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ABSTRACT: 

 

The above-ground biomass (AGB) estimation monitoring provides a powerful tool for the assessment of carbon emission and 

sequestration. Using remote sensing technique is an environmentally friendly way of biomass estimation. Thus, this paper investigated 

optical (i.e. Landsat 8 OLI and Sentinel-2), synthetic aperture radar (SAR) (global phased array type L-band SAR (PALSAR/PALSAR-

2) and Sentinel-1), and their integration for AGB estimation of the Pack demonstration forest in Warrensburg, NY. Importantly, a 

LiDAR AGB raster of the study area was used as reference data for training/testing purposes. Then, an extreme gradient boosting 

(Xgboost) machine learning model was used to predict biomass values. The major goal of this study was to compare the performance 

of pixel-based and object-based image analysis (OBIA) for the AGB estimation. Results indicated that the object-based approach 

improved the RMSE of AGB prediction about 6.28 Mg/ha for optical + SAR, 6.17 Mg/ha for SAR, and 5.6 Mg/ha for optical data in 

comparison to the pixel-based approach. Moreover, the combination of optical and SAR data increased the prediction accuracy 

regardless of feature extraction approach.       

  

1. INTRODUCTION 

Sustainable forest management is a critical topic which 

contributes to ecological, economical, and socio-cultural aspect 

of the environment (Siry, Cubbage, and Ahmed 2005). 

Sustainable and effective forest management requires accurate, 

consistent and timely forest monitoring. Forests play important 

role in global ecosystems. In recent years, human and natural 

effects endanger forests across the globe. Forest disturbance 

contributes to climate change, decrease biological diversity, 

disturb hydrological cycles, and causes soil erosion and 

degradation (Watson et al. 1998). In particular, forest above-

ground biomass (AGB) is a crucial parameter in carbon 

sequestration and climate change issues (M. Li, Im, and Beier 

2013). Thus, an accurate method for AGB estimation is required 

to monitor carbon stocks.  

Recently, there has been growing interest in determining AGB in 

a timely manner using less destructive and cost-effective ways. 

The traditional field measurement techniques calculate the AGB 

by cutting and weighing the trees (Silveira et al. 2019). Although 

this method provides accurate AGB estimation, it requires a lot 

of labor, cost, and time and it cannot be applied over large areas 

(M. Li, Im, and Beier 2013). On the other hand, remote sensing 

techniques are a cost-effective way that can provide valuable  

 

 

 

information for AGB estimation over large areas and in a timely 

manner (Y. Li et al. 2019). Previous studies have emphasized on 

the high correlation of remote sensing data and AGB which can 

be used for accurate biomass prediction (Deng et al. 2014; Y. Li 

et al. 2019). Therefore, this study tries to take advantage of 

different optical and synthetic aperture radar (SAR) imagery for 

forest AGB estimation. 

Airborne light detection and ranging (LiDAR) is an active optical 

remote sensing source which provides information on vertical 

structure of forests (Boudreau et al. 2008; Wulder et al. 2013). 

Nonetheless, collecting airborne LiDAR data is costly and it is 

not applicable for large regions. Spaceborne optical and SAR 

data can be considered alternative useful sources for AGB 

estimation. Optical imagery have a relatively high correlation 

with vegetation density, biomass, and chlorophyll content (Yue 

et al. 2019). However, being sensitive to weather condition and 

saturation issues in forests with high biomass are their limitations 

(Zhang et al. 2019). To overcome the problem of severe weather 

condition, SAR sensors which work at longer wavelength are 

other options. SAR data may also have limitations with 

saturation depending on the wavelength and biomass density  
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(Urbazaev et al. 2018). Thus, the combination of multiple remote 

sensing datasets results in reducing limitations exist in each 

single source. To date, some studies have focused on using 

different sources of remote sensing data and their combination 

for AGB estimation (Boudreau et al. 2008; Karlson et al. 2015; 

Dube et al. 2016; Berninger et al. 2018; Cao et al. 2018; Dang et 

al. 2019; Duncanson et al. 2020; Issa et al. 2020; Li et al. 2020). 

