CC BY 4.0 License.

 
481



 

  

Figure 7 The effect of Amaranthus retroflexus fraction (F) in the pixel on misclassification probability (P) on 6 days of 

measurements. The mean was calculated based on 5 different sowing plates.  Error bars represent the probabilities’ standard 

deviation. 

Figure 8. The effect of Solanium nigrum fraction (F) in the pixel on misclassification probability (P) on 6 days of measurements. The 

mean was calculated based on 5 different sowing plates.   Error bars represent the probabilities’ standard deviation. 
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To better understand these results, further analysis needs to 

consider the other fractions involved in the mix and their relative 

size compared to the other fractions. Additionally, unmixing will 

be tested for the other grouping methods, which will allow 

examining this relationship for monocotyledons versus 

dicotyledons. The results are continuous with the results achieved 

by Louargant et al., (2017), who showed the effect of vegetation 

fraction on vegetation- soil, and monocotyledons and 

dicotyledons classification outcome. However, the results 

presented here suggest an alternative approach to characterize 

this relationship, using spectral unmixing.  

4. CONCLUSIONS 

This study aims to investigate and understand the relationship 

between spectral mixtures and the misclassification of weed 

species. Preliminary results showed that misclassification can be 

characterized by their location in the image and are more frequent 

in proximity to the edges between different weed species and 

weed and soil. Quantitive and visual analysis suggested that those 

pixels are generally affected by fractions of the different EM in 

the scene. This outcome was later confirmed by the combined 

analysis of the unmixing and the classification results. The 

fractions size of soil and Seteria adherents were shown to affect 

the rate of misclassification, but the presence of this effect was 

found to be dependent on the EM identity as the fractions of 

Amaranthus retroflexes and Solanum nigrum were not found to 

affect the misclassification rate. This leads to the preliminary 

conclusion that spectral mixtures are probably a significant factor 

driving misclassifications when attempting to classify between 

weed species. Besides, misclassified pixels can be characterized 

by combining spatial and spectral analysis. The preliminary 

findings raised different questions regarding the characteristics 

of spectral mixtures that lead to misclassification: Are specific 

mixtures more prone to misclassification than others? Does the 

identity of those mixtures affect by the growth stage? Does the 

spatial location of a specific mixture influence its probability to 

be misclassified? Therefore, we aim to continue and characterize 

those pixels, to establish the effect of spectral mixtures on the 

classification. 
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