Besides having useful dataset, AGB estimation requires an 

effective regression model to predict biomass accurately. 

Traditional statistical models such as linear regressions have 

been widely used for AGB estimation (Næsset 2011; Li et al. 

2020; Zhu et al. 2020). The disadvantage of linear regression 

models is that they are not suitable for non-linear distributed 

datasets. Machine learning techniques are one the most well-

known models that can cope with non-linear characteristics of 

remote sensing data (Y. Li et al. 2019). Among machine learning 

models, decision tree-based algorithms presented better 

performance in AGB estimation (Y. Li et al. 2019). Since 

random forest (RF) regression model has been widely explored 

for predicting AGB values, this study investigates the 

performance of extreme gradient boosting (Xgboost) machine 

learning algorithm for AGB estimation. In addition, most of the 

studies have focused on pixel-based feature extraction approach. 

This paper with the goal of forest AGB estimation in one of 

temperate forests of New York State, USA, attempts to use 

Xgboost technique to model the biomass. Optical (i.e. Landsat 8 

OLI and Sentinel-2) imagery, SAR (global phased array type L-

band SAR (PALSAR/PALSAR-2) and Sentinel-1) datasets, and 

the combination of optical and SAR data were used to evaluate 

the efficiency of different remote sensing sources. However, the 

primary objective of this paper is to compare the results of pixel-

based and object-based image analysis (OBIA) approaches for 

AGB estimation. OBIA technique has not been explored and its 

capabilities need to be evaluated. 

In this study, we wanted to investigate the potential of OBIA and 

compare its results with the conventional pixel-based approach. 

It is worth mentioning that object-based method can overcome 

the mixed pixel problem by categorizing similar pixels into 

objects. However, the accuracy of the object-based approach is 

influenced by the results of the segmentation algorithm. Thus, 

each method has its own pros and cons while the hypothesis is 

that the OBIA can provide better estimates.    

 

   

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area, the Pack demonstration forest (PDF), covers an 

area of approximately 2,500 ha which is located in the southern 

Adirondacks outside the town of Warrensburg, NY (Figure 1). It 

includes several wetland areas, coniferous forests, deciduous 

forests and unique ice meadows that make PDF a testament to 

the area’s diversity. PDF elevation ranges from 204 m to 377 m 

above mean sea level with a mean annual temperature of 5.07℃, 

and mean annual precipitation of 1158 mm.       

  

 

Figure 1. Location of the study area (Warren, NY). Red circles 

indicate sample plots located in Pack demonstration forest 

(PDF). 

  

2.2 Field Inventory Data Collection  

The State University of New York, College of Environmental 

Science and Forestry (SUNY-ESF) collected continuous forest 

inventory (CFI) field measurements. Field data in Pack forest 

includes 95 sample plots with the radius of 11.33 m (area: 403.33 

m2) were collected in July and August of 2013. The sampling 

technique was done using a systematic approach as shown in 

Figure 1. For each sample plot tree species and diameter at breast 

height (DBH) of 9.14 cm or greater have been recorded. Sample 

plots consists of northern hardwood species such as acer 

saccharum (sugar maple), acer rubrum (red maple), betula 

alleghaniensis (yellow birch), fagus (beech), Fraxinus 

Americana (white ash), Quercus rubra (red oak), Pinus strobus 

(white pine), Conium maculatum (hemlock), Picea rubens (red 

spruce), and Pinus (pine)/softwood plantations of various species 

(Breitmeyer et al. 2019). The component ratio method (CRM) 

species-specific allometric equations were used to calculate the 

AGB for each plot (Woodall et al. 2011; Clough et al. 2018). 

AGB at PDF ranges from 72.32 to 416.03 Mg/ha with an average 

of 191.35 Mg/ha with a standard deviation of 66.87 Mg/ha.  

 

2.3 Remote Sensing Data 

2.3.1 Airborne LiDAR: Aerial LiDAR data was acquired by 

New York State GIS program office (NYSGPO) over the study 

area in 2015. A Leica Airborne Laser Scanner 70 (ALS70) at a 

maximum flying height of 3500 m above ground level was used 

to collect discrete returns. First, raw point clouds were converted 

into height-normalized point clouds. Then, a k-nearest neighbour 

imputation algorithm (k = 5) was used to interpolate a digital 

elevation model (DEM) which was subtracted from all returns in 

the point cloud (Hawbaker et al. 2009; Huang et al. 2019). 

Finally, height (e.g. height, coefficient of variation of height) and 

intensity (e.g. percentage of ground intensity, percentage of 

feature intensity) predictors were calculated to generate the AGB 

raster at 30 m grid cells of the Pack forest. The choice of 30 m 

grid cells was primarily based on Landsat spatial resolution and 

to reduce unnecessary computational processing.          
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2.3.2 Optical Data: The Google Earth Engine (GEE) cloud 

platform (Gorelick et al. 2017) was used to pre-process and 

download the imagery. Optical images such as Landsat and 

Sentinel-2 were used in this research. The datasets were used to 

extract spectral bands and to calculate 13 vegetation indices. 

Landsat 8 OLI surface reflectance data of July and August of 

2013 were downloaded including Blue, Green, Red, near-

infrared (NIR), and two short-wave infrared (SWIR) bands with 

30 m resolution (Hemati et al. 2021).      

In addition, top of atmosphere reflectance Sentinel-2 multi-

spectral instrument (MSI) images of July and August of 2016 

were used. Sentinel-2 dataset contains three spectral bands (Red, 

Green, Blue) (10 m), one NIR (10 m), four red-edge (20 m), and 

two SWIR bands (20 m) (Earth Resources Observation And 

Science (EROS) Center 2017). All input layers were resampled 

using bicubic interpolation and re-projected to NAD83 Conus 

Albers EPSG: 5070 coordinate system to be aligned with 30 m 

LiDAR raster.   

  

2.3.3 SAR Data: The global phased array type L-band SAR 

(PALSAR/PALSAR-2) and Sentinel-1 datasets were acquired 

from GEE. The dual polarization (horizontal transmit/horizontal 

receive (HH) and horizontal transmit/vertical receive (HV) 

polarizations) global PALSAR/PALSAR2 yearly mosaic with 25 

m resolution at L-band for 2013 was used. Then, a smoothing 

speckle filter was applied to the bands to remove the speckle 

noise (Lee, Grunes, and De Grandi 1999). HH, HV backscatters 

along with span and ratio were utilized as input predictors for the 

regression model (Equations 1 and 2). 

 

Span=HH2+HV2          (1)         

Ratio =  HH HV⁄          (2)    

where  HH= horizontal transmit/horizontal receive channel 

 HV = horizontal transmit/vertical receive channel  

 

Sentinel-1 dual polarization C-band data with 10 m resolution 

was also used. Collection of images in July and August of 2015 

in vertical transmit/vertical receive (VV) and vertical 

transmit/horizontal receive (VH) polarizations was used to 

estimate AGB. Similar to PALSAR/PALSAR-2 yearly mosaic, a 

smoothing speckle filter with window size of 3 ×3 was applied 

and images were resampled into 30 m resolution. In addition to 

VV and VH bands, span and band ratios were calculated (Lee 

and Pottier 2009). The images were resampled using bicubic 

interpolation and reprojected to NAD83 Conus Albers EPSG: 

5070 coordinate system to be aligned with 30 m LiDAR raster 

and optical data.    

3. METHODOLOGY  

Figure 2 shows an overview of the methods used in this study. 

First, airborne LiDAR data was used to generate AGB raster of 

the PDF forest. Second, optical and SAR predictors were 

extracted from different sensors. Then, Xgboost model was 

implemented in the R software. For the OBIA, the simple non-

iterative clustering (SNIC) algorithm in GEE was used to obtain 

the objects’ boundaries. Objects were exported as shapefiles for 

the rest of the process in the R software. Finally, the AGB 

estimates of the PDF forest were compared using the Xgboost 

model.   

  

  

Figure 2. An overview of the methodology used in the study 

for AGB estimation. 

  

3.1 Extreme Gradient Boosting (Xgboost) 

Xgboost is an improved version of gradient boosting machine 

(GBM) proposed by Chen and Guestrin (2016). It optimizes the 

objective function by using a second-error Taylor expression 

while the GBM utilizes the first-order derivatives (Pan 2018; 

Pesantez-Narvaez, Guillen, and Alcañiz 2019). Regularization, 

tree pruning, and parallelism are some of the advantages of 

Xgboost model (Jafarzadeh et al. 2021). Using second derivative 

enables Xgboost to be faster from a computational speed 

perspective (Pan 2018). Moreover, regularization can handle 

both under and over-fitting issues (Li et al. 2020; Pham et al. 

2020). These characteristics put Xgboost among the most 

desirable boosting machine learning algorithms for 

classification, regression, and ranking tasks (Jafarzadeh et al. 

2021). 

 

The “xgboost” package in R software (Chen et al. 2021) was used 

to implement the Xgboost regression model. Table 1 lists the 

parameters, their description, and the range of selected values for 

hyperparameter tuning for Xgboost machine learning model. It 

should be noted that Xgboost is sensitive to hyperparameter 

tuning and it might affect its performance (Li et al. 2020). A grid 

search approach was used for tuning the machine learning 

parameters. 

 

Parameter Description Values 

nrounds 
the number of rounds for 

boosting 

10, 50, 100, 

500, 750, 

1000 

max_depth 
the maximum depth of 

the tree 

from 2 to 10 

(with 2 steps) 

eta 

the step size shrinkage 

(helps reducing over-

fitting) 

0 to 1 (with 

0.1 step) 

gamma 

the minimum loss 

reduction  

(helps splitting on a leaf 

node of a tree) 

0 to 1 (with 

0.1 step) 

subsample 

the ratio of the 

subsample for each 

training cases 

 0.6 to 1 (with 

0.1 step) 

min_child_w

eight 

the minimum sum of 

sample weight required 

to be in each node 

1 to 5 (with 1 

step) 
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Parameter Description Values 

learning_rate 
the weighting of new 

trees 

0.01, 0.05, 

0.1, 0.2, and 

0.3 

Table 1. Parameters for hyperparameter tuning of Xgboost 

regression model in R software. 

 

3.2 LiDAR AGB raster as reference data 

As mentioned earlier, PDF forest includes 95 sample plots. To 

increase the number of training/testing samples for implementing 

the machine learning model, LiDAR-derived AGB raster can be 

used as a reference data. Several studies used this technique for 

forest AGB estimation using remote sensing datasets (Hirata et 

al. 2018; Hudak et al. 2020). 

First, the Xgboost machine learning model was used to predict 

and generate the AGB map of PDF using airborne LiDAR height 

and intensity predictors. Second, the LiDAR-derived raster was 

used to create training/testing samples. In order to include a 

complete range of AGB values, a stratified random sampling 

method was used. Thus, pixels of LiDAR AGB raster were sorted 

from 0 to maximum AGB with 5 Mg/ha bins. Then, 200 pixels/ 

objects were randomly chosen within each bin. One-half of 

samples were selected when the bin had less than 200 

pixels/objects (Hudak et al. 2020). For the OBIA approach, the 

boundaries were overlaid on LiDAR-derived raster to calculate 

the mean AGB of the object. Finally, 4,533 pixels and 4,266 

objects were produced as training/testing samples for pixel-based 

and object-based techniques, respectively. The reference dataset 

was divided to 70% for training and 30% for testing. The 

performance of the final model was evaluated using the root 

mean square error (RMSE), R squared (R2), and mean bias error 

(MBE) (Equations 3-5).  

 

RMSE = √∑
(ŷ

i
−y

i
)
2

n

n
i=1           (3)         

𝑅2 = 1 −
∑ (y

i
-ŷ

i
)
2

i

∑ (y
i
-ȳ)

2
i

                 (4)         

MBE=
1

n
∑ (y

i
-ŷ

i
)n

i=1               (5)         

 where   ŷ
i
 are predicted values 

                y
i
 are observed values  

                n is the number of observations 

                ȳ is the mean of y values   

   

3.3 Object-based Image Analysis (OBIA) 

One of the most common feature extraction techniques in remote 

sensing image classification is OBIA approach (Blaschke 2010). 

This technique clusters pixels into objects based on their spectral 

similarity (Addink and Coillie 2010). Reducing the mixed pixels 

issues which exists in pixel-based approach is one of the 

advantages of OBIA (Salehi, Daneshfar, and Davidson 2017). As 

mentioned earlier, this method has not been used widely for 

forest AGB estimation. Thus, this study focuses on comparing 

pixel-based and object-based results for AGB prediction. The 

SNIC algorithm which is provided by GEE (Achanta and 

Susstrunk 2017) was used to segment forest canopies into similar 

objects using Sentinle-2 imagery (Figure 3). SNIC segmentation 

parameters (i.e. size, compactness, connectivity, 

neighborhoodSize, and seeds (Tassi and Vizzari 2020)) were 

selected based on trial and error and size of objects. The 

parameters were set as follows: size=5, compactness=0.1, 

connectivity=8, neighborhoodSize=60, and seeds=10. 

After defining the optimum objects, some spectral and textural 

features were extracted as input predictors for AGB estimation. 

Mean and variance were the spectral and for textural features, 

angular second moment (ASM), contrast, entropy, and 

homogeneity were selected among available GLCM features in 

GEE. 

 
Figure 3. OBIA using the SNIC segmentation in GEE. (a) 

Imagery of a zoomed area, (b) boundaries of segmented objects.    

 

  

4. RESULTS AND DISCUSSION  

4.1 Tuning of Xgboost parameters  

Table 2 shows the winning parameters after hyperparameter 

tuning using a grid search approach. Based on the 

hyperparameter tuning procedure, the Xgboost regression model 

is relatively neutral to the gamma value. In addition, when 

considering the same value of minimum_child_weight and 

maximum depth, the RMSE and R2 does not change. To keep the 

RMSE results low, a higher value of minimum_child_weight is 

needed when the maximum depth increases. A lower value of 

learning rate decreases the contribution of each tree which 

prevents over-fitting issue (Li et al. 2020).    

    

Parameter Pixel-based Object-based 

nrounds 200 500 

learning_rate 0.2 0.2 

max_depth 4 6 

eta 0.3 0.1 

gamma 0.3 0 

subsample 0.7 0.7 

min_child_weight 1 5 

Table 2. Wining values of hyperparameter tuning of Xgboost 

model using a grid search approach and optical + SAR data.  
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4.2 Pixel-based vs. Object-based using Xgboost model 

Table 3 summarizes the RMSE, MBE, and R2 of Xgboost 

regression model for optical, SAR, optical + SAR data, 

separately, for both pixel-based and object-based approaches. 

First, OBIA outperforms pixel-based approach regardless of 

datasets. Object-based technique enhanced the RMSE of AGB 

prediction about 6.28 Mg/ha for optical + SAR, 6.17 Mg/ha for 

SAR, and 5.6 Mg/ha for optical data in comparison to the pixel-

based approach. In the OBIA, pixels are categorized into objects 

based on similar reflectance value (Salehi, Zhang, and Zhong 

2013). This helps reducing the error of prediction caused by 

mixed pixels in heterogenous forest landscapes. Thus, as the 

results demonstrate OBIA improves the performance of the AGB 

estimation.   

In addition, several studies have emphasized the importance of 

OBIA for the enhancement of forest AGB estimation (Hirata et 

al. 2018; Silveira et al. 2019). However, finding the appropriate 

parameters for optimum objects is a critical task. Therefore, in 

this study, a trial and error method based on both RMSE and the 

shape of the objects was used to select best objects.    

 

As listed in Table 3, in both scenarios, optical+SAR data 

provides the best AGB estimation by improving RMSE, MBE, 

and R2. Then, optical, and SAR data are in the second and third 

place, respectively. The reason behind the better performance of 

optical data in comparison to SAR data might be because of the 

number of input predictors derived from spectral variables.  

 

Most of the studies in forest AGB estimation have used optical 

imagery (Singh et al. 2012; Zhang et al. 2019; Li et al. 2020). 

While optical data provide valuable information low 

penetrability (Saatchi 2019; Coops et al. 2021) and saturation 

issue are the limitations of these images (Zhou et al. 2016). On 

the other hand, SAR datasets with longer wavelengths such as L-

band and P-band are capable of penetrating forest canopies 

(Saatchi 2019). Moreover, they are sensitive to geometrical and 

physical characteristics of forest canopies. It is worth mentioning 

that SAR data are also suffering from saturation problem 

depending the density of the biomass (Zhou et al. 2016; Saatchi 

2019). Thus, this paper used the combination of optical and SAR 

data to take advantage of chemical, molecular, geometrical, and 

physical information (Mahdianpari et al. 2019; Saatchi 2019; Li 

et al. 2020) provided by optical + SAR datasets. The results show 

the importance of using the integration of optical and SAR data 

for AGB estimation. 

  

Model  Optical SAR Optical + SAR 

Pixel-

based 

RMSE 

(Mg/ha) 
42.24 51.28 40.97 

MBE 

(Mg/ha) 
5.91 8.32 4.54 

R2 0.72 0.58 0.73 

Object-

based 

RMSE 

(Mg/ha) 
36.64 45.11 34.69 

MBE 

(Mg/ha) 
3.27 -4.38 1.43 

R2 0.77 0.65 0.79 

Table 3. Comparison of pixel-based and object-based PDF 

forest AGB estimation using Xgboost regression model for 

optical, SAR, and optical + SAR data.  

4.3 Comparing AGB Maps of Pixel-based vs. Object-based 

Both pixel-based and object-based AGB maps of PDF forest for 

the Xgboost model trained on LiDAR AGB raster are shown in 

Figures 4 and 5 using the optical + SAR data. A clear difference 

can be seen in the performance of pixel-based and object-based 

AGB maps. For instance, OBIA has led to a better result in 

distinguishing roads from other land cover types. Red lines, in 

the Figure 5, above the Hudson River show the roads (Figure 5, 

C) which were well estimated as low biomass areas.  

Figure 5, A and B are two samples of high and low biomass 

regions. AGB maps, canopy covers with the same reflectance 

were categorized as the same objects resulting in more accurate 

AGB mapping using OBIA.       

  

 
Figure 4. Pixel-based AGB map of PDF forest using Xgboost 

model and optical + SAR data trained on LiDAR-derived AGB 

raster  

 

 
Figure 5. Object-based AGB map of PDF forest using Xgboost 

model and optical + SAR data trained on LiDAR-derived AGB 

raster 

  

The comparison of pixel-based and object-based approaches 

demonstrated that OBIA presents more accurate AGB 

estimations and maps. First, PDF object-based AGB map looks 

smoother and the “salt-and-pepper” effect is less obvious. 

Second, the estimated AGB range of object-based approach is 

wider than pixel-based. This is due to the use of stratified 

sampling of LiDAR AGB raster as training datasets. The use of 

LiDAR AGB raster as training can significantly increase the 

amount of training samples, which improves the performance of 

machine learning training process.  

 

5. CONCLUSION  

This study compared pixel-based and object-based feature 

extraction approaches for AGB estimation. The Xgboost 

regression model was used to predict AGB of temperate PDF 

forest in New York State, USA. Multiple freely available optical 
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and SAR data and their combination were utilized to estimate the 

AGB. The results proved that the combination of different 

remote sensing sources can increase the performance of AGB 

estimation. Object-based approach significantly enhanced the 

RMSE, MBE, and R2 in comparison to the conventional pixel-

based method. It is recommended to take advantage of the new 

up-coming NASA Indian Space Research Organization (ISRO) 

Synthetic Aperture Radar (NISAR) data. This sensor provides 

data at two bands (L-band and S-band) which is suitable for 

dense forests.    
